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Abstract 

The focus of studies in the field of passive walking has often been on straight walking, while less 

attention has been paid to the field of turning motions. In this paper, the passive motions of a finite 

width rimless wheel as the simplest 3D model of passive biped walkers was investigated with a focus 

on turning motions. For this purpose, the hybrid model of the system consisting of continuous and 

discontinuous phases of motion was derived with respect to a vertical fixed frame that was 

independent of the surface profile. A Poincaré map corresponding to a step is one of the common 

methods used for the determination of periodic motions (limit cycles) and their specifications. In this 

study, it was emphasized that the Poincaré map has only one fixed point, indicating only one stable 

periodic motion that is parallel to the steepest slope surface. It is also shown that if the wheel is 

released from an orientation other than the steepest slope, the wheel turns towards the slope surface 

and eventually, its motion continues on the only existing stable limit cycle (passive limited turning). 

The effect of variation among some parameters of the initial conditions on rotational behaviour and its 

convergence were investigated.  
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1. Introduction
 
 

In recent decades, particular attention has been 

paid to the concept of passive walking in 

bipedal robots, due to the natural dynamic 

walking stability found in these types of 

walkers. Passive walking is a concept that was 

first defined and specifically investigated by 
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McGeer [1], who showed that a passive walker 

can roll downward stably on an appropriately 

sloped surface only by its gravity force and 

without any actuators. Coleman also presented 

a comprehensive analysis of 3D passive walking 

[2], using a planar rimless wheel (zero width) 

model as a walker. A rimless wheel is a simple 

and appropriate model for walking analysis and 

has as its main features the motion of a passive 

biped robot. Coleman et al. indicated that a 2D 
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rimless wheel on a sloped surface has a family 

of stable periodic motions that are equivalent to 

a set of stable limit cycles [3]. In addition, it was 

shown that the wheel had only one family of 

stable limit cycles. In further research, Smith et 

al. used a finite width rimless wheel [4]. 

Having hip width and leg separation, their 

proposed model can be more useful for 

understanding 3D bipedal locomotion. 

However, their analysis had been based on a 

fixed frame coordinate normal to the slope 

surface, which is not adequate for applying to 

turning analysis in the current paper.  

In this paper, we deal with the turning 

motion of the finite width rimless wheel. We 

present a new comprehensive model with 

respect to a general vertical fixed frame 

coordinate that is independent of the surface 

profile. Humans often use turning motions in 

their daily activities to improve their 

performance when walking and for obstacle 

avoidance. Recently, Sabaapour et al. 

investigated the limited and continuous turning 

of a 2D rimless wheel on a sloped surface [5, 

6]. In this paper, the results of the above work 

have been implemented for the finite width 

rimless wheel in order to exploit the 

advantages of this model.  

In addition to the development of the 

passive walking concept, some of its features 

such as natural stability and high energy 

efficiency have also been utilized in the design 

of a more effective active controller for 

walking on a flat surface [7, 8]. Similarly, the 

results of this paper can be applied to the 

design of a more effective steering controller 

for biped robots. However, this issue is beyond 

the scope of the present research.  

This paper is organized as follows: the 3D 

passive motion of the hybrid model of a system 

on a sloped surface, including the description 

of the continuous and discontinuous phases and 

their equations, are investigated in the first 

section. In the next section, the stability of 

periodic motion and its corresponding limit 

cycles are analysed. In this section, the effect 

of variation on some parameters pertaining to 

the stability of the limit cycle and its 

convergence are also investigated. Finally, a 

conclusion and future research are presented.  

2. Description of the system 

In this section, the general dynamic 

equations of motion of the finite width 

rimless wheel on a gentle slope are 

presented. Referring to Figure 1, the physical 

parameters of the system are as follows: the 

total mass of the wheel is m and each leg of the 

wheel has length R. Additionally, the width of 

the wheel is w and the angle between each two 

consecutive spokes located on two opposite 

planes is 2 2 /w n  , while n is the number 

of spokes of the wheel that rolls down a gentle 

slope of angle . In addition, the principle 

moments of inertia about the axes of body 

fixed coordinate frame i.e., x, y and z are
0I , 

02I and
0I ,

 respectively, where it is assumed 

that 2
0

1 4I mR . 

 

Fig. 1. Schematic of the finite width rimless wheel 
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2.1. Single support or continuous phase 

In this phase, the wheel rotates about the contact 

point as an inverse pendulum between two 

consequent collisions. The general equations of 

motion driven using the Lagrange method are: 

( ) ( , ) ( ) 0M q q C q q q G q    (1) 

where q is the generalized coordinate of the 

system. The state space form of Equation (1) 

leads to: 

 1
: ( )

( ) ( , ) G( )

q
f x

M q C q q q

 
  

  
x  (2) 

where  
T

x q q . It is assumed that the 

wheel rolls around the support leg without 

slipping or the loss of contact until the next 

collision. It can be assumed that the contact 

point behaves as a spherical joint in this phase. 

Therefore, the wheel has three rotational 

degrees of freedom about the contact point. As 

can be seen in Figure 2, the state variables of 

the wheel are defined as: 

 
T

q      (3) 

where ,   and   are the heading, lean and 

pitch angles, respectively, defined in the body 

coordinate frame.  

 
Fig. 2. Three DOF of the finite rimless wheel on a 

slope (from [5], with minor differences) 

In this instance, a 3-1-2 (ZXY) Euler angles 

convention is used to represent the orientations 

of the wheel in each instant of the motion. The 

velocities and accelerations in Eq. (2) are 

assumed to have been normalized with respect 

to the non-dimensional time. Additionally, 

other parameters such as length, mass and 

moment of inertia have been normalized with 

respect to m and R. 

2.2. Double support or transition phase 

This phase begins immediately prior to 

collision up to immediately following 

collision. To avoid complexity, collisions 

are assumed to be rigid and perfectly 

plastic. Thus, the amounts of heading and 

lean angles immediately before and after 

collision do not change. It should be noted 

that the pitch angle must be reset at the 

start of each step. Angular momentum 

conservation around the contact point is used 

to obtain the angular velocities after collision. 

Notably, the angular momentum variations 

caused by the force of weight are ignored. 

Accordingly, we have: 

H Hc c

   (4) 

where 

/H rc G c GI mv      (5) 

/H rc G c GI mv      (6) 

The superscripts “-“ and “+” indicate 

the instantaneous before and after 

collisions, respectively. Finally, the angular 

velocities after each collision will be 

related as follows: 

M

 

 

 

   
   

   
   
   

 

 

 

 (7) 

where M is the mapping matrix at the 

impact phase. We must have a collision 

detection function with which to compute 

M. The collision condition in the vertical 

fixed coordinate system is: 

tan( )r rz x 
 

(8) 

where rx and rz are the x and z components 

of the swing leg in the collision position. 

Unlike a planar rimless wheel, Euler angles 

are dependent in a double support phase [5] 

that is obtained from Equation (8): 
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 

cos (sin cos tan ) 2 sin cos (sin cos sin tan )

tan (sin cos cos sin sin ) tan (cos cos sin sin sin ) 0

s s s

s

w R         

           

  

    
 (9) 

3. Stable Limited Turning 

One of the methods for finding the periodic 

motions and conducting the stability analysis 

for such hybrid systems is Poincare sections 

[9], which are identified by: 

1x P( x )k k    (10) 

where P(0) is the Poincare map that maps the 

states of the system after only one collision, 
k x , to only after the next one, 

1k x . To have 

periodic motion, the wheel must roll down with 

these particular initial conditions. In other 

words, there are particular initial conditions that 

the states of the system return to their conditions 

that they started from via Poincare map, i.e.:  

* * * *x P(x ) x P(x ) 0     (11) 

These states are called fixed points and their 

periodic motion follows a limit cycle.  

In the case of the 3D finite-width rimless 

wheel, when it lies on a stable limit cycle, the 

states return to their values after two 

consecutive steps (a gait cycle). Coleman et al. 

investigated the 3D motion analysis of a planar 

rimless wheel and showed that with different 

fixed points, the wheel had a family of periodic 

motions or limit cycles that were locally 

asymptotically stable [3].  

In the current paper, unlike the planar 

rimless wheel, it is shown that as long as the 

physical parameters of the finite width rimless 

wheel and the slope surface remain unchanged, 

the wheel has only a unique fixed point that is, 

parallel to the steepest descent. In other words, 

the Poincare map has only one fixed point, 

which can be obtained via a numerical 

optimization method such as the Newton-

Raphson method. Thus, Equation (11) is solved 

numerically in order to find this fixed point. 

For this simulation, a= 2π/16 (rad), w=0.1R 

and γ=0.1(rad) have been considered. The 

fixed point here is obtained as: 

* *

* * *

* * 0.0002768, 0.0016, 0.09684

, 0.0, 0

{

0.6840, 9. }T

 

  

     

  

x
 (12) 

Then, an arbitrary initial condition is 

represented by: 

0 {0.56,0.01, 0.1095,0,0,0.7496} x  (13) 

The state variations of more than 350 steps 

are illustrated in Figure 3.  

In Figure 3, although the wheel is released 

from a non-equilibrium initial condition, it 

turns enough to lie on the stable limit cycle. 

Therefore, this locomotion can be considered 

as a limited turning motion. Roughly speaking, 

the fixed point indicates a periodic gait that is 

parallel to the steepest descent of the slope 

surface, i.e., the heading angle becomes zero in 

the steady gait. 

 

Fig. 3. State variables of more than 350 steps representing passive limited turning on a gentle slope. Note that the 

horizontal axis is non-dimensional time in all sub-figures (vertical axes are also non-dimensionalized). 
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Furthermore, the wheel is modelled in 

ADAMS for validating the MATLAB results. 

The state variables are compared for 50 steps, 

released from an arbitrary initial condition 

(Figure 4). As is shown, the results are 

matched and show little difference. The 

differences are the result of the authors having 

been unable to exactly simulate an ideal and 

perfectly plastic collision in ADAMS. It should 

be noted that in the case of pitch angle (ɵ), the 

amount of steps had been accumulated in 

ADAMS. 

 

Fig. 4. Comparison the MATLAB and ADAMS results for 50 steps from an arbitrary initial condition shown as 

 0
0.56,0.001,0,0,0,0.7496

r
X   

In order to compare these results, different 

initial heading and lean angles were assumed 

and the simulated system is shown in Figure 5 

and Figure 6 As is shown, as the initial heading 

and lean angles increased, the wheel was 

expected to have to turn more frequently in 

order to maintain stability. Notably, the wheel 

was locally asymptotically stable with a limited 

basin of attraction. Therefore, it fell down for 

ψ0>0.05 (rad) and ϕ0>1.08 (rad), as depicted in 

Figure 5 and 6, respectively. 

 

Fig. 5. Effect of different ψ0 on a passive limited 

turning (heading angle) 

 

Fig. 6. Effect of different initial heading angle 0( )  

on a passive limited turning (heading angle) 

Furthermore, in order to have a better 

understanding of bipedal passive turning 

locomotion, the 3D contact position of the 

stance leg with the ground was illustrated for 

different initial headings and lean angles in 

Figures 7 and 8, respectively. As expected, all 

paths eventually became parallel to the steepest 

descent of the sloped surface in the final steady 

gait. 
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Fig. 7. Foot position (3D) of the wheel for a different 

initial heading angle. All dimensions are given in m. 

 

Fig. 8. Foot position (3D) of the wheel for a different 

initial lean angle ( 0 ). All dimensions are given in m. 

4. Conclusion 

In this study, we investigated the passive 

limited turning of a finite width rimless wheel 

on a sloped surface. A new comprehensive 

hybrid model of the wheel, independent from 

the ground surface profile, was presented. 

Then, a Poincare section was used for the 

determination of periodic motions (limit 

cycles). It was shown that the Poincare map 

had only one fixed point representing a 

periodic motion. The primary feature of this 

limit cyclic gait was that it was parallel to the 

steepest descent of the ground. Moreover, we 

have shown that by changing some parameters, 

the wheel reverted to its limit cycle. Future 

research in this area might include discovering 

asymptotically stable passive continuous 

turning. 
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