تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,433 |
تعداد دریافت فایل اصل مقاله | 97,206,088 |
Predicting water level drawdown and assessment of land subsidence in Damghan aquifer by combining GMS and GEP models | ||
Geopersia | ||
مقاله 7، دوره 5، شماره 1، خرداد 2015، صفحه 63-80 اصل مقاله (914 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.7508/GEOP.2015.01.007 | ||
نویسندگان | ||
Sakineh Parhizkar1؛ Khalil Ajdari1؛ Gholam Abbas Kazemi* 2؛ Samad Emamgholizadeh1 | ||
1Faculty of Agriculture, University of Shahrood, Shahrood, Iran | ||
2Faculty of Earth Sciences, University of Shahrood, Shahrood, Iran | ||
چکیده | ||
It is over two decades that groundwater flow models are routinely implemented for better management of groundwater resources. Modeling groundwater flow with the help of the ground water modeling system (GMS) in the Damghan plain aquifer in northern Iran, which experiences declining levels and numerous environmental hazards, has demonstrated that, (a) in the worst case scenario the aquifer will face 320 cm of drawdown by year 2019 and (b) land subsidence is observed mainly in areas that are subjected to an accelerated water level drawdown rate, such as, the southern part of the aquifer. Four different rainfall scenarios that have been modeled demonstrate that some areas of the aquifer are slightly impacted by climatic change in contrast to some other areas that are being influenced substantially. Together with GMS, Genetic Expression Programming (GEP) and Multiple Linear Regression (MLR) models were used to forecast land subsidence by applying developing functional relations to the long-term groundwater drawdown data. This segment of the study shows that a 35.4 cm and 39.45 cm settlement will occur if the groundwater level drops by 295 cm and 343 cm, respectively. This research shows that the water level in the Damghan aquifer continues to decline and the land subsidence will intensify. It is, therefore, needed to reduce groundwater pumping in high-risk areas. | ||
کلیدواژهها | ||
Ground Water Modeling؛ Damghan؛ Land Subsidence؛ Overexploitation؛ Water Level Drawdown | ||
عنوان مقاله [English] | ||
پیش بینی اقت سطح آب و ارزیابی فرونشست زمین در آبخوان دامغان با ترکیب مدلهای جی ام اس و جی ای پی | ||
نویسندگان [English] | ||
سکینه پرهیزکار1؛ خلیل اژدری1؛ غلام عباس کاظمی2؛ صمد امام قلی زاده1 | ||
1دانشگاه شاهرود | ||
2دانشگاه شاهرود | ||
چکیده [English] | ||
برای بهبود مدیریت منابع آب زیرزمینی بیش از دو دهه است که از مدل های جریان آب زیرزمینی استفاده می شود. مدلسازی جریان آب زیرزمینی با GMS در آبخوان دشت دامغان در شمال ایران که با افت سطح آب و مخاطرات زیست محیطی مختلفی روبروست نشان میدهد که الف) در بدترین شرایط، تا سال 2019 سطح آب این آبخوان 320 سانتیمتر پایین میآید و ب) نشست سطح زمین به مقدار قابل توجهی به علت افت سطح آب در منطقه بویژه در جنوب دشت رخ خواهد داد. چهار سناریوی مختلف با تغییرمیزان بارندگی مدلسازی شده نشان می دهد که بعضی از نواحی دشت با تغییرات اقلیم تغییر رفتاری اندکی ازخود نشان میدهند در حالی که سایر نواحی بطور عمده ای تحت تاثیر تغییر اقلیم قرار می گیرند. با بکار گیری مدل GMS بهمراه دو مدل "برنامه ریزی بیان ژن (GEP)" و "رگرسیون خطی چندگانه (MLR)" و استفاده از داده های طولانی مدت افت سطح آب زیرزمینی، یک رابطه بین نشست زمین و افت سطح آب بدست آمد. نتایج این بخش از تحقیق نشان داد که با افت سطح آب زیرزمینی بمیزان 295 سانتیمتر و 343 سانتیمتر، نشست زمین بترتیب بمیزان 35/4 و 39/45 سانتیمتر خواهد بود. این تحقیق نشان داد که در دشت دامغان سطح آب زیر زمینی بطور مداوم در حال پایین آمدن و مقدار نشست زمین در حال افزایش می باشد. لذا پمپاژ از چاههای در واقع در نواحی با ریسک بالا باید کاهش یابد. | ||
کلیدواژهها [English] | ||
نشست زمین, دامغان, بهره برداری بیش از حد, مدلسازی آب زیرزمینی | ||
مراجع | ||
Abbas Nejad, A., 1998. Assessment of environmental geology issues in Rafsanjani plain. In: Proceed of Second symposium of the Geological Society of Iran, Kerman pp 303–310. Alkhamis, R., Kariminasab, S., Aryana, F., 2006. Investigating the effect of land subsidence due to groundwater discharges on well casing damage. Water and Wastewater 60:77–88 (Persian with abstract in English). Bedekar, V., Niswonger, RG Kipp, K., Panday, S., Tonkin, M., 2012. Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW. Ground Water 50:187–198. Bredehoeft J, Hall P (1995) Ground-water models. Ground Water 33:530–531. Cui, Y., Su, C., Shao, J., Wang, Y., Cao, X., 2014. Development and application of a regional land subsidence model for the Plain of Tianjin. Journal of Earth Science, 25(3):550–562. Deverel, SJ., Leighton, DA., 2010. Historic, recent and future subsidence, Sacramento-San Joaquin Delta, California, USA. San Francisco Estuary and Watershed Science 8(2):1–23. Elango, L., Senthil Kumar, M., 2006. Modeling the effect of sub-surface barrier on groundwater flow regime. In: Poeter EP, Zheng C, Hill MC (eds.), MODFLOW and More 2006: Managing groundwater systems. 806–810. Emamgholizadeh, S., Moslemi, K., Karami, G., 2014 Predicting of the groundwater level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resour Manag 28. Fatemi Aghda, M., Nakhaei, SM., Baitollahi, M., Aliyari, AR., 2001. Study of cause of sinkhole development in Hamedan central plain. In: Proceed of Second Iranian Conference of Engineering Geology and Environment, Tehran. 2: 693-701. Fernando, MJ., Burau, RG., Arulanandam, K., 1977. A new approach to determination of cation exchange capacity. Soil Science American Journal, 41:818–820. Ferreira, C., 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex System 13(2):87–129. Gerla, P.J., Matheney, R.K., 1996. Seasonal variability and simulation of groundwater flow in a prairie Wetland. Hydrol Processes 10:903–920. Ghafouri, MR., Shamohammadi, A., Kazemi, G.A., Moradi Harsini, K., Sharafi, H., 2013. Evaluation of the impact of groundwater levels drawdown on the instability and deterioration of water well screens. Iran-Water Resources Research 9:42–51 (Persian with abstract in English). Gurwin. J., Lubczynski, M., 2005. Modeling of complex multi-aquifer systems for groundwater resources evaluation– Swidnica study case (Poland). Hydrogeol J, 13:627–639. Guven, A., Aytek A., 2009. New approach for stage discharge relationship: gene expression programming. Journal of Hydrologic Engineering, 14: 812–820. Guven, A., Kisi, Ö., 2011. Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming. Water Resource Management, 25:691–704. Huang, Y., Scanlon, B.R., Nicot, J.P., Reedy, R.C., Dutton, A.R., Kelley, V.A., Deeds, N.E., 2012. Sources of groundwater pumpage in a layered aquifer system in the Upper Gulf Coastal Plain, USA. Hydrogeol J., 20:783–796. Kayadelen, C., 2011. Soil liquefaction modeling by Genetic Expression Programming and Neuro-Fuzzy. Expert Systems with Applications, 38(4): 4080–4087. Kisi, O., Shiri, J., 2012 River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Computers and Geosciences 43:73–82. Kushwaha, RK., Pandit, M.K., Goyal, R., 2008. Groundwater management using groundwater modeling approach in northern part of Mendha Sub-basin, NE Rajasthan, India. In: Groundwater Vision (Abstract Volume): International Groundwater Conference-2008 on Groundwater Dynamics & Global Change, India. pp 127–128. Lashkaripour, G,.R., Rostami Barani, H.R., Kohandel, A., Torshizi, H., 2006. Water level drawdown and land subsidence in Kashmar plain. In: Proceed. of 10th symposium of the Geological Society of Iran pp 2428–2438. Lewis, R.W., Schrefler, B., 2007. A fully coupled consolidation model of the subsidence of Venice. Water Resource Res 14(2):223–230. Li, W., Liu, Z., Guo, H., Li, N., Kang W., 2011. Simulation of a groundwater fall caused by geological discontinuities. Hydrogeol J 19:1121–1133. Louwyck, A., Vadenbohede, A., Bakker, M., Lebbe, L., 2014. MODFLOW procedure to simulate axisymmetric flow in radially heterogeneous and layered aquifer systems. J Hydrol. 22:1217–1226. Mitchell, M., 1996. An introduction to genetic algorithms, The MIT Press, Cambridge, p 221 Mousavi, S.M., Shamsai, A., EI, Naggar, M.H., Khamehchian, M., 2001. A GPS-based monitoring program of land subsidence due to groundwater withdrawal in Iran. Can. J. Civ. Eng., 28(3):452–464. Nastev, M., Rivera, A., Lefebvre, R., Martel, R., Savard, M., 2005. Numerical simulation of groundwater flow in regional rock aquifers, southwestern Quebec, Canada. Hydrogeol J., 13:835–848. O’Sullivan, M., Yen, A., Clearwater, E., 2010. Three-dimensional model of subsidence at Wairakei-Tauhara. Auckland UniServices Limited, p 85. Ortega-Guerrero, A., Rudolph, DL., Cherry, J.A., 1999. Analysis of long-term land subsidence near Mexico City: Field investigation and predictive modeling. Water Resour Res., 35(11): 3327–3341. Rahmanian, D., 1986. Land subsidence and development of earth cracks due to groundwater mining in Kerman. Water 36: 29-36. Rahnama, Rad, J., Firoozan, M., 2002. Investigating the impact of alternating droughts and erosion on buildings in large plain in Sistan. Geotechnics and Strength of Materials Journal. 88:30–39. Rejani, R., Jha, MK, Panda SN., Mull, R., 2008 Simulation modeling for efficient groundwater management in Balasore Coastal basin, India. Water Resources Management Jour., 22: 23–50. Sakthivadivel, R., 2001. Artificial recharging of groundwater aquifers and groundwater modeling in the context of basin water management. In: Elango L, Jayakumar R (eds.) Modeling in hydrology, Allied Publishers Ltd, India. pp 36–37. Sattar, A., 2014. Gene Expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow. Journal of Pipeline Systems Engineering and Practice., 10.1061/(ASCE)PS.1949-1204.0000153, 04013011. Semnan Regional Water Company 2012. A report on groundwater resources in Damghan plain aquifer. Internal unpublished report. Sohrabi N, Chitsazan M, Amiri V, Maradi Neshd T (2013) Evaluation of groundwater resources in alluvial aquifer based on MODFLOW program, case study: Evan plain (Iran). International Journal of Agriculture and Crop Sciences 5(11):1164–1170. Sun, F., Shao, H., Kalbacher, T., Wang, W., Yang, Z., Huang, Z., Kolditz, O., 2011. Groundwater drawdown at Nankou site of Beijing Plain: model development and calibration. Environ Earth Sci., 64:1323-1333. Tardast, A., Mousavi, M., Bolourchi, M.J., Shemshaki, A., 2011. Land subsidence due to water level decline in southwest Tehran. In: Proceed. of fourth Water resources Management Conference, Tehran. Regional Water Authority of Semnan, 2009. Hydrogeological report of Damghan plain. Varni MR, Usunoff EJ (1999) Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeol J 7:180–187. Voss CI (2011) Editor’s message: Groundwater modeling fantasies–Part 1, adrift in the details. Hydrogeol J 19:1281– 1284. Xue YQ, Zhang Y, Ye SJ,Wu JC, Li QF ( 2005) Land subsidence in China. Environ Geol 48(6): 713–720. Yidana SM (2011) Groundwater flow modeling and particle tracking for chemical transport in the southern Voltaian aquifers. Environ Earth Sci 63:709–721. Zakaria, N.A., Azamathulla, H.M.d., Chang, C.K., Ghani, A.A., 2010. Gene expression programming for total bed material load estimation–a case study. Science of the Total Environment, 408: 5078–5085. | ||
آمار تعداد مشاهده مقاله: 2,768 تعداد دریافت فایل اصل مقاله: 4,986 |