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Abstract: The analysis of flow in water-distribution networks with several pumps by the 
Content Model may be turned into a non-convex optimization uncertain problem with 
multiple solutions. Newton-based methods such as GGA are not able to capture a global 
optimum in these situations. On the other hand, evolutionary methods designed to use the 
population of individuals may find a global solution even for such an uncertain problem. In 
the present paper, the Content Model is minimized using the particle-swarm optimization 
(PSO) technique. This is a population-based iterative evolutionary algorithm, applied for non-
linear and non-convex optimization problems. The penalty-function method is used to convert 
the constrained problem into an unconstrained one. Both the PSO and GGA algorithms are 
applied to analyse two sample examples. It is revealed that while GGA demonstrates better 
performance in convex problems, PSO is more successful in non-convex networks. By 
increasing the penalty-function coefficient the accuracy of the solution may be improved 
considerably. 

Keywords: Content Model, Global Gradient Algorithm, Hydraulic Analysis, Particle-Swarm 
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INTRODUCTION

 

In a water distribution network (WDN) 

flow rates and nodal heads are computed 

by solving a mixture system of linear 

(continuity) and nonlinear (energy) 

equations. Since 1936 various methods 

have been devised for WDN analysis that 

directly solve the system equations, e.g., 

the Hardy Cross method (Cross, 1936), the 

Newton-Raphson method (Martin and 

Peters, 1963; Shamir and Howard, 1968), 

and the linear theory method (Wood and 

Charles, 1972). However, Collins et al. 

(1978) proposed a mathematical 

optimization technique, the so-called 

Content Model, that minimized a nonlinear 
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convex objective function subject to a set 

of linear equality constraints. The 

convexity of the objective function 

guaranteed the existence and uniqueness of 

the solution. However, the nonlinear 

programming methods used for the 

solution of the Content Model were time-

consuming, reducing the practical 

application of the model in large complex 

networks. Todini and Pilati (1988) 

developed a Newton-based global gradient 

algorithm (GGA), originally based on the 

minimization of a slightly modified 

Content Model. Basically, GGA involves 

two iterative steps, where the heads and 

flows are obtained, respectively (Elhay and 

Simpson, 2011). Simpson (2010) 

compared Q-equations and GGA 
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formulation in analyzing water distribution 

systems. Todini and Rossman (2013) 

introduced a unified framework for 

deriving simultaneous equation algorithms 

for WDNs. Moosavian and Jaefarzadeh 

(2014) applied an efficient higher-order 

method and reduced the number of 

iterations of the Hardy Cross algorithm. 

Recently, some innovative techniques have 

been developed for simplifying the 

topological representation of pipe 

networks while preserving the accuracy of 

the analysis (see for example Giustolisi, 

2010; Giustolisi et al., 2012). 

In a pipe network problem quite a few 

pumps may be provided externally to 

supply water from reservoirs, or internally 

within the network as booster pumps to 

augment pressure and discharge 

accordingly at certain locations within the 

system. At a constant rotational speed, there 

is a unique relationship between the 

delivered head hp and supplied discharge Q, 

known as the pump head-discharge curve. 

The head-discharge curves for various 

kinds of pump are different. Usually in 

screw pumps these curves are stable and 

strictly monotonically decreasing, i.e., the 

head decreases as the flow rate increases. 

Thus, for a given head there is only one 

value for the flow rate. However, for some 

centrifugal and half-axial pumps, the 

characteristic head-discharge curve is 

unstable or not continuously decreasing as 

the flow rate increases. In other words, for 

the same head, two or three discharges may 

exist (Bhave and Gupta, 2006). The 

analysis of a distribution network with 

several pumps with unstable or in some 

cases even stable head-discharge curves is a 

non-convex uncertain problem with 

multiple solutions as operating points. 

Generally, the convergence characteristics 

of the Newton-type methods such as GGA 

are highly sensitive to the initial guesses of 

the solution. Specifically in non-convex 

problems, these methods will fail if the 

initial guesses are not sufficiently close to 

the global minimum (Luenberger and 

Yinyu, 2008). In other words, they may trap 

into a local minimum, leading to the wrong 

solution. 

On the other hand, evolutionary methods 

are intrinsically designed to find a global 

solution even in uncertain problems. Over 

the last two decades many evolutionary 

techniques have been successfully applied 

to minimize the cost function of pipes. This 

is a non-convex function with discrete 

decision variables. The most important 

techniques include genetic algorithms 

(Murphy and Simpson,1992; Simpson et 

al., 1994; Dandy et al.,1996; Savic and 

Walters, 1997); simulated annealing (Cunha 

and Sousa, 2001); harmony search (Geem, 

2006); the shuffled frog-leaping algorithm 

(Eusuff and Lansey, 2003); ant-colony 

optimization (Maier et al., 2003); particle-

swarm optimization (Suribabu and 

Neelakantan, 2006); cross entropy 

(Perelman and Ostfeld, 2007); scatter 

search (Lin et al., 2007); differential 

evolution (Suribabu, 2010) and Vasan and 

Simonovic, 2010); self-adaptive differential 

evolution (Zheng et al., 2013) and the 

soccer-league competition algorithm 

(Moosavian and Kasaee, 2014). Moosavian 

and Jaefarzadeh (2014) applied a shuffled 

complex-evolution technique (SCE) in a 

head-based optimization model (Co-

Content Model) for the hydraulic analysis 

of pipe networks. This methodology was 

able to accurately simulate pressure-driven 

demand and leakage in pipe networks.  

In this article the Content Model is 

optimized using an evolutionary-type 

algorithm called particle swarm 

optimization (PSO). In this methodology, 

there is no need to solve a system of linear 

or non-linear equations where a proper 

initial solution vector is crucial to the 

convergence of non-convex problems. 
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CONTENT MODEL APPROACH 

 

As mentioned, the solution of the content-

optimization model by Collins et al. (1978) 

yielded the network analysis. A simplified 

version of this model is presented herein 

by applying it to the one-loop network 

shown in Figure 1, where nodes 1 and 2 

are source nodes with known head values 

H1, and H2, and nodes 3, 4 and 5 are 

known demand nodes q3, q4 and q5. Let 

pipes 1 to 5 have the known resistances R1 

to R5, respectively. The Content Model 

aims to minimize the energy function C(Q) 

(Bhave and Gupta, 2006): 
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This is subject to the following node-

flow continuity constraints: 
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The objective function (1) contains 

integral functions of the head loss terms in 

pipes 1 to 5 and potential energy terms in 

source nodes 1 and 2, respectively. Note 

that the node-flow continuity constraints 

should be written for all nodes of the 

network with unknown heads. Since all 

node-flow continuity constraints and loop-

head loss equations have to be satisfied, 

the solution of the optimization model 

gives the discharges in the pipes, hence the 

network analysis. If there is a pump, for 

example in pipe (2), with a head-discharge 

curve approximated by a quadratic 

equation hp= AQ
2
+BQ+C, the energy 

function model may be modified 

accordingly: 
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(3) 

 

where A, B and C: are constant 

coefficients. The Content Model in a 

general form may be expressed as: 
 

 

 

Minimize :
n 1

j j k k

j k

3 2

l l l

l

C(Q) R Q n 1 Q H

A Q 3 B Q 2 C Q

j pipe, k source node, l pump



   

 

  

 



 

(4.1) 

Subject to

j i

j

:

Q q 0, for all i 
 (4.2) 

 

Note that the second summation in the 

objective function is only for source nodes 

with known heads, while the constraints 

are written for nodes with unknown heads. 

In the global gradient algorithm presented 

by Todini and Pilati (1987), the optimization 

model of (4.1) and (4.2) is unconstrained by 

a number of Lagrange Multipliers, and the 

resulting equations are solved by the 

Newton-Raphson method. Thereby, the 

estimates for Q and H are updated at each 

iteration directly. The convergence rate of 

this algorithm may be of the second order, 

provided that initial guesses are sufficiently 

close to the final solution (Luenberger, 

Yinyu, 2008). At present, GGA is applied 

for water distribution network analysis in 

commercial and industrial software such as 

WaterGEMS and EPANET (Rossman, 

2002).  
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Fig. 1. Schematic representation of the looped pipe network with 5 pipes. 

 

On The Convexity Property of the 

Content Model  

If an optimization model is convex, 

Newton-based methods can easily 

minimize it with any arbitrary initial guess, 

and the existence and uniqueness of the 

solution are guaranteed. However, for non-

convex functions with several optima, 

these methods may not necessarily capture 

a global optimum. Instead, they are likely 

to be trapped in a local optimum, 

depending on initial guesses at the 

beginning of the solution process. 

On the other hand, meta-heuristic 

algorithms examine the whole domain of 

the problem as much as possible and seek 

a global optimum independent of the initial 

guesses. To illustrate the convexity 

behaviour of the Content Model in the 

presence or absence of a pump, consider 

the network shown in Figure 2, including 

one reservoir, two nodes and three pipes. 

The Content Model may be written as: 
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Subject to :

1 3 2

2 3 1

Q Q q 0

Q Q q 0

  

  

 (5.2) 

In Eq. (5.1) the absolute values are 

removed, presuming the flow in the pipes 

is selected in proper directions. 

Substituting for Q2 and Q3 from constraints 

(5.2) into (5.1), the Content Model may be 

modified as: 

 

(6) 
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The second derivative of Equation (6) 

yields a positive function: 

 

(7) 
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The positiveness of Eq. (7) assures the 

convexity of the Content Model and GGA 

is therefore able to find the proper 

solution. When two pumps are placed in 

pipes 1 and 2, the Content Model is 

modified as: 
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(8) 
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The second derivative of Eq. (8) gives: 
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In this case, Eq. (9) may not be positive 

for some values of A and B; even for a 

strictly monotonically decreasing head-

discharge curve, the Content Model is non-

convex. As an example, for typical values 

of constant coefficients, consider the 

sample energy curve in Figure 3 for the 

one-looped pipe network shown in Figure 

2. The Content Model has two minima; 

however, GGA is able to find only one 

local solution depending on the selection 

of initial guesses. This solution may not 

necessarily be a global optimum. 

Evolutionary methods are to be used to 

resolve this problem and to find the global 

minimum. In the following, a powerful 

evolutionary approach for minimizing the 

Content Model will be introduced. 

 

 

Fig. 2. Schematic representation of the looped pipe network with three pipes. 
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Fig. 3. System energy curve for one- looped pipe network. 
 

PARTICLE SWARM OPTIMIZATION 

 

Particle swarm optimization (PSO) is an 

adaptive evolutionary algorithm based on 

population search (Kennedy and Eberhart, 

1995). It is a simple and fast converging 

technique simulating the social behaviour 

of birds flocking and fish schooling. 

Consider a swarm of flying birds looking 

for a piece of food (global optimum) in an 

area. No bird in the group knows the exact 

location of the food, but they may identify 

the one closest to the food, and obviously 

their best choice is to follow that bird (Zhu 

et al., 2011). In PSO each solution is taken 

as a bird in the group or a particle in the 

swarm, having a certain position and 

velocity, but with zero mass. The location 

and velocity of the particles are updated in 

consecutive iterations. The various steps in 

this algorithm may be classified as follows. 

 

Step 1: Define the optimization problem 

and constraints 

The optimization problem together with 

its constraints (if any) are specified as: 

 

Subject to :

Minimize : i

i

C( )

0

X

h(X )
 (10) 

 

where C(Xi): is an objective function, Xi: is 

the set of decision variables for particle i 

and h(Xi): is the set of constraints. PSO is 

basically an unconstrained algorithm but 

may be used for constrained problems as 

well with a penalty function, as will be 

explained later. 

 

Step 2: Generate samples 

Each particle i is associated with three 

vectors: 
1.  The particle’s current position 

 

 iNi2i1i x,...,x,xX  

where N: is the number of 

decision variables; 

(11) 

 

2.  The best location it has reached so far 

 

 iNi2i1i pbest,...,pbest,pbestbest P  (12) 

 

3.  Its current velocity, which enables it to evolve 

to a new position 

 

 iNi2i1i v,...,v,vV  (13) 

 

The initial population of the PSO may 

be created arbitrarily by 

 

 imaximiniimini XXτXX   (14) 

 

where τi: denotes a uniformly distributed 

random vector within the range of [0,1], 

and iminX  and imaxX : are the maximum and 

minimum bounds of particle i. Then, the 

objective functions (Ci(Xi), i= 1, …, nPop) 

of all the individuals in the population are 

Discharge-Q (m
3
/s) 

C
(Q

)-
(m

4
/s

) 
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calculated. The position matrix of the 

population of generation G may be 

represented as: 
 

(15)      ( )

1 1 2 2, ,G

nPop nPopP C C C 
 

X X X 

 

where nPop: is the number of populations. 

 

Step 3: Start the iterative process 

In this step, the best position that every 

particle has reached so far (Pbest) is found 

and the best Pbest is set as the best global 

position (Gbest). Then, two main steps of 

PSO are performed sequentially to create 

the new solution vectors. 

 

Step 3.1: Update velocities 

The new velocity, Vi, may be obtained 

as follows: 
 

 

 

i i 1 i i i

2 i i

ω c best

c best





  

 

V V P X

G X
 

(16) 

 

where Gbest: is the best position vector 

attained by any particle during the 

optimization process, c1 and c2: are the 

acceleration constants, representing the 

weights of the stochastic acceleration 

terms that respectively pull each particle 

simultaneously towards its best position 

and the best global position, αi and βi: are 

constant functions, generating uniform 

pseudo-random numbers between 0 and 1 

(sometimes referred to as learning rates or 

factors), and ω: is an inertia term proposed 

by Shi and Eberhart (1998), which controls 

the impact of the velocity history into the 

new velocity and provides improved 

performance in a number of applications. 

This last parameter may be suitably 

adapted during the calculation process. 

The operation (16) allows a balance 

between the local and global search. 

Step 3.2: Update particles’ positions 

The particles’ positions are updated 

accordingly as follows: 
 

iii XVX   (17) 

Step 4: Check the stopping criterion 

The steps 3.1 and 3.2 are repeated until a 

termination criterion is satisfied. This 

condition may be stated either in terms of a 

maximum number of iterations or a certain 

value for the objective function. 

 

Penalty Function 

The PSO algorithm is designed for 

unconstrained optimization models. The 

penalty function method may be used for 

changing constrained models into 

unconstrained ones (Luenberger and 

Yinyu, 2008). A penalty function is 

defined as the summation of square 

constraints: 

 





m

1j

2

ijP )(Xh)(X i
 (18) 

 

where m: is the number of constraints. An 

unconstrained model is then obtained by 

adding the penalty function to the 

objective function:  
 

Minimize :

i 1,nPop

C( ) μP



i iX (X )
 (19) 

 

where μ: is a large positive constant 

coefficient. 

 

Implementation of PSO in Pipe Network 

Analysis 
Pipe-network analysis in Content 

Model, i.e., as in Eqs. (4.1) and (4.2), is a 

constrained optimization problem. To 

eliminate the constraints this model may 

be treated by a penalty function similar to 

Eq. (19). The PSO algorithm may then be 

used to minimize Eq. (19), where decision 

variables are flow-rate in pipes with a 

maximum bound set to the sum of all 

demands and a minimum bound of zero. 

Both the PSO and GGA algorithms are 

applied to analyse two network problems 

in this section. The residuals of node -

balance summed up over all nodes and the 

residuals of loop energy balance summed 
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up over the loops are calculated to examine 

the accuracy of solutions. All of the 

computations were executed in a 

MATLAB environment with an Intel(R) 

Core(TM) 2Duo CPU P8700 with 

2.53GHz and 4.00 GB RAM. 

 

NUMERICAL EXAMPLE 1 

 

Consider a three-loop network with 5 nodes 

and 7 pipes, where the node-, pipe- and loop-

numbers are shown in Figure 4 as reported 

by Todini (2006). The pipes’ resistances are 

R1=1.5625, R2=50, R3=100, R4=12.5, 

R5=75, R6=200, and R7=100, respectively. 

The algorithms of PSO, minimizing the 

Content Model plus penalty functions and 

GGA by applying Newton-Raphson iterative 

method are applied to analyse this network. 

Each of these algorithms was tested 100 

times with different initial guesses. The 

selected parameters for the implementation 

of the PSO algorithm included: number of 

decision variables = 7; population = 700 

(100 times the number of decision 

variables); and number of iterations = 300. 

Based on the authors’ experience, if the 

population is selected as 100 times the 

decision variables, the algorithm 

performance will be efficient in all runs. The 

decision variables were set between a lower 

bound of 0 and an upper bound of 1 m
3
/s, 

equal to the sum of demands in all nodes. 

The convergence properties of objective 

function evaluation and the total mass and 

energy balances against the number of 

iterations for the PSO method are shown in 

Figures 5 and 6 for the two penalty-function 

coefficients μ=10
6
 and μ=10

9
, respectively. 

The accuracy of mass balance increases the 

larger the value of μ. The objective function 

was evaluated for 100 runs of the GGA and 

PSO methods. In Table 1, the best, worst, 

average and standard deviation of the 

solutions obtained from the different runs 

indicate that both methods generate similar 

results. However, in Table 2 the mass 

balance at nodes and the energy balance 

around the loops reveal that GGA produces 

more accurate results than PSO. This is due 

to the convexity of the Content Model in the 

absence of any pump in the system, where 

the Newton-based models are highly 

successful in detecting the global optimum 

solution. 

 

 
Fig. 4. Schematic representation of the three-looped pipe network (Todini, 2006). 
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Table 1. Evaluation of objective function in PSO and GGA for example 1(μ=10
9
). 

 
Best Worst Mean Std 

PSO -99 -99 -99 1.57e-014 

GGA -99 -99 -99 7.03E-13 

 

Table 2. Evaluation of mass and energy balance in PSO and GGA for Example 1 (μ=10
9
). 

Mass Balance (Node) PSO GGA Energy Balance (Loop) PSO GGA 

1 4.95E-8 -3.47E-15 123 -3.42E-08 2.22E-16 

2 4.90E-8 1.72E-15 356 7.56E-07 4.44E-16 

3 4.85E-8 8.88E-16 457 -6.16E-07 -1.11E-16 

4 4.80E-8 2.83E-15 
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Fig. 5. Mass and energy balances and function evaluation versus the number of iterations for the PSO algorithm 

with μ=10
6
, Example 1. 
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Fig. 6. Mass and energy balances and function evaluation versus the number of iterations for the PSO algorithm 

with μ=10
9
, Example 1. 
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NUMERICAL EXAMPLE 2 

 
Consider the eight-pipe network shown in 

Figure 7, including two reservoirs, a source 

pump that supplies some of the system 

demand, and a booster pump placed in pipe 

1. There are two globe valves, which have a 

loss coefficient of 10, in pipes 7 and 8, and 

two of the meter in pipe 3 (Larock et al., 

2000). The pipes’ resistances are R1=1160, 

R2=613, R3=1160, R4=690, R5=1292, 

R6=1115, R7=322 and R8=239, 

respectively, and the pumps’ characteristic 

curves are approximated by hp1 = -

2220Q
2
+44.4Q+12.28 and hp2 = -

55.6Q
2
+1.667Q+4.1. In a similar manner 

to Example 1, this network was analysed 

100 times with different initial guesses 

using the two methods of GGA and PSO. 

The parameters selected for the PSO model 

included: number of decision variables = 8; 

population = 800 (100 times the number of 

decision variables); and number of 

iterations = 500. The range of initial 

guesses was between 0.0 and 0.24 m
3
/s. In 

Table 3, the best, worst, average and 

standard deviation of the objective function, 

obtained from 100 runs with different initial 

guesses, demonstrate the advantage of PSO 

over GGA. In fact, PSO captured the global 

minimum of -44.5989 in all runs, with a 

standard deviation of zero. Depending on 

the initial guesses, GGA found a local 

minimum of 10.8166 in some runs and a 

global minimum of -44.4839 in others. 

Figure 8 shows the performance of GGA in 

different runs in finding either the local or 

global minimum as the final solution of the 

network. Table 4 shows that although the 

total mass balance at nodes for both 

methods is satisfactory, GGA is not able to 

satisfy energy balances around the loops for 

either local or global minima as accurately 

as PSO. The convergence trend of the PSO 

method is shown in Figure 9 and 10 for 

μ=10
6
 and μ=10

9
 against the number of 

iterations, for objective function, and total 

mass and energy balance. Generally, mass 

balances converge quicker than energy 

balances. Larger values of penalty 

coefficient μ result in higher accuracy of 

mass balances. 

 

 

Table 3. Evaluation of objective function in PSO and GGA for Example 2 (μ=10
9
). 

 
Best Worst Mean Std 

PSO -44.5989 -44.5989 -44.5989 0 

GGA -44.4839 10.8166 -24.0951 26.8896 

 
Table 4. Evaluation of mass and energy balance in PSO and GGA for example 2(μ=10

9
). 

Mass Balance (Node) PSO GGA
a 

GGA
b 

1 8.713E-8 2.77556E-17 -2.52576E-15 

2 8.014E-8 5.13478E-16 9.14546E-15 

3 8. 041E-8 -3.33067E-16 -5.27356E-16 

4 9.131E-8 -1.19349E-15 -1.04083E-15 

5 7.848E-8 -8.32667E-17 -5.50948E-15 

Energy Balance (Loop) PSO GGA
a 

GGA
b 

123 7.134E-07 0 -1.77636E-15 

356 -7.251E-07 0.001194775 8.187415863 

457 -1.798E-06 0.006735264 -417.2911369 
a
 Global optimum 

b
 Local optimum 
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Fig. 7. Schematic representation of the looped pipe network for Example 2, (Larock et al., 2000). 

 

 

Fig. 8. Performance of GGA in finding local or global minimum for 100 different runs. 
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Fig. 9. Mass and Energy balances and function evaluation versus the number of iterations for the PSO algorithm 

with μ=10
6
, Example 2. 
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Fig. 10. Mass and Energy balances and function evaluation versus the number of iterations for the PSO 

algorithm with μ=10
9
, Example 2. 

 
CONCLUSIONS 

The Content model for the minimization of 

energy function is a suitable approach for 

pipe network analysis. For a network 

including several pumps, this model may 

become non-convex with multiple 

solutions. Newton-based methods such as 

GGA are not able to find the global 

optimum in this problem. Particle-swarm 

optimization (PSO) is an evolutionary 

phenomenon-mimicking algorithm for 

non-convex and unconstrained 

optimization problems that may be easily 

applied for the optimization of the Content 

Model by using a penalty function. It does 

not depend on any special initial solution 

vector, which is sometimes critical for the 
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convergence of Newton-based methods. 

There is no need to solve linear systems of 

equations during the solution process and 

hence no need for huge memories. It has 

been shown that by enhancing the penalty 

function coefficient the accuracy of the 

solution may be improved considerably. 
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