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Abstract 
Purpose– Analysis of non-prismatic beams has been focused of attention due to wide use in complex 
structures such as aircraft, turbine blades and space vehicles. Apart from aesthetic aspect, optimization of 
strength and weight is achieved in use of this type of structures. The purpose of this paper is to present 
new shape functions, namely 3-node Basic Displacement Functions (BDFs) for derivation of structural 
matrices for general non-prismatic Euler-Bernoulli beam elements. Design/methodology/approach– 
Static analysis and free transverse vibration of non-prismatic beams are extracted studied from a 
mechanical point of view. Following structural/mechanical principles, new static shape functions are in 
terms of BDFs, which are obtained using unit-dummy-load method. All types of cross-sections and 
cross-sectional dimensions of the beam element could be considered in this method. Findings– 
According to the outcome of static analysis, it is verified that exact results are obtained by applying one 
or a few elements. Furthermore, it is observed that results from both static and free transverse vibration 
analysis are in good agreement with the previous published once in the literature. Research 
limitations/implications– The method can be extended to structural analysis of curved and Timoshenko 
beams as well as plates and shells. Furthermore, exact dynamic shape functions can be derived using 
BDFs by solving the governing equation for transverse vibration of beams. Originality/value– The 
present investigation introduces new shape functions, namely 3-node Basic Displacement Functions 
(BDFs) extended from 2-node functions, and then compares its performance with previous element. 

Keywords: 3-node basic displacement functions, free transverse vibration, non-prismatic beam, 
shape functions, static analysis.  

 
1. Introduction 
Analysis of beams has been focused of 
attention due to wide use in complex structures 
such as aircraft, turbine blades and space 
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vehicles. Apart from aesthetic aspect, 
optimization of strength and weight is achieved 
in use of this type of structures. Consequently, 
exact static and dynamic analyses of these 
members become more significant. Through 
the years, many researchers devoted their 
contributions to either formulating new 
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elements or enhancing the existing 
approximate elements. Gunda and Ganguli [1] 
proposed new rational shape functions for 
finite-element analysis of rotating tapered 
beams through solving the static part of the 
governing differential equation.  

Caruntu [2] utilized hyper-geometric 
functions to study free vibration of cantilever 
beams with parabolic thickness variation. 
Gallagher and Lee [3] derived approximate 
structural matrices for dynamic and instability 
analyses of non-uniform beams. Karabalis and 
Beskos [4] proposed a new element for static, 
stability and dynamic analyses of linearly 
tapered beams. Their method employs exact 
flexural and axial stiffness matrices but 
approximate consistent mass and geometric 
stiffness matrices. Eisenberger and Reich [5] 
obtained an approximate stiffness matrix for 
beams whose depth or width varied as an 
overall polynomial along beam length using 
shape functions of uniform beams.  

Subsequently, Eisenberger [6, 7] derived 
exact stiffness matrices for beams with general 
variation of depth/width via a series solution of 
the governing equation. Banerjee and Williams 
[8] obtained exact dynamic stiffness matrix in 
terms of Bessel's functions for a class of 
tapered members whose area and moment of 
inertia vary as any arbitrary integer powers n 
and n+2, respectively. Mou et al. [9] computed 
the exact dynamic stiffness matrix in terms of 
hyper geometric functions for beams whose 
area and moment of inertia vary in accordance 
with any two arbitrary real-number powers.  

Studying the effects of reduced beam 
section frame elements on stiffness of moment 
frames, Chambers et al. [10] derived stiffness 
matrix of a two-dimensional frame element 
with radius flange reductions, which is 
symmetric about the centroid of the element 
using virtual work theories. Kim and 
Engelhardt [11] proposed a new non-prismatic 
beam element for modeling the elastic behavior 
of steel beams with reduced beam section 
connections. Ece et al. [12] performed 
vibration analysis by analytical solving of 
governing differential equation of free 
vibration of beams with exponentially varying 
width and constant height.  

In recent years, several researchers have 
focused on vibration of non-prismatic beams 
by solving the governing equation of motion 

via application of different numerical 
techniques, i.e. Frobenius method [13-15], 
Chebyshev series [16], Raleigh-Ritz method 
[17] and differential transform method [18-28]. 
The analysis of structural members generally 
includes two methods, namely displacement-
based method (stiffness method) and flexibility 
method (force method). Equilibrium of forces, 
compatibility of displacements/strains and 
constitutive law of materials are the basic three 
essential relations that should be satisfied for 
the exact solution in any structural analysis. 
Additionally, an extra hypothesis in the 
displacement field is usually imposed in 
addition to these three fundamental relations. 
Generally, the equilibrium equations are 
satisfied only in certain points of elements, 
such as integration points. Thus the stiffness 
method is approximate in nature; however, the 
generality of this method seems to be the great 
advantage. In contrary, the flexibility method 
ensures accurate structural analysis and 
satisfies the equilibrium equations at any 
interior point of the element. However, the 
application of this method usually requires 
complicated and tedious calculations. 

In this study, a simple flexibility-based 
formulation is proposed for derivation of structural 
matrices for general non-prismatic Euler-Bernoulli 
beam elements. This concept was, firstly, 
proposed by Attarnejad [29-31]. Basic 
Displacement Functions (BDFs) are presented; 
and 3-node method is introduced extending from 
2-node method. Exact shape functions are 
obtained from these BDFs. There are two 
categories of BDFs, namely static BDFs, which 
are derived based on static deformations [31-33] 
and dynamic BDFs, which are derived assuming 
dynamic deformations [34-37]. The BDFs 
presented are obtained on the basis of static 
deformations. The advantage of this method is that 
it does not involve any cumbersome 
mathematical/numerical calculation; it also covers 
most of the engineering problems concerning non-
prismatic beams. 
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your covering letter providing assurance that the 
manuscript has neither been published nor 
submitted for publication elsewhere. The 
corresponding author will be noted of the 
acceptance of their paper by the editor.  

The authors of accepted paper with 
conditional acceptance are required to address 
the comments of the referees suitably in their 
revised paper and in their final full paper and 
address their revisions properly in a separate 
file and upload it to the Journal website. 
Authors will be asked, upon acceptance of an 
article, to transfer copyright of the article to the 
publisher. This will ensure the widest possible 
dissemination of the information under 
copyright laws. This form can be uploading 
from the Journal website. The Editors reserve 
the right to return manuscripts that do not 
conform to the instructions for manuscripts 
preparation or papers that do not fit the scope 
Journal, prior to referring. 

2. Basic Displacement Functions 
BDFs are mathematical functions, which 
derived from fundamental mechanical 
concepts. For definition of BDFs, consider a 
beam which one of its nodes is free; the others 
are clamped. A BDFs is defined as nodal 
displacement of the free node due to unit load 
at the distance x . For a 3-node beam, BDFs are 
introduced as: 

wmb : vertical displacement of the m-th node 
due to unit load at distance x  when the beam 
is clamped at the others. 

mb : angle of rotation of the m-th node due 
to unit load at distance x  when the beam is 
clamped at the others. 
(where m=1, 2, 3) 

1 1 2 2 3 3, , , , ,w w wb b b b b b    are showed in 
Figure 1. 

 
Fig. 1. Definitions of BDFs 
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For the mid-node: 
By solving the geometry equations, 

reactions are determined due to unit load at 
distance x  (Fig. 2): 
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Fig. 2. General beam with unit load at distance x decomposed into isostatic structures 

which moment through the beam can be 
obtained: 
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Following similar procedure, we can obtain 
support reactions due to unit load and unit 
moment at distance / 2l  (Fig. 3). 

 

Fig. 3. General beam with unit load at distance 2/l divided into isostatic structures 
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For unit moment (Fig. 4): 

 

Fig. 4. General beam with unit moment at distance 2/l divided into isostatic structures 
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Finally BDFs of the mid-node are: 
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Regarding the reciprocal theorem, each 
BDF has equivalent definitions, which are as 
follows: 

wmb : vertical displacement of a point at 
distance x  due to unit load at the m-th node  
when the beam is clamped at the others. 

mb : angle of rotation of a point at distance 
x  due to unit moment at the m-th node when 
the beam is clamped at the others. 

1 1 2 2 3 3, , , , ,w w wb b b b b b    are showed in 
Figure 5. 

 
Fig. 5. Equivalent definitions of BDFs 

Considering the equivalent definitions of 
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Moreover, the flexibility matrix is obtained as: 
1 1
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The Nodal stiffness matrix can be obtained 
by inverting the nodal flexibility matrix. 

3. Shape Function 
Divide the structure of a general tapered beam 
subjected to external loading and is clamped at 
first, middle and end into two structures as 
shown in Figure 6.  

 
Fig. 6. General non-prismatic beams divided into two structure (b) and (c) 

In structure (b), with regard to BDFs 
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to external load can be calculated as followed: 
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In structure (c), nodal displacement of point 
(3) can be calculated using flexibility matrix 
that: 
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By imposing the boundary conditions for 
displacement of point (3) we have: 
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Substituting equations (19) and (20) into 
equation (21) the reactions at point 3 are 
obtained as: 
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Following similar procedure, the reactions 
at points (1) and (2) are obtained: 
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The nodal equivalent loads which are the 
equal and opposite response to reactions are 
obtained as: 
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l
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(25) 

where b is a vector containing BDFs 
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Employing work-equivalent load method, 
nodal forces are given as: 

 l

T dxxq NF )(
 

(27) 

Shape functions can be obtained by 
comparing equations (25) and (27): 

GbN .T  (28) 

Therefore, structural matrices, i.e. stiffness 
and consistent mass matrices are given as 
(Gallagher and Lee [3]): 

 l

T dxxA NNM )(  (29) 
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T dxxEI "" )( NNK
 

     
(30) 

The structural matrices in terms of BDFs 
can be expressed using equations (28-30): 
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The application of BDFs can be clarified 
using a general algorithm for derivation of 
shape functions and structural matrices for 
non-prismatic beams in which each step is 
performed at unit length with constant cross-
sectional area and moment of inertia. 
Obtaining BDFs using Equations (1-4) and 
(14-15): 
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The first and second derivatives of BDFs. 
Derivation of nodal flexibility matrices 

using Equations (16-18): 
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Evaluating G using equation (29): 
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Derivation of shape functions using 
Equation (28): 

3 2
1

3 2
2

2
3

3 2

2
4

3 2

3 2
5

3 2
6

(0.5 )(16 12 1)

(0.5 )(4 4 )

(0.5 )4(3 4 ) (0.5 )

(16 36 24 4)
(0.5 )2(2 1) (0.5 )

(4 10 8 2)
( 0.5)( 16 36 24 5)

( 0.5)(4 8 5 1)

N sg x x x
N sg x x x x
N H x x x H x

x x x
N H x x x H x

x x x
N sg x x x x
N sg x x x x

   

   

    

  

    

  

     

    

  

where Heaviside step function ( ( )H x ) is 
introduced in Appendix A. 

Derivation of structural matrices using 
Equations (31) and (32): 
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4. Numerical Results and Discussions 
In the present research, two types of numeric 
examples, including static analysis and free 
lateral vibration are discussed. The Gauss 
quadrature rule with 10 gauss points is used as 
a Numerical Integration technique. In order to 
describe boundary conditions, the symbolism 
C, S and F are utilized to identify the clamped, 
simply supported and free boundary conditions 
respectively. Except for static analysis, a 
uniform unit length beam is used for all 
numerical examples. The dimensionless natural 
frequency parameter,  , is used to make 
comparisons between the results. i  is defined 
as follows: 

4
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4.1. Static analysis 
Three different cantilever beams, in which 

810 , 3 10 .L m E kg m    are assumed and 
subjected to uniform load, 11000 .q kg m  ; 

Vertical deflection of free the end of each case 
is calculated and then compared with the 
results obtained from classical and non-
classical methods [38]. The results are 
tabulated in Table 1.  

Table 1. Deflection of tip due to distributed load 510 N/m 

Case Present Franciosi and Mecca [38]  
  Non-classical classical 
 NE=1 NE=1 NE =2 NE =5 NE =3 NE =10 NE =100 NE =200 

A 3.157147 3.15715 3.15715 3.15715 3.28569 3.16841 3.15726 3.157176 
B 1.543083 1.54308 1.54308 1.54308 1.8435 1.56832 1.54333 1.543145 
C 2.414213 2.41424 2.41422 2.41421 2.99927 2.46085 2.414674 2.414329 

 

The comparison shows that using the 
present method is more efficient in the static 
analysis. The three different cantilever beam 
cases are specified as follows: 

Case A) unit depth, width is defined as: 
xb 175.02  

Case B) unit width, depth is defined as: 
xh 175.02  

Case C) unit width, depth is defined as: 

 2)21.005.0(2 xh   
The vertical displacement is obtained using 

a single finite element with varying cross 
section and is reported in the second column.  

4.2. Free lateral vibration 

Example 1. 
Consider a cantilever beam, in which the 

cross-section and moment of inertia vary as 
follows: 

 

  2
0

0

1)(

1)(






n

n

cII

cAA




 

where x L  
Different values of n  indicate the 

distinctive applications of the beam. For 
example, when n  is set to two, the beam is 
applicable for beams with circular cross-
section whose diameter varies linearly or for 
beams whose height and breadth both vary 
linearly with the same taper Raito. In order to 
investigate the efficiency of the method, the 
first three natural frequencies and special cases 
of 1n   and 2n  are compared with those of 
Banerjee et al. [15] and Attarnejad [31]. The 
results are tabulated in Table 2 and Table 3. 

Table 2. The first three non-dimensional transverse frequencies ( 4
0 0 0 0i i
A l E I    ) of a tapered beam (NE=12) 

 c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1  

Present 3.5587 3.60828 3.66675 3.73708 3.82379 3.93429 4.08171 4.2925 4.63073 
Attarnejad 

[31] 3.5587 3.60828 3.66675 3.73708 3.82379 3.93429 4.08173 4.29252 4.63079 

Banerjee et 
al. [15] 3.5587 3.60827 3.66675 3.73708 3.82379 3.93428 4.08171 4.29249 4.63073 

           

2  

Present 21.3381 20.621 19.8806 19.1138 18.3173 17.4879 16.6253 15.7428 14.931 
Attarnejad 

[31] 21.3385 20.6214 19.881 19.1142 18.3177 17.4884 16.6259 15.7437 14.9332 

Banerjee et 
al. [15] 21.3381 20.621 19.8806 19.1138 18.3173 17.4878 16.6252 15.4727 14.9308 

           

3  

Present 58.9804 56.1927 53.3227 50.3541 47.2653 44.0253 40.5884 36.8853 32.8346 
Attarnejad 

[31] 58.9874 56.1996 53.3294 50.3609 47.2722 44.0326 40.5966 36.8957 32.8538 

Banerjee et 
al. [15] 58.9799 56.1923 53.3222 50.3537 47.2649 44.0248 40.5879 36.8846 32.8331 
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Table 3. The first three non-dimensional transverse frequencies ( 4
0 0 0 0i i
A l E I   ) of a tapered beam (NE=12) 

 c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1  

Present 3.6737 3.85512 4.06693 4.31878 4.62515 5.00903 5.50926 6.1964 7.20488 
Attarnejad 

[31] 3.6737 3.85512 4.06694 4.31878 4.62516 5.00905 5.50929 6.19646 7.20506 

Banerjee et 
al. [15] 3.6737 3.85511 4.06694 4.31878 4.62515 5.00904 5.50926 6.19639 7.20488 

           

2  

Present 21.5503 21.0568 20.5555 20.05 19.5476 19.0649 18.6412 18.3856 18.6805 
Attarnejad 

[31] 21.5506 21.0571 20.5559 20.0505 19.5482 19.0656 18.6422 18.3872 18.6848 

Banerjee et 
al. [15] 21.5503 21.0568 20.5555 20.05 19.5476 19.0649 18.6412 18.3855 18.6803 

           

3  

Present 59.1891 56.6308 54.0157 51.3351 48.5794 45.7389 42.8111 39.8346 37.1261 
Attarnejad 

[31] 59.1962 56.6379 54.0227 51.3423 48.587 45.7472 42.8209 39.8485 37.1573 

Banerjee et 
al. [15] 59.1886 56.6303 54.0152 51.3346 48.5789 45.7384 42.8104 39.8336 37.1241 

 

 Table 4 is tabulated for fourth and fifth natural frequencies and specified taper ratio c=0.5. 

Table 4. The effect of this element on higher frequencies 

  n=1     n=2   

   4  5    4  5 

Present(NE=12) 90.4537 148.016   91.8162 149.404 

Banerjee et al. [15] 90.4505 148.002   91.8128 149.39 
 

The effect of this element on taper ratios higher than 0.9 are presented in Table 5. 

Table 5. The effect of this element on higher taper ratios 

  n=1 n=2 

 NE=20 c=0.99 c=0.995 c=0.99 c=0.995 

1  
Present 5.21446 5.26321 8.54601 8.62732 

Banerjee et al. [15] 5.21445 5.26337 8.54601 8.63232 
      

2  
Present 14.9672 15.0708 20.7302 20.8613 

Banerjee et al. [15] 14.967 15.0722 20.7301 20.9355 
      

3  
Present 29.7292 29.8062 37.7284 37.7216 

Banerjee et al. [15] 29.7265 29.8064 37.7253 38.0742 
      

4  
Present 49.7144 49.5695 59.6492 59.2879 

Banerjee et al. [15] 49.6986 49.5473 59.6278 60.0908 
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Example 2. 
Consider a beam of constant depth whose 
cross-sectional area and moment of inertia 
respectively vary as: 

 ,A e I e    

The first three natural frequencies for SS 
and CC boundary conditions and a given non-
uniformity parameter, , are determined and 

compared with those of Ece et al. [12]. 
Furthermore, the first five natural frequencies 
for CF boundary condition and non-uniformity 
parameter 1   , are determined and 
compared with those of Attarnejad et al. [37]. 
Cranch and Adeer [39]. Ece et al. [12] and 
Tong and Tabarrok [40]. The results are 
tabulated in Table 6 and Table 7. 

Table 6. The effect of number of elements on accuracy of dimensionless natural frequencies for and different taper 
ratios and boundary conditions 

 
Mode 

number 

SS   CC    

 Present  Ece et al. [12] Present  Ece et al. [12] 

 NE=10 NE=20  NE=10 NE=20  

0 1 9.86961 9.8696 9.8696 22.37333 22.37329 22.37327 

 2 39.47868 39.47843 39.47841 61.673838 61.67289 61.67281 

 3 88.82946 8.882663 88.82643 120.91101 120.90387 120.90338 

 4 157.93057 157.91474 157.91367 199.89368 199.86161 199.85945 

 5 246.80417 246.74416 246.74011 298.6689 298.56272 298.55552 
        

1 1 9.77291 9.77291 9.77291 22.51173 22.51168 22.51167 

 2 39.57063 39.57038 39.57036 61.86072 61.85976 61.85968 

 3 88.97356 88.97071 88.97052 121.11564 121.10847 121.10799 

 4 158.10114 158.08526 158.08418 200.10846 200.07628 200.07411 

 5 246.99071 246.93057 246.9265 298.89023 298.78382 298.77661 

 

Table 7. Dimensionless natural frequencies of the beam in Example 2 (= -1). 

Mode 
number 

Present 
(NE=20) Attarnejad et al. [37] Cranch and Adler 

[39] 
Tong and Tabarrok 

[40] Ece et al. [12] 

1 4.7349 4.7349 4.735 4.7347 4.72298 

2 24.20187 24.2018 24.2025 24.2005 24.20168 

3 63.86561 63.8645 63.85 63.8608 63.86448 

4 123.10588 123.098 - 123.91 123.0979 

5 202.10378 - - - 202.0687 

 

Tables 2 to 7 show that the predicted results 
by the present element are in good agreement 
with results obtained from previous method. In 
example 1, unlike the first mode the second 
and third modes decrease with increased taper 
ratio, which is due to the softening effect 
resulting from the reduction in cross-sectional 
area and moment of inertia. It is worth 
mentioning that with the equal number of 

elements, 3-node method yields more accurate 
results than 2-node method. In example 1 and 
2, the results are acceptable for taper ratios 
upper than 0.9, higher frequencies and different 
boundary conditions. Figure 7 is plotted in 
order to show the effects of taper ratios on all 
six shape functions. It is observed that the 
effect of taper ratio is clearly reflected in shape 
functions. 
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Fig. 7. Variation of  shape function of  beam element of unit length for example 1 and n=2 (solid line: C=0.1, Dotted 

line C=0.5, Dashed line: C=0.9) 

In order to compare convergence between 
3-node method and 2-node method, Figure 8 

are plotted for a cantilever beam with  
0.5 0.5,  A e I e    
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Fig. 8. Convergence of non-dimensional transverse 

frequencies of cantilever beam (0.5) and compare with 

2-node method (solid line: 3-node, Dashed line: 2-node) 

It is observed that utilizing fewer numbers 

of elements in 3-node method, the speed of 
convergence increases remarkably. 

The results obtained from Banerjee et al. 
[15] are assumed as exact solution to calculate 
the error. Figure 9 illustrates the error 
concerning of third mode frequency in example 
2. The figure indicates that as the number of 
elements and taper ratio increase, the errors are 
in a similar range and consequently, the 
element stays stable. 

 
Fig. 9. Error concerning of third mode frequency with 

respect to number of elements 

Finally, benchmark example is provided. In 
this example, it is assumed that 

   

  

2
0

4
0

( ) 1 1

( ) 1 1
b h

b h

A A c c

I I c c

  

  

  

  
 

where bc  and hc  are taper ratios. In order to 
facilitate the presentation of benchmark results, 
non-dimensional parameters are introduced in 
Table 8. 
 

Table 8. First three non-dimensional transverse frequencies of non-prismatic Euler-Bernoulli beam 

  bC  0 0.3 0.6 0.9 

 NE hC  1  2  3  1  2  3  1  2  3  1  2  3  

S-
S 

10 

0 9.8696 39.4787 88.8295 9.8574 39.4899 88.8474 9.7946 39.5384 88.9357 9.5441 39.5586 89.1311 
0.3 8.2502 33.4015 75.712 8.1783 33.4706 75.1792 8.0337 33.6009 75.3938 7.6541 33.7651 75.8167 
0.6 6.2086 26.852 59.9938 6.0815 26.9886 60.1969 5.8609 27.224 60.5545 5.3579 27.6062 61.2759 
0.9 3.0513 19.0941 41.4977 2.9038 19.3619 41.8282 2.6604 19.8372 42.4141 2.1299 20.8582 43.805 

20 

0 9.8696 39.4784 88.8266 9.8574 39.4896 88.8446 9.7946 39.5382 88.9328 9.5441 39.5584 89.1283 

0.3 8.2502 33.4013 75.0687 8.1783 33.4704 75.1767 8.0337 33.6007 75.3913 7.6541 33.7649 75.8141 

0.6 6.2086 26.8518 59.9915 6.0815 26.9884 60.1945 5.8609 27.2238 60.5521 5.3579 27.606 61.2734 

0.9 3.0513 19.0938 41.494 2.9038 19.3616 41.8245 2.6604 19.8368 42.4103 2.1299 20.8579 43.8008 

C-
C 10 

0 22.3733 61.6738 120.911 22.3213 61.6028 120.8329 22.0465 61.2143 120.3964 20.784 59.168 117.8486 

0.3 18.9233 52.0864 102.05 18.9974 52.1866 102.16 18.9399 52.1027 102.0642 18.1829 50.8513 100.4863 

0.6 15.1898 41.4773 80.9834 15.4008 41.7544 81.2861 15.5863 41.9997 81.5565 15.4136 41.658 81.0894 

0.9 10.7636 28.2362 54.1083 11.1752 28.719 54.6245 11.7312 29.3891 55.3494 12.4914 30.4 56.4982 
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Table 8. First three non-dimensional transverse frequencies of non-prismatic Euler-Bernoulli beam (continue) 

 

NE 
bC   0   0.3   0.6   0.9  

 

hC  1  2  3  1  2  3  1  2  3  1  2  3  

C-
C 20 

0 22.3733 61.6729 120.904 22.3213 61.6019 120.8258 22.0465 61.2134 120.3894 20.784 59.1671 117.842 

0.3 18.9232 52.0856 102.044 18.9974 52.1857 102.1539 18.9398 52.1019 102.058 18.1829 50.8506 100.4805 

0.6 15.1898 41.4766 80.9779 15.4007 41.7536 81.2805 15.5862 41.9989 81.5509 15.4135 41.6572 81.0838 

0.9 10.7636 28.2353 54.1012 11.1752 28.7181 54.6172 11.7312 29.3881 55.3417 12.4914 30.3989 56.4902 

C-
F 

10 

0 3.516 22.0345 61.6982 3.916 22.786 62.4372 4.5853 24.0211 63.7526 6.0704 27.299 68.1159 

0.3 4.0669 20.5556 54.0162 4.5004 21.2539 54.746 5.2231 22.4097 56.0114 6.8148 25.5282 60.0635 

0.6 5.009 19.065 45.7396 5.4889 19.7173 46.4495 6.2816 20.8063 47.6543 7.994 23.7956 51.3851 

0.9 7.2049 18.6808 37.1285 7.7631 19.3087 37.8012 8.6463 20.3767 38.946 10.388 23.3075 42.4561 

20 

0 3.516 22.0345 61.6973 3.916 22.786 62.4362 4.5853 24.0211 63.7515 6.0704 27.2989 68.1146 

0.3 4.0669 20.5555 54.0153 4.5004 21.2538 54.745 5.2231 22.4096 56.0104 6.8148 25.5281 60.0622 

0.6 5.009 19.0649 45.7384 5.4889 19.7172 46.4483 6.2816 20.8062 47.6531 7.994 23.7955 51.3834 

0.9 7.2049 18.6802 37.1241 7.763 19.3081 37.7965 8.6462 20.376 38.9409 10.3879 23.3065 42.4494 

C-
S 

10 

0 15.4182 49.9654 104.253 15.7687 50.2939 104.5828 16.1948 50.7029 105.0124 16.6372 51.1485 105.6097 

0.3 13.9617 43.1283 88.9422 14.2939 43.5113 89.3501 14.7019 44.0033 89.8955 15.1302 44.6113 90.7173 

0.6 12.2329 35.5595 71.8982 12.5739 35.9984 72.3812 13.0088 36.5866 73.05 13.5171 37.4217 74.1576 

0.9 9.9086 26.1094 50.3911 10.353 26.632 50.9559 10.9793 27.3998 51.8011 11.9495 28.8143 53.5177 

20 

0 15.4182 49.9649 104.248 15.7686 50.2934 104.5782 16.1948 50.7024 105.0077 16.6372 51.1479 105.605 

0.3 13.9617 43.1279 88.9381 14.2939 43.5108 89.3459 14.7019 44.0028 89.8912 15.1302 44.6108 90.7129 

0.6 12.2328 35.559 71.8942 12.5738 35.9979 72.3771 13.0087 36.5861 73.0458 13.517 37.4211 74.1532 

0.9 9.9086 26.1087 50.3846 10.353 26.6311 50.9491 10.9793 27.3989 51.794 11.9495 28.8133 53.51 

 
5. Conclusions 
A flexibility-based method for static and 
dynamic analysis of non-prismatic Euler-
Bernoulli beams has been presented. The main 
aspects of new approach are: 

1. Introduction of 3-node BDFs. 
2. All types of cross-sections and cross-

sectional dimensions of the beam 
element could be considered in this 
method. 

3. Shape functions for any type of cross 
sectional properties could be obtained 
for that type. 

4. Although the new shape functions are 
derived based on static deformations, 
they were employed in the dynamic 
analysis, satisfactory results were 
obtained for natural frequencies even for 
a coarse mesh. 

5. The new element provides better results 
with the same mesh in upper frequencies 
and different boundary conditions than 
2-node element. 

6. The method can be extended to analysis 
of curved beams as well as shells of 
revolution. 

7. The method can be used for analysis of 
straight and curved Timoshenko beam 
elements. 

8. The method is being extended to 
analysis of plates and shells. 

Appendix A 
Heaviside step function was defined as: 

0 0
1( ) 0
2
1 0

y

H y y

y
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
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Nomenclature 
 

 

l  beam length 11K  nodal stiffness matrix of the left node 

1ub  , 1wb , 1b , 2ub  , 2wb , 2b , 3ub , 3wb , 3b   22K nodal stiffness matrix of the mid node 
basic displacement functions 

33K nodal stiffness matrix of the right node 

i  non-dimensional transverse natural frequencies F    equivalent nodal forces 

c     taper ratio G matrix containing nodal flexural  

11F  nodal flexibility matrix of the left node stiffness matrices 

22F  nodal flexibility matrix of the mid node 0E    modulus of elasticity at origin 

33F nodal flexibility matrix of the right node 0   mass density at origin 
x  longitudinal coordinate 0A   cross-sectional area at origin 

NE  total number of beam elements M element consistent mass matrix 

0I   moment of inertia at origin N shape functions 

wb , wb  first and second derivative of wb  N , N first and  second derivative of N with respect  
with respect to x   to x  

 


