تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,324 |
تعداد دریافت فایل اصل مقاله | 97,205,998 |
کاربرد شاخص TOPSIS در پایش خشکسالیها و ترسالیهای استان گلستان | ||
فیزیک زمین و فضا | ||
مقاله 17، دوره 41، شماره 3، مهر 1394، صفحه 547-563 اصل مقاله (1.06 M) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2015.53689 | ||
نویسندگان | ||
عبدالعظیم قانقرمه؛ غلامرضا روشن* | ||
استادیار اقلیمشناسی، گروه جغرافیا، دانشگاه گلستان، گرگان، ایران | ||
چکیده | ||
شناخت و پایش صحیح از خشکسالی به عنوان گامی مؤثر در مدیریت و کاهش آثار زیانبار این بلای جوی مورد توجه است. در این راستا روشهای تجربی مختلفی برای محاسبة خشکسالی ارائه شدهاند که بیشتر آنها، تنها از یک مؤلفه به نام بارش استفاده کردهاند. در این پژوهش برای اولین بار، با واردکردن هفت مؤلفه و شاخص اقلیمی متفاوت شامل حداقل دما، حداکثر دما، تبخیر و تعرق پتانسیل، بارش مؤثر، میانگین بارش، تعداد روزهای بارش، نسبت روزهای بارش به بارش ماهانه در الگوریتم Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)، عمل تعیین و رتبهبندی خشکسالی (ترسالی) انجام پذیرفته است. در نهایت جهت اعتبارسنجی روش پیشنهادی، دادههای خروجی این روش برای ایستگاه شاهد چات در استان گلستان با برخی شاخصهای مرسوم خشکسالی شامل SIAP، DPI، PNPI و BMDI واکاوی شد که نتایج ضریب همبستگی، مؤید اعتبار بالای روش پیشنهادی است. در ادامه بر اساس روش TOPSIS خشکسالیهای استان گلستان واکاوی شد. نتایج نشان میدهد که دی با بیشینة فراوانی گرایش روندهای منفی از شاخص TOPSIS به مقدار 5/12 درصد، آسیبپذیرترین ماه از لحاظ رخداد خشکسالیهاست. همچنین نتایج نشان داد که 58/35 درصد از مساحت کل استان، حدود 40 تا 50 درصد از دورة مطالعاتی 1350 تا 1390 را در خشکسالی به سر بردهاند که بیشتر بهصورت لکههایی پراکنده در شمال غرب، شمال شرق و میانة شرقی استان قرار دارند که این مناطق حساسترین پهنههای استان به وقوع خشکسالی معرفی شد. | ||
کلیدواژهها | ||
استان گلستان؛ تصمیمگیری چندمعیاره؛ خشکسالی؛ رتبهبندی؛ TOPSIS | ||
عنوان مقاله [English] | ||
Application of TOPSIS Index in Monitoring of Droughts and Wet for Golestan providence | ||
نویسندگان [English] | ||
Abdolazim Ghanghermeh؛ Gholamreza Roshan | ||
چکیده [English] | ||
Since the emergence of human civilization, drought has had extreme and sometimes catastrophic effects on human livelihoods. Although drought itself is not a disaster, its impact on people and the environment may sometimes yield disastrous consequences; so a primary requirement is to better understand the natural and social dimensions associated with drought (Wilhite 2000). Given that drought is a gradually developing natural phenomena, problems regularly arise when establishing drought start and end dates, as also the spatial extent of drought owing to the complex nature of drought and also the difficulty of separating ‘dry periods’ with ‘drought periods’. Given the importance of drought forecasting and classification to reduce associated risks, many efforts have been undertaken over the years to calculate and understand all aspects of drought. For example Palmer (1965) was first to initiate statistical methods (in 1946) for establishing drought occurrence using rainfall, temperature and soil moisture parameters or recently, the Standardized Precipitation Index (SPI) has become a popular and widely used indicator of drought owing to its easy computation and flexibility across spatial and temporal scales .Droughts are an annual concern to Iran, seriously affecting agriculture, water resources and ecosystems in one or more region(s). Iran is exceptionally water scarce; for instance, in 2002 approximately eight million hectares of agricultural land suffered from drought, causing revenue loss amounting to millions of US Dollars (Darvishi et al. 2008). Thus, considerable scientific efforts have been made to categorize and monitor drought in the region. The TOPSIS index has previously been used to assess drought/wetness conditions in Iran, but only using a few parameters (mean annual wind speed [km/h], total annual precipitation [mm], mean annual temperature [˚C], and number of rain days) (Koshakhlagh et al. 2008, Roshan et al. 2012). In other cases, parameters used to calculate a drought index have not been validated for their accuracy (e.g. Kazemi Rad et al. 2012). To this end, and for the first time, we use a combination of climate/environmental parameters which are entered into the TOPSIS Algorithm; years are then ranked statistically for Golestan Province Weather Stations (Iran) based on dry/wet conditions. The focus of this paper is to: 1) present the TOPSIS computational method, 2) demonstrate the step-wise sequence for calculating and ranking the drought index using the method of similarity to ideal solution (TOPSIS), and 3) validate the TOPSIS method through calculating drought/wetness values for four stations in Golestan Province weather station using more conventional methods (i.e. PNPI, SPI, BMDI and RِِDI) for calculating drought intensity and finally zoning Golestan Province on base of TOPSIS index. TOPSIS, which is one of the multi-criteria decision-making methods, was first presented by Hwang and Yoon (1981) and soon received global interest for numerous scientific applications as wide ranging as the aeronautical industry (Wang and Chang 2007), engineering risk assessment (Wang and Elhag 2006) and decision making in management (Antuchevičiené et al. 2010).TOPSIS is a multi-criteria method to identify solutions from a finite set of alternatives. The basic principle is that the chosen alternative should have the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution (Chen et al. 2011). Using this method, we use seven single and combined climatological parameters which are applied to the years 1971 to 2011, with data obtained from the Golestan province weather stations. The parameters include average rainfall, number of days with precipitation, effective precipitation based on the method of land reclamation of America (U.S Bureau of Reclamation Method [USBR]), the ratio of highest daily precipitation to total monthly precipitation, evapotranspiration (Torrent White Method), and maximum/minimum temperature. The index has no temporal-scale limitations and may thus be applicable to scales ranging from days to seasons. To validate the outputs, values for four stations were compared to four customary drought indices (PNPI, RDI, BMDI, SPI), and correlated well with these overall (r = 0.9), thus confirming the high reliability of the TOPSIS algorithm. However, the TOPSIS method has a distinct advantage over other methods as it considers important variables influencing wetness that the other methods have not incorporated into their models, hence also some of the differences in output results between TOPSIS and the other methods. A further advantage of TOPSIS is that the climatic variables required are available for most stations, or alternatively, variables such as evapotranspiration or effective rainfall can easily be calculated using simple experimental calculations. In contrast, other reliable methods frequently used, such as the Palmer method, are spatially limited in their application as these rely on less readily available data, such as for instance soil moisture. The results obtained from the TOPSIS algorithm are thus relatively consistent with those from other methods, yet TOPSIS offers some distinct advantages and should thus be considered as a reliable future application tool for establishing dry/wet conditions and trends. | ||
کلیدواژهها [English] | ||
Ranking, Multi-Criteria Decision Making, TOPSIS, Drought, Golestan providence | ||
مراجع | ||
حجازی زاده،ز. و جوی زاده، س. 1389، مقدمهای بر خشکسالی و شاخصهای آن، ، انتشارات سمت، تهران، ص385 خوش اخلاق، ف.، حجازی زاده، ز.، محمدی، ح. و روشن، غ.ر.1385، رویکردی از روش TOPSIS، در تعیین و رتبه بندی خشکسالی(مطالعه موردی: پهنه بندی خشکسالی چند ایستگاه استان خوزستان)، نشریه علوم جغرافیایی، 5(6-7)، 105- 127. روشن، غ. ر. و قانقرمه، ع.1393، احتمال تاثیر تغییر اقلیم بر منحنی شدت و فراوانی بارش مؤثر در نواحی شمال غرب ایران، مجله جغرافیا و برنامه ریزی محیطی، 54(2) ، 61-84 مرید، س. و پایمزد، ش. 1386، مقایسه روشهای هیدرولوژیکی و هواشناسی جهت پایش روزانه خشکسالی: مطالعه موردی دوره خشکسالی 1378 لغایت 1380 استان تهران، مجله علوم و فنون کشاورزی و منابع طبیعی، 11(42)،325-333 رحیم زاده، ز.، محمدزاده،ح، کاردان مقدم،ح. و هوشمند،ع.و. 1388، پهنه بندی خشکسالی با شاخص SPI و CZI و استفاده از علم زمین آمار (مطالعه موردی استان خراسان جنوبی). نخستین کنفرانس ملی پژوهشهای کاربردی منابع آب ایران، دانشگاه صنعتی کرمانشاه، ص 332-340 پیری، ح.، راهداری، و.، ملکی، س. 1392، بررسی و مقایسه کارایی چهار نمایه خشکسالی هواشناسی در مدیریت خطر خشکسالیهای استان سیستان و بلوچستان، فصلنامه علمی پژوهشی مهندسی آبیاری و آب، 3(11)،96-114. Antuchevičiené, J., Zakarevičius, A. and Zavadskas, E.K., 2010, Multiple criteria construction management decisions considering relations between criteria. Technological and Economic Development of Economy, 1, 109-125
Adnan, S. and Hayat Khan, A,. 2009, Effective Rainfall for Irrigated Agriculture Plains of Pakistan, Pakistan Journal of Meteorology, 6, 61-72
Carolwis, M., 1996, Natural hazards need not lead to natural disaster; EOS77,16,149-153.
Chen, Y., Li, K W. and Liu, S., 2011, "An OWA-TOPSIS method for multiple criteria decision analysis", Expert Systems with Applications, 38, 5205–5211
Chang, T. J., 1989, Characteristics of stream flow drought, new directions for surface water modeling. IAHS Pub. 181, 333-341 Chang, T. J., 1990, Effect of drought on stream flow characteristics. Journal of Irrigation And Drain Engineering. 116, 332-341
Dracup. J. A., Lee. K.S. and Paulson. E. G., 1980a. On the definition of droughts. Water Resource Research., 16,289-301
Dracup. J. A., Lee. K.S. and Paulson. E. G., 1980b. On the definition of droughts. Water Resource Research., 16, 294-302.
Darvishi, A., Arkhi, S. and Ebrahimi, A., 2008, Risk and disaster management to mitigate the effects of droughts in Iran. Proceeding of the Conference on Drought in Charmahal-Bakhtiari, November 2008. Shahrekord University, Shahrekord, Iran.
Gillet,H.P.A.1950, A creeping drought under way, water and sewage works, March,pp.104-105
Gupta,V.K. and L. Duckstein., 1975, A stochastic analysis of extreme droughts. Water Resource Research.11, 221-228.
Kazemi Rad, L., Ghamgosar M. and Haghyghy, M. 2012, Multicriteria Decision Making Based on TOPSIS Method in Drought Zoning: A Case Study of Gilan Province, World Applied Programming, 2(2), 81-87.
Longobardi, A. and Villani,P. 2009, Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol., DOI: 10.1002/joc.2001
Makra, L., Horváth, S.Z., Pongrácz, R. and Summary, J.M., 2002, Long term climate deviations: an alternative approach and application on the Palmer drought severity index in Hungary. Physics and Chemistry of the Earth, Parts A/B/C, 27, 1063-1071.
Palmer, W.C., 1965, Meteorological Drought, U. S. Weather Bureau, Washington, D.C. 45.
Roshan, Gh.R., Mirkatouli, G. and Shakoor, A., 2012, A new approach to technique for order preference by similarity to ideal solution (TOPSIS) method for determining and ranking drought: A case study of Shiraz station, International Journal of the Physical Sciences ,7, 2994-3008.
Smith, M.,1988, Manual for CROPWAT version 5.2. FAO, Rome. 45pp.
Tannehil,I.R., 1974, Drought: Its Causes and Effects, Princeton University Press,P.264.
Wang, T-C. and Chang, T-H., 2007. Application of TOPSIS in evaluating initial training aircraft under fuzzy environment. Expert Systems and Applications, 33, 870-880.
Wang, Y-M. and Elhag, T.M.S., 2006. Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Systems and Applications, 31, 309-319.
Wilhite,D.A., 2000, Drought: A Global Assessment, Routledge Press, London and New York, Volume I.
Yevjevich,V.M.1967, An objective approach to definitions and investigations of continental hydrologic droughts. Hydrologic Paper 23,Colorado State University, Colins, Colorado.
Zarenistanak, M., Dhorde,A. and Kripalani, R.H., 2014. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. Journal of Earth System Science, 123(2), 281-295
| ||
آمار تعداد مشاهده مقاله: 3,078 تعداد دریافت فایل اصل مقاله: 1,732 |