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Abstract 

To date, a number of numerical methods, including the popular Finite-Difference Time Domain 
(FDTD) technique, have been proposed to simulate Ground-Penetrating Radar (GPR) responses. 
Despite having a number of advantages, the finite-difference method also has pitfalls such as being 
very time consuming in simulating the most common case of media with high dielectric permittivity, 
causing the forward modelling process to be very long lasting, even with modern high-speed 
computers. In the present study the well-known hyperbolic pattern response of horizontal cylinders, 
usually found in GPR B-Scan images, is used as a basic model to examine the possibility of reducing 
the forward modelling execution time. In general, the simulated GPR traces of common reflected 
objects are time shifted, as with the Normal Moveout (NMO) traces encountered in seismic reflection 
responses. This suggests the application of Fourier transform to the GPR traces, employing the time-
shifting property of the transformation to interpolate the traces between the adjusted traces in the 
frequency domain (FD). Therefore, in the present study two post-processing algorithms have been 
adopted to increase the speed of forward modelling while maintaining the required precision. The first 
approach is based on linear interpolation in the Fourier domain, resulting in increasing lateral trace-to-
trace interval of appropriate sampling frequency of the signal, preventing any aliasing. In the second 
approach, a super-resolution algorithm based on 2D-wavelet transform is developed to increase both 
vertical and horizontal resolution of the GPR B-Scan images through preserving scale and shape of 
hidden hyperbola features. Through comparing outputs from both methods with the corresponding 
actual high-resolution forward response, it is shown that both approaches can perform satisfactorily, 
although the wavelet-based approach outperforms the frequency-domain approach noticeably, both in 
amplitude and shape of the outputted hyperbola response. 
 
Keywords: forward modelling, fourier transform, Ground-Penetrating Radar (GPR), high resolution, 
wavelet transform. 
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1. Introduction 
GPR is a high-resolution non-destructive 
geophysical technique which detects the 
convolved reflection of high-frequency 
(usually in the range of 1 MHz to more than 1 
GHz) EM pulses caused by different 
subsurface in-homogeneity features, such as 
man-made artefacts, buried underground 
objects and natural subsurface geology. The 
main purpose of processing GPR data is to 
extract useful physical, structural and 
geometrical information about subsurface 
targets hidden in the raw data as a result of 
convolution. To achieve this goal it is 
necessary to obtain knowledge of the GPR 
system responses for various synthetic objects, 
which can be achieved using numerical 
forward modelling. Not only is the forward 
modelling process considered as the core 
engine of any practical inversion scheme, but 
also the simulated responses obtained via the 
forward modelling approach enable us to 
characterize the effect of different model 
parameters on expected GPR responses over 
corresponding objects. 

To date, a number of different numerical 
forward modelling methods have been 
proposed and employed for simulating GPR 
responses, ranging from basic ray-tracing and 
one-dimensional (1D) transmission-reflection 
techniques [1] to more sophisticated finite-
difference [2-8], finite-volume, Z-transform 
and discrete-element techniques (e.g., [9-11]) 
and their hybrids [12]. Although these 
methods are different in their methodology, 
they all attempt to simulate the propagation of 
the GPR wave from the surface downwards, 
with the emphasis on the interaction of the 
electromagnetic (EM) wave with the 
subsurface materials [13]. 

Among these forward modelling methods, 
the numerical finite-difference scheme has 
received most attention due to a number of 
advantages such as easier formulation, 
flexibility, ability to simulate and model 
complicated media, and reliable responses for 
known employed cases.  

Only a few cases of applying wavelet 
transform in GPR data processing and 
enhancement have been reported. Delbò et al. 
(2000) applied a method based on the wavelet 
to reduce the noise and increase the signatures 

in the GPR image, followed by use of a fuzzy 
clustering approach to identify the GPR 
signatures appearing as hyperbolas in GPR 
sectional images [14]. Strange et al. (2002) 
employed a GPR system to develop an 
algorithm to estimate the thickness of coal 
veins with a signal model representative of re-
tuned GPR data. They used an adaptive filter 
extracted from pulse reflected off a metallic 
plane by wavelet to determine the distance to a 
target with an error of about 3 cm [15].  

Rossini (2003) applied the wavelet 
transform and mathematical interpolation 
model to detect objects hidden in the subsoil 
[16]. Lian and Li (2011) applied an improved 
thresholding noise-suppression method based 
on wavelets to pre-process GPR data, followed 
by Hough transform to simulate the respective 
hyperbola response and determine the location 
of subsurface pipes. Finally, they classified 
simulated hyperbolas by the SVM method and 
obtained a correspondence between hyperbola 
classification results and pipe diameter [17]. 

In this study, two new methods have been 
used to improve the resolution and shape 
continuity of low-resolution simulated GPR 
responses in the frequency and wavelet 
domain. To achieve this goal, first the two-
dimensional (2D) forward modelling based on 
finite-difference method is adapted for 
generating simulated GPR B-Scan data. Since 
any efficient inversion routine requires a fast 
forward modelling engine, this study will be 
aimed at developing fast forward modelling 
algorithms capable of being implemented in 
any inversion routine. Afterwards, the wavelet 
transform is employed to enhance the 
resolution of GPR images because this method 
is considered as an accurate and fast algorithm 
for such delicate interpolation. Finally, the 
results of the two methods are compared. 

2. Theoretical background of GPR method 
In a typical GPR survey, an EM pulse is 
transmitted downwards into the earth and a 
receiver detects its reflection back from 
subsurface in-homogeneities with sufficient 
physical property contrasts. The amplitude of 
the reflected GPR signal depends on physical 
property changes such as phase velocity (v), 

attenuation () and EM impedance (z) within 
the host medium where the EM wave 
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propagates. Dielectric permittivity (), 

magnetic permeability () and electrical 

conductivity () are the physical properties of 
the materials controlling the interaction of EM 
wave with different media. In most geological 
situations, the electrical properties tend to be 
the dominant factors controlling GPR 
responses. Since the magnetic permeability 
has trivial variations compared to the other 

properties then   and  are the most important 
physical property parameters in most cases in 
conventional GPR surveys. 

In all cases one of the EM field 
components (generally electric field) is 
measured. The common way to display GPR 
data is to plot the returned signal amplitude 
against the delay time, which is called trace. In 
general the radargram obtained from profiling 
GPR data acquisition, as shown in Figure 1, 
contains a series of adjacent traces, and the 
resulting event in the image for most buried 
targets is a hyperbola. It is presumed that the 
detected reflected signal returned from the 
subsurface target is greater than the 
background signals. 

Since GPR detects objects at a distance, 
resolution indicates how precisely the target 
geometrical parameters can be determined. 

Resolution essentially breaks into depth and 
lateral resolution components when dealing 
with GPR data. In this study, the so-called 
lateral resolution, which accounts for angular 
or lateral response variations, is considered. 
The basic concepts of a typical GPR system 
are depicted in Figure 2. 

 

 
Fig. 1. a) The procedure of GPR data acquisition by 

reflection-profiling (common-offset) mode over 

the buried object; b) a typical GPR radargram 

section in wiggle mode with the radar reflections 
showing a hyperbola pattern [18] 

 

 

 

 

Fig. 2. Depth (a,c) and lateral (b,c) resolution components defined for GPR system (after [19]) 

 

(c) (a) (b) 

(a)

(b)
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3. Application of FDTD method to simulate 

GPR responses 
In general the Maxwell’s equations and the 
associated initial and boundary conditions form 
the basis for studying EM field behaviour. The 
finite-difference numerical method is based on 
replacing the governing differential equations 
by their finite-difference approximations. To 
summarize, the whole finite-difference 
approach can be divided into three main stages: 
in the first step the space of the problem is 
discretized into a grid of nodes, followed by 
approximating the governing differential 
equations by finite-difference equivalents and 
finally solving the finite-difference equations 
imposed by appropriate initial and boundary 
conditions [20]. In order to avoid numerical 
divergency, the optimum spatial discretization 
interval of the finite-difference mesh should be 
at least ten times smaller than the wavelength 
of GPR antenna central frequency or the 
smallest dimension of the scatterer target. In 
other words, according to Equation (1) it should 
be one-fifth of the smallest wavelength in the 
transmitted pulse [20]. 

(1) 
5


    minx y  

Equation (2) also calculates the time 
discretization step [21]. 

(2) 
2 2

6
7 1 1

min min
maxt

x y

 
 


 

 

where min and min are the minimum values of 
relative magnetic permeability and dielectric 
permittivity existing in the modelling grid, 
respectively.  

In the finite-difference numerical modelling 
method, the EM fields are estimated at a number 

of grid nodes separated by x and y for a 

number of time steps (t). The most important 
parameters controlling the performance of 
numerical modelling are thus spatial 
discretization intervals and time steps. In 
general, lowering the spatial discretization 
resolution will result in greater accuracy at the 
cost of increased computation time and memory 
requirement. Therefore, it would be of great 
importance to reduce the computation time of 
GPR data forward modelling without losing 
accuracy.  

4. Problems with the existing algorithms 
The most important drawbacks of the 
currently available numerical modelling codes 
(e.g., [3]) are the difficulties they present in 
model construction and the long computing 
time, in particular for lossy host media with 
high dielectric permittivity, where several 
hours are needed even with a modern and fast 
computer. Since any GPR data inversion 
algorithm needs a fast and reliable forward 
modelling engine, current research has been 
directed towards the development and 
implementation of optimized algorithms to 
reduce forward modelling time. As mentioned 
earlier, the GPR response for most buried 
objects (Fig. 1) appears as a hyperbola, 
meaning that the GPR signal traces reflecting 
the subsurface in-homogeneities show a time 
displacement in sequential traces. This time 
displacement allows taking the property of 
time-shifting in the Fourier transform 
frequency domain. 

In order to increase the execution speed of 
the modelling while avoiding spatial aliasing 
or any possible numerical dispersion, the trace 
spatial intervals along the profile traverse are 
set to one-fifth of the target lowest dimension 
along the profile traverse strike. Optimizing 
this parameter significantly reduces the 
computation time. Obviously with this choice, 
the response resulting from GPR forward 
modelling appears fragmented and piecewise 
continuous, which is not desirable (here it is 
called low-resolution response). 

5. Fourier domain approach to increase 

GPR forward responses  
As outlined above, to increase the program 
execution speed in the MATLAB 
environment while increasing the lateral 
resolution of the response (lateral resolution 
of trace intervals along the profile traverse), 
the fast Fourier transform of any two 
consecutive traces with a finite time shift, is 
employed as indicated in Equation (3). Since 
high-amplitude parts of traces in a 
radargram (strong subsurface reflections) 
are consistent with the location of buried 
targets (reflector anomalies), in this way the 
difference between the first reflected signal 
in successive traces is determined and stored 
as time displacement in the spatial interval 
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between two successive traces. Then, a 
number of desired synthetic traces are 
interpolated between two adjacent traces 
with the time displacement, applying the 
Fourier transform. In this study, in order to 
retain the curvature shape of the response a 
third-order 1-D interpolation scheme of type 
cubic spline is used between any two 
successive traces. 

(3)    0

0

 
  

F
i t

f t t e F  

where t and t0 are time, 1i   ,  is angular 

frequency and  denotes the Fourier transform 
operation. These extra computations are very 
fast and take only a very short time, resulting in 
a more continuous trace-by-trace appearance in 
the GPR radargrams. The low-resolution 
piecewise fragmented appearance of the 
hyperbolic shape is also improved visually. This 
new GPR radargram is called high-resolution 
response. It should be mentioned that in order to 
increase the program execution, and to allow 
greater focus on the object response, the direct 
(air and ground) wave response in all traces is 
eliminated. Figure 3 shows the proposed 
flowchart for GPR high-resolution finite 
difference forward modelling algorithm. 

The modified forward modelling program 
is designed in such a way as to provide both 
low-resolution and high-resolution outputs. 
Since most of the required time to compute 
each trace response goes to running all finite-
difference equations in the forward modelling 
code, the application of Fourier transform and 
computation of trace interpolations in the 
Fourier domain leads to significant time 
reduction of about 12.5 times on the average 
models used in this study. 

5.1. Validating the Fourier domain 

approach  
In order to verify the performance of the 
proposed finite-difference forward modelling 
algorithm in terms of speed and resolution, 
GPR responses were generated for a number of 
hypothetical synthetic objects, especially single 
horizontal cylinders (representing a variety of 
pipes and circular Qanats), which are common 
in geotechnical investigations. To generate the 
above-mentioned targets, the GPR forward 
modelling code written by Irving and Knight 

[3] in MATLAB was extended. By running the 

improved code, physical properties such as r, 

 r and  for the host medium and the target, 
size of the GPR traversed cross-section, spatial 
discretization intervals and central frequency of 
the antenna were inputted first, followed by 
selecting one of the above-mentioned models. 

As an example, the two responses (low and 
high resolutions) of a single empty horizontal 
cylindrical object (filled by air) with a diameter 
of 1 m, embedded in a silty clay soil at a depth 
of 1 m (the distance to the top of the object) are 
illustrated in Figure  4. In the lower part of this 
figure the cross-section of the dielectric 
permittivity distribution is shown on the right 
and the conductivity distribution cross-section 
on the left (the dominant frequency of the EM 
wave is 250 MHz and the direction of profile 
traverse is perpendicular to the strike of the 
cylinder axis). The host medium physical 

properties are  rh = 6 and h = 7 mS/m and the 

cylindrical object has  ro = 1 and o = 0 mS/m; 
the values of magnetic permeability for the host 
medium and the target are the same and there is 
equal free space. The overall run time of 
forward modelling by the modified algorithm 
equals 5.15 minutes, compared to the 64.4 
minutes needed for the code generated by 
Irving and Knight (2006). This shows a 
significant reduction in computational time by 
up to 12.5 times. 

5.2. Results 
The low-resolution GPR forward response of 
an empty horizontal cylinder with radius 0.5m 
buried at a depth of 1m in a silty clay soil 
medium with 100 mm spacing between 
adjacent traces (trace interspacing) is shown in 
Figure 5. The high-resolution GPR response 
for the same cylindrical object with 50 mm 
trace interspacing is depicted in Figure 6 for 
comparison. The obvious difference is the 
stepwise discontinuity seen in the low-
resolution image due to greater trace intervals. 
To overcome this discontinuity, the resolution 
of the image and the shape continuity of 
Figure 5 have been enhanced by applying the 
first proposed approach, i.e., the time shifting 
in the frequency domain. The result is shown 
in Figure 7, which reasonably resembles the 
actual high-resolution response. 
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Fig. 3. Flowchart of the proposed FDTD procedure to produce high-resolution GPR radargrams 

Iteration on successive traces 

Iteration to the next trace 

 

Start 

Defining physical and geometrical parameters 
of the model and GPR system properties 

Defining finite-difference grid parameters and time 
window (depth of investigation) 

Definition of re-sampling parameters for 

producing a section with high-resolution 

Performing low-resolution finite-difference forward 
modelling 

 of final matrix (X,T) with  

Interpolating new traces between successive traces 

Fourier transform on two successive traces and determining 

time displacement of the first  reflected peak 

Determining the optimum distance between traces (sampling at the rate of five traces to cover 

smallest  dimension of the existing object in the model)  

Loop over 

traces 

Inverse Fourier transform of the new traces 

Check for 

last trace? 

End of the iteration loop 

Reconstruction and plotting the high-
resolution section 

 with using all the traces 

Finish 
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Fig. 4. Physical and geometrical parameters of an empty horizontal cylindrical model in the lower part. The GPR 

responses are shown in the upper part (low-resolution on the right and high-resolution on the left). The letters r, h 

and o stand for relative, host and object, respectively. 
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Fig. 5. Low-resolution GPR image (forward modelling response with 100 mm trace interspacing) 
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Fig. 6. High-resolution GPR image (forward modelling response with 50 mm trace interspacing) 
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Fig. 7. High-resolution GPR image (FD interpolated response with 50 mm trace interspacing) 

 

6. Wavelet domain approach  

6.1. Basis and applications of wavelet 

transforms 
Wavelet theory, first proposed by Grossman 
and Morlet (1984), is a mathematical theory 
and analysis method which makes up the 
shortcomings of the Fourier transform [22]. In 
the field of signal processing, the most widely 

used analysis method is the Fourier transform, 
but it has an obvious deficiency in that it has 
no distinguishable ability in the time domain, 
because time information is not included in the 
results. On the contrary, wavelet analysis 
decomposes any signal or image into wave 
components of varying durations, called 
wavelets. These wavelets are localized 
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variations of a signal, or detailed localized 
variations of an image. It can be shown that 
wavelet transform can localize features better 
than Fourier transform. In fact, the essence of 
wavelet analysis is multi-resolution analysis. 
Multi-resolution analysis is the decomposition 
of a signal or an image (such as GPR images) 
into sub-signals (or sub-images) of different 
resolution levels [23]. 

For example, Fourier transform of a sharp 
peak has a large number of coefficients 
because the basic functions of the Fourier 
transform are the cosine and sine functions, 
with constant amplitudes over the entire range, 
whereas the most energy of wavelet functions 
is concentrated in a small range and so is 
quickly damped. In fact, the theory of 
wavelets is the generalization of Fourier 
transforms and series theories, overcoming the 
pitfalls of Fourier analysis in local functioning 
and short-time behaviour modelling. 
Therefore, it can be used for a wide variety of 
fundamental signal processing tasks such as 
compression, removing noise, or enhancing 
recorded sounds or images, finding discrete 
points in signals, feature extraction from 
signals, analysis of different signals and in 
modelling and identification of systems [24]. 
Currently, there are several wavelet transforms 
in common use: Continuous Wavelet 
Transform (CWT), Discrete Wavelet 
Transform (DWT) and Fast Wavelet 
Transform (FWT).  

There are some interpolation methods in 
the spatial domain that are specifically used in 
image processing applications. Such methods 
like pixel replication and bilinear interpolation 
techniques, usually up-sample an image 
without considering any structural details of 
the input image. These methods work well in 
simple and smooth regions but edges and 
some textures get blurred. As we know, the 
DWT procedure decomposes the image into 
four sub-bands (LL, LH, HL and HH) [23]. In 
wavelet-domain based techniques of image 
interpolation, the foremost challenge is to 
estimate unknown coefficients of three high-
frequency sub-bands. The basic interpolation 
method in wavelet domain is Wavelet Zero-
Padding (WZP). In this method a low-
resolution image is multiplied with scaling 
factor S, which works as the top-left quadrant 

(LL) of the final high-resolution image. In the 
other three quadrants of the high-resolution 
image (LH, HL and HH), zeros are padded 
[25]. In an application study, Temizel (2005) 
combined the directional cycle spinning 
property with WZP interpolation method [26]. 

In this paper the approach proposed by Naik 
and Patel (2013) has been adopted for 
producing single image super-resolution [25]. 
However, we have made a few modifications in 
the up-sampling and down-sampling procedure 
through using the bicubic spline of MATLAB 
instead of the image smoothing and sharpening 
routines of the Photoshop software. To prevent 
any unwanted high-frequency artefacts the 
method of error back-projection has been 
employed. Furthermore, in order to remove 
uncorrelated white noise from images, a 
wavelet-based denoising method is used. 

6.2. Denoising radargrams in wavelet 

domain 
In order to remove additive noise and at the 
same time maintain the most important details 
of images, denoising techniques are essential. 
The DWT-based denoising method offers 
useful capabilities, as wavelet transform 
contains large coefficients of images, which 
represent the detail of images at different 
scales. The LL sub-band contains the main 
information about the image while the main 
noises are included in the other three sub-
bands; the maximum high-frequency noise is 
contained in HH [23,25].  

One technique for denoising is wavelet 
thresholding (called “shrinkage”). When data 
are decomposed using the wavelet transform, 
filters are used that act as averaging filters, as 
well as others that produce details. Some of 
the resulting wavelet coefficients correspond 
to details in the data set (high-frequency sub-
bands). If the details are small, they might be 
omitted without substantially affecting the 
main features of the data set. The idea of 
thresholding is to set all high-frequency sub-
band coefficients that are below a particular 
threshold to zero. These coefficients are used 
in an inverse wavelet transformation to 
reconstruct the data set [27]. In the present 
study a separable 2-D DWT method has been 
used to remove the noise from an image.  
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The general denoising procedure used in 
this study involves three steps. The basic steps 
of the procedure include decomposing the 
image in the wavelet domain through choosing 
a suitable wavelet and level, computing the 
wavelet decomposition of the image at a 
corresponding level, estimating the 
appropriate threshold value for each level, 
applying soft thresholding to the detail 
coefficients, then carrying out wavelet 
reconstruction through computing the original 
approximation coefficients of level N and the 
modified detail coefficients of levels, 
iteratively. Not addressed here are the 
questions of how to choose the threshold and 
how to perform the thresholding (see [28]). 

6.3. Down-sampling and up-sampling of the 
image 

The flowchart of the algorithm for single 
image super-resolution proposed by Naik and 
Patel [25] was modified to enhance the entire 
procedure, as shown in Figure 8. As can be 
seen from this flowchart, measures of the 
stopping criterion based on the mean squared 
error (MSE) and the wavelet-based denoising 
procedure have been added to control the error 
back-projection process. All steps are 
summarized below. 

In the first step, to gain the low-resolution 
image, a high-resolution image is taken and 
converted to a low-resolution image. To this 
goal can remove the arbitrary number of 
columns of the high-resolution image based on 
a given rule (e.g., every other column, etc.). 
The next step is up-sampling the image using 
bicubic interpolation algorithm. After up-
sampling, due to the point spread function 
(PSF), the image can look a bit blurred. 
Gaussian filter works like a smoothing kernel, 
so applying a Gaussian smoothing filter to the 
image is the third step. In the next step, a 
stopping criterion based on MSE or maximum 
iteration is used. As in step 1, the image is 
down-sampled again (step 5). Steps 6 and 7 of 
the algorithm contain decomposing the image 
in the wavelet transform domain and denoising 
yielded HH sub-band respectively. By 
reversing the above procedure can achieve the 
reconstruction of the image, and is repeated 
until the image is fully reconstructed (step 8). 
In the next step of the algorithm (step 9), the 

error is calculated between the original low-
resolution image of step 1 and the down-
sampled output image. Up-sampling the error is 
the most important step of the proposed 
algorithm (step 10). For reconstructing the 
super-resolution image, the error must be back-
projected, and for that the error matrix must be 
up-sampled to correspond to the super-
resolution image (step 11). This is done using 
the bicubic interpolation algorithm again. 
Finally, the error matrix generated in the 
previous step is added to the high-resolution 
image generated in step 8. The above procedure 
as shown in Figure 8 should be repeated until 
satisfactory results are achieved. 

The final enhanced wavelet-based 
interpolation method to produce a high-
resolution image is displayed in Figure 9. Based 
on the flowchart given in this figure, the original 
low-resolution GPR B-Scan image is primarily 
converted to a 256 level (8 bit) image. Next, the 
2D SWT HAAR and DWT DB1 wavelets are 
employed to decompose the image of size m by 
n. The SWT procedure has the same dimension 
as the input image, while the DWT produces 
sub-bands with half the size of the input image. 
DWT is applied to the original image after 
applying the bicubic interpolation due to initial 
up-sampling. The reason for selecting applied 
types of wavelets is that the HAAR wavelet is 
simple as well as computationally fast compared 
to other kinds (e.g., Daubechies) that are well 
suited for complex irregular signals. However, 
other kinds of wavelet have also yielded similar 
results. 

The denoising algorithm is also applied to 
the HH sub-band yielded by SWT. Afterward 
as can be seen from the flowchart, the 
namesake sub-bands LH, HL and HH 
produced by DWT and SWT add together 
while the averaging operation is performed for 
the LL sub-bands. Then, the four final 
harvested sub-bands LL, LH, HL and HH are 
incremented to correct the estimated 
coefficients as well as the Gaussian smoothing 
FIR filter is applied to them. Finally, by 
applying the Inverse Discrete Wavelet 
Transform (IDWT) and back-transforming the 
obtained image to the original format, the best 
high-resolution image is reconstructed. 
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Fig. 8. Block diagram of the super-resolution algorithm (modified after [25]) 
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6.4. Validating the wavelet-domain 

approach 
The same response of the cylindrical object is 
used as with the frequency-domain approach 
for interpolating the B-Scan image in spatial 
and wavelet domain. Therefore the image with 
100 mm trace interspacing produced by finite-
difference forward modeling (Fig. 5) has been 
employed as original low-resolution image. 
The true high-resolution image with 50 mm 
trace interspacing (Fig. 6) has also been 
applied as the reference for comparison.  

Through an N level wavelet transforming 
the original image followed by updating the 
interpolated image via back projecting the 

misfit errors in an iterative manner, required 
high-resolution image shown in Figure 10 has 
been achieved so that the trace interspacing 
has changed to 50 mm in final form. In this 
process the maximum level reached was 5 and 
the MSE measure was 5.54E-03.  

The main aim of this work is to show the 
lack of significant difference between the true 
high-resolution image and enhanced low-
resolution image in wavelet transform. Figure 
11 also plots the final difference between the 
original and wavelet super-resolution image. 
As can be seen from this figure, the image is 
completely symmetric. 

 
Fig. 9. Proposed wavelet-based interpolation method (modified after [25]) 
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Fig. 10. High-resolution GPR image (wavelet-based interpolation after four iterations with 50 mm trace interspacing) 



Ahmadi et al./ Int. J. Min. & Geo-Eng., Vol.48, No.2, December 2014 

 

171 

 

 

Fig. 11. Final difference between the original and wavelet super-resolution image 

7. Comparison 
In the previous sections the applicable 
approaches for interpolating curvilinear 
features hidden in any image, including time-
shifting in the frequency domain and 
interpolating in the wavelet transform domain, 
were applied to GPR B-Scan images. Based 

on the visual comparison and misfit measures 
given in Table 1, it is found that although both 
approaches are capable of recovering 
hyperbola continuity hidden in GPR B-Scan 
images, the wavelet approach outperforms the 
FD approach in numerical precision (MSE 
measure in Table 1) and shape reconstruction.  

Table 1. Comparison the performance of different methods based on MSE measure  

 

Interpolating method FD approach Wavelet approach 

MSE measure 9.36E-03 5.54E-03 

 

8. Conclusion 
The well-known pattern of GPR response of 
horizontal cylinder models, which is of 
hyperbolic shape, has been used for evaluating 
the performance of capable interpolating 
algorithms for post-processing GPR 
radargrams. Two entirely different algorithms 
have been proposed based on time shifting in 
the Fourier domain and filtering in the wavelet 
domain to interpolate adjacent traces. Through 
applying these approaches to the low-
resolution GPR forward modelling response of 
a horizontal cylinder object and comparing 
with the actual high-resolution response, it is 
shown that through using the time-shifting 
theorem of Fourier transform and applying 
linear interpolation of the consecutive traces in 
the frequency domain, one can not only 
increase the lateral resolution of GPR forward 
responses along the profile traverses but also 

reduce the forward modelling run-time 
significantly. The same response of the 
cylindrical object was employed for filtering 
in the wavelet transform domain, resulting in 
enhanced lateral resolution in addition to 
shape reconstruction.  
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