
تعداد نشریات | 162 |
تعداد شمارهها | 6,687 |
تعداد مقالات | 72,127 |
تعداد مشاهده مقاله | 129,004,237 |
تعداد دریافت فایل اصل مقاله | 101,781,679 |
The Effect of cathode Porosity on Solid Oxide Fuel Cell Performance | ||
Energy Equipment and Systems | ||
مقاله 3، دوره 3، شماره 1، فروردین 2015، صفحه 25-32 اصل مقاله (1.38 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ees.2015.54470 | ||
نویسندگان | ||
Mohammad Riazat1؛ Majid Baniasadi* 2؛ Mohsen Mazrouie1؛ Mehdi Tafazoli3؛ Mahdi Moghimi Zand1 | ||
1School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran | ||
2School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran. University of Strasbourg, ICube/CNRS, 2 Rue Boussingault, 67000 Strasbourg, France | ||
3Babol University of Technology, Shariati Av., Babol, Mazandaran, Iran | ||
چکیده | ||
In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type of growth rate. The effect of porosity on the cathode of a solid oxide fuel cell involving the Three Phase Boundary Length (TPBL), electric conductivity of LSM phase, ionic conductivity of YSZ, mechanical behavior and tortuosity of the pore phase were explored in the present work. The cathode having a porosity value between 31 and 34% revealed the maximum TPBL value as well as a high variation in the electrical conductivity of the LSM phase. Pore phase tortuosity was also decreased by increasing the porosity factor. | ||
کلیدواژهها | ||
Fuel Cell؛ Microstructure؛ Material Design | ||
مراجع | ||
[1] Farhad S., Hamdullahpur F., AIChE Journal, 58 (2012) 1248-1261. [2] Singhal S., High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, (2003). [3] Deseure J., Bultel Y., Dessemond L., Siebert E., Electrochimica Acta, 50 (2005) 2037-2046. [4] Lehnert W., Meusinger J., Thom F., Journal of Power Sources, 87 (2000) 57-63. [5] Choi J.H., Jang J.H., Oh S.M., Electrochimica Acta, 46 (2001) 867-874. [6] Murray E.P., Tsai T., Barnett S.A., Solid State Ionics, 110 (1998) 235-243. [7] McIntosh S., Adler S.B., Vohs J.M., Gorte R.J., Electrochemical and Solid-State Letters, 7 (2004) A111-A114. [8] Wilson J.R., Cronin J.S., Duong A.T., Rukes S., Chen H.-Y., Thornton K., Mumm D.R., Barnett S., Journal of Power Sources, 195 (2010) 1829-1840. [9] Yokokawa H., Tu H., Iwanschitz B., Mai A., Journal of Power Sources, 182 (2008) 400-412. [10] Wilson J.R., Cronin J.S., Duong A.T., Rukes S., Chen H.-Y., Thornton K., Mumm D.R., Barnett S., Journal of Power Sources, 195 (2010) 1829-1840. [11] Kim J.-D., Kim G.-D., Moon J.-W., Lee H.-W., Lee K.-T., Kim C.-E., Solid State Ionics, 133 (2000) 67-77. [12] Kim J.-D., Kim G.-D., Moon J.-W., Park Y.-i., Lee W.-H., Kobayashi K., Nagai M., Kim C.-E., Solid State Ionics, 143 (2001) 379-389. [13] Liu Y., Compson C., Liu M., Journal of Power Sources, 138 (2004) 194-198. [14] Kim J.W., Virkar A.V., Fung K.Z., Mehta K., Singhal S.C., Journal of the Electrochemical Society, 146 (1999) 69-78. [15] Janardhanan V.M., Deutschmann O., Zeitschrift für Physikalische Chemie, 221 (2007) 443-478. [16] Kenney B., Karan K., Solid State Ionics, 178 (2007) 297-306. [17] Dong D., Gao J., Liu X., Meng G., Journal of Power Sources, 165 (2007) 217-223. [18] Bi L., Tao Z., Sun W., Zhang S., Peng R., Liu W., Journal of Power Sources, 191 (2009) 428-432. [19] Wilson J.R., Barnett S.A., Electrochemical and Solid-State Letters, 11 (2008) B181-B185. [20] Matsuzaki Y., Yasuda I., Solid State Ionics, 152 (2002) 463-468. [21] Vaidya S., Kim J.-H., Journal of Power Sources, 225 (2013) 269-276. [22] Kenney B., Valdmanis M., Baker C., Pharoah J., Karan K., Journal of Power Sources, 189 (2009) 1051-1059. [23] Avizo XLab Pack User’s Guide, in, pp. 507-582. [24] Cooper S.J., Kishimoto M., Tariq F., Bradley R.S., Marquis A.J., Brandon N.P., Kilner J.A., Shearing P.R., ECS Transactions, 57 (2013) 2671-2678. [25] Amani Hamedani H., Baniassadi M., Sheidaei A., Pourboghrat F., Garmestani H., Three‐Dimensional Reconstruction and Microstructure Modeling of Porosity‐Graded Cathode Using Focused Ion Beam and Homogenization Techniques, Fuel Cells 14 (1), 91-95. [26] Tabei SA., Sheidaei A., Baniassadi M., Pourboghrat F., Garmestani H., Microstructure Reconstruction and Homogenization of Porous Ni-YSZ Composites for Temperature Dependent Properties, Journal of Power Sources 235, 74-80. [27] Baniassadi M., Mortazavi B., Hamedani HA., Garmestani H., Ahzi S., Three-Dimensional Reconstruction and Homogenization of Heterogeneous Materials Using Statistical Correlation Functions and FEM, Computational Materials Science 51 (1), 372-379. [28] Hamedani HA., Baniassadi M., Khaleel M., Sun X., Ahzi S., Ruch D., Microstructure, Property and Processing Relation in Gradient Porous Cathode of Solid Oxide Fuel Cells Using Statistical Continuum Mechanics, Journal of Power Sources 196 (15), 6325-6331. [29] Baniassadi M., Garmestani H., Li DS., Ahzi S., Khaleel M., Sun X., Three-Phase Solid Oxide Fuel Cell Anode Microstructure Realization Using Two-Point Correlation Functions, Acta Materialia 59 (1), 30-43. [30] Baniassadi M., PhD Dissertation, University of Strasbourg, Development of a Multiscale Approach for the Characterization and Modeling of Heterogeneous Materials, Application to Polymer Nanocomposites (2011). [31] Mazroui M., Baniassadi M., Jamali J., Abrinia K., in: 3rd Hydrogen and Fuel Cell Conference, Tehran, (2015). [32] Nelson G.J., Harris W.M., Lombardo J.J., Izzo J.R., Chiu W.K., Tanasini P., Cantoni M., Comninellis C., Andrews J.C., Liu Y., Electrochemistry Communications, 13 (2011) 586-589. | ||
آمار تعداد مشاهده مقاله: 1,190 تعداد دریافت فایل اصل مقاله: 1,103 |