تعداد نشریات | 161 |
تعداد شمارهها | 6,479 |
تعداد مقالات | 70,032 |
تعداد مشاهده مقاله | 123,011,977 |
تعداد دریافت فایل اصل مقاله | 96,243,375 |
Combines the Apriori and FCM Algorithm to Improve the Extracted Association Rules with Determine the Minimum Support Automatically | ||
Journal of Information Technology Management | ||
مقاله 4، دوره 7، شماره 2، مهر 2015، صفحه 259-282 اصل مقاله (657.82 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jitm.2015.53863 | ||
نویسندگان | ||
Heydar Jafarzadeh* 1؛ Chamran Asgari2؛ Amir Amiry3 | ||
1MSc., Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Ilam, Iran | ||
2MSc., Department of Computer Engineering, Payame Noor University, Iran | ||
3MSc., Department of Computer Engineering, Islamic Azad University, Malayer, Iran | ||
چکیده | ||
Apriori algorithm is the most popular algorithm in association rules mining. One of the problems the Apriori algorithm is that the user must specify a minimum support threshold. Consider that a user wants to implement the Apriori algorithm on a database with millions of transactions; Users will not have the necessary knowledge about all the transactions in the database and therefore cannot determine an appropriate threshold. The aim of this paper is improved the Apriori algorithm to automatically determine the minimum support. To achieve this, we will try to use fuzzy logic before of using the Apriori algorithm on data contained in the database, put the data in different clusters and try the offer to user the most appropriate threshold automatically. We hope this will be any rule that may be of interest not lost, because of inappropriate threshold specified by the user and also not extracted any rule useless | ||
کلیدواژهها | ||
"Apriori Algorithm"؛ "Association Rules"؛ "Fuzzy Clustering"؛ "Support" | ||
عنوان مقاله [English] | ||
تعیین خودکار حداقل دامنۀ پشتیبانی از قاعده در محیط فازی برای بهبود استخراج قواعد همباش با استفاده از الگوریتم اپریوری | ||
نویسندگان [English] | ||
حیدر جعفرزاده1؛ چمران عسگری2؛ امیر امیری3 | ||
1کارشناسارشد مهندسی کامپیوتر، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات ایلام، ایلام، ایران | ||
2کارشناسارشد مهندسی کامپیوتر، گروه مهندسی کامپیوتر، دانشگاه پیام نور، ایران | ||
3کارشناسارشد مهندسی کامپیوتر، دانشگاه آزاد اسلامی ملایر، ملایر، ایران | ||
چکیده [English] | ||
قواعد همباش (انجمنی) یکی از محبوبترین مدلهای حوزۀ دادهکاوی بهشمار میرود. در الگوریتمهای کلاسیک حوزۀ قواعد همباشکاوی، مانند اپریوری، از حداقل دامنۀ پشتیبانیِ قاعدۀ واحد استفاده میشود؛ در حالیکه در رویکردهای جدیدی که تلاش کردهاند الگوریتمهای کلاسیک را بهبود بخشند، مانند ام. اس. اپریوری، از حداقل دامنۀ پشتیبانیِ قاعدۀ چندگانه استفاده میشود که در هر دو حالت، کاربر موظف است حداقل دامنۀ پشتیبانی از قاعده را تعیین کند. در نظر بگیرید کاربر قصد اعمال الگوریتم اپریوری را بر پایگاه دادهای با میلیونها تراکنش داشته باشد؛ بهطور قطع کاربر نمیتواند دانش لازم را دربارۀ تمام تراکنشهای موجود در پایگاه داده داشته باشد، بنابراین نمیتواند حد آستانۀ مناسبی را تعیین کند. در این پژوهش، برای اولینبار با استفاده از دادههای فازیسازیشده و تکنیک میانگینگیری، روشی ارائه شده است که در آن، الگوریتم اپریوری بهصورت کاملاً خودکار حداقل دامنۀ پشتیبانی از قاعده را تعیین میکند. نتایج شبیهسازیشده روی نمونهای واقعی نشان داد این رویکرد عملکرد مطلوبتری نسبت به الگوریتم اپریوری کلاسیک دارد. | ||
کلیدواژهها [English] | ||
الگوریتم اپریوری, الگوهای پرتکرار, خوشه بندی فازی, دامنة پشتیبانی از قاعده, قواعد همباش | ||
مراجع | ||
Agrawal, R. & Shafer, J.C. (1996). Parallel mining of association rules, IEEE Transactions on Knowledge and Data Engineering, 8(6): 962–969.
Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules in large databases [A].Proc. of the 20th Int’l Conf on Very Large Data Bases [C]. Santiago: Morgan Kaufmann, 478-499.
Akhondzadeh-Noughabi, L. & Albadvi, A. & Aghdasi, M. (2014). Mining customer dynamics in designing customer segmentation using data mining techniques. Quarterly Journal of Information technology management, 6(1): 1-30. (in Persian) Azar, A., Sangi, M., Izadkhah, M-M. & Anvari, A. (2015). Synergy management model of the holding by fuzzy approach, the role of information technology in its implementation. Quarterly Journal of Information technology management, 7(1): 1-22. (in Persian)
Azizi, SH., Abadi, V.H. & Balaghi Inanlou, M. (2014). Segmentation of Internet Banking Users Based on Expectations: A Data Mining Approach. Quarterly Journal of Information technology management, 6(3): 419-434. (in Persian)
Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers Norwell, MA, USA.
Cakir, O. & Aras, M.E. (2012). A recommendation engine by using association rules. Procedia – social and Behavioral Sciences, 62(24): 452 – 456.
Chen, C., Hong, T. & Tseng, V. (2009). An improved approach to find membership functions and multiple minimum supports in fuzzy data mining. Expert Systems with Applications, 36(6): 10016–10024.
Dunham, M.H. (2002). Data Mining: Introductory and Advanced Topics. Prentice Hall PTR Upper Saddle River, NJ, USA.
Gottwald, S. (2006). Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Studia Logica,82(2): 211-244.
Han, J., Cheng, H., Xin, D. & Yan, X. (2007). Frequent pattern mining: current status and future Directions. Data Mining and Knowledge Discovery, 15(1): 55-88.
Hu, Y. & Chen, Y. (2006). Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism. Decision Support Systems, 42(1): 1 – 24.
Hu, Y., Wu, F. & Liao, Y. (2013). An efficient tree-based algorithm for mining sequential patterns with multiple minimum supports. The Journal of Systems and Software, 86(5): 1224- 1238.
Huang, T. (2013). Discovery of fuzzy quantitative sequential patterns with multiple minimum supports and adjustable membership functions. Information Sciences, 222(10): 126-146.
Jalilmanesh, A. & Homaiounvala, A. (2011). Organizational Knowledge Mapping Based on Library Information System. IADIS Collaborative Technologies, Rome (Italy), 20-26.
Jang, J., Sun, C. & Mizutani, E. (1997). Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Paperback.
Lee, Y., Hong, T. & Wang, T. (2008). Multi-level fuzzy mining with multiple minimum supports. Expert Systems with Applications, 34(1): 459–468.
Lei, Z. & Ren-Hou, L. (2007). An Algorithm for Mining Fuzzy Association Rules Based on Immune Principles. Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE. Boston, MA.
Liu, B. (2007). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer.
Pea, J., Qualite, L. & Tille, Y. (2007). Systematic smpeling is a minimum support design. Computational statistics & Data Analysis, 51(12): 5591-5602.
Radfar, R., Nezafati, N. & Yousefi Asli, S. (2014). Classification of Internet banking customers using data mining algorithms. Quarterly Journal of Information technology management, 6(1): 71–90. (in Persian)
Shihab, A.I. & Burger, P. (1998). The Analysis of Cardiac Velocity MR Images Using Fuzzy Clustering. Proceeding of SPIE Medical Imaging Physiology and Function from Multidimensional Images, 3337(14): 176–183.
Tseng, M. & Lin, W. (2007). Efficient mining of generalized association rules with non-uniform minimum support. Data & Knowledge Engineering, 62(1): 41-64.
Lotfizadeh, A. (1965). Fuzzy sets. Information and Control, 8 (3): 338-353.
| ||
آمار تعداد مشاهده مقاله: 6,963 تعداد دریافت فایل اصل مقاله: 1,852 |