
تعداد نشریات | 162 |
تعداد شمارهها | 6,687 |
تعداد مقالات | 72,127 |
تعداد مشاهده مقاله | 129,004,372 |
تعداد دریافت فایل اصل مقاله | 101,781,806 |
Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor | ||
Energy Equipment and Systems | ||
مقاله 5، دوره 3، شماره 1، فروردین 2015، صفحه 45-55 اصل مقاله (1.47 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ees.2015.54472 | ||
نویسندگان | ||
Edris Bagheri1؛ Amir Nejat* 2 | ||
1School of Mechanical Engineering, Alborz Campus, University of Tehran, Alborz, Iran | ||
2School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran | ||
چکیده | ||
This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by coupling those aerodynamic and structural models. The analysis model was validated using the experimental result of performance of NREL phase VI rotor which was conducted by NASA/AMES wind tunnel. Numerical results consist of torque and pressure coefficient in different sections of span (over wind speed of 7 to 15 m/s) which were compared with available experimental results. The present model was also evaluated with results of other aeroelastic simulations. | ||
کلیدواژهها | ||
Aeroelastic؛ CFD؛ FSI؛ Wind Turbine | ||
مراجع | ||
[1] Glauert, Airplane propellers. In Durand, WF (ed.) Aerodynamic Theory, 4th edition, (1935) 169–360. Springer. [2] Sørensen N. N., Michelsen J. A., Schreck S., Navier-Stokes Predictions of the NREL Phase VI rotor in the NASA Ames 80ft x120 ft wind tunnel, Wind Energy, Vol. 5, No. 2-3, (2002) 151-169. [3] Hand M.M., Simms D.A., Fingersh L.J., Jager D.W., Cotrell J.R., Schreck S., Larwood S.M., Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns, NREL/TP-500-29955 (2001). [4] Larsen J., ANSYS CFD Applied to Wind Turbines at Siemens Wind Power, ANSYS Conference (2008). [5] Yelmule M. M., Anjuri E., CFD Predictions of NREL Phase VI Rotor Experiments in NASA/AMES Wind Tunnel, International Journal of Renewable Energy research, Vol.3, No.2(2013). [6] LePape A., Gleize V., Improved Navier-Stokes Computations of a Stall-Regulated Wind Turbine Using Low Mach number Preconditioning, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,(2006) AIAA 2006-1502. [7] Duque E. P. N., Burklund M. D., Johnson W., Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment, Journal of Solar Energy Engineering, (2003)125: 457-467. [8] Chao D. D., Dam van C. P.,Computational Aerodynamic Analysis of a Blunt Trailing-edge Airfoil Modification to the NREL Phase VI Rotor, Wind Energy, (2004)10:529-550. [9] Gonzalez A., Munduate X., Three-Dimensional and Rotational Aerodynamics on the NREL Phase VI Wind Turbine Blade, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,(2007) AIAA 2007-0628. [10] Schmitz S., Chattot J., Application of a ‘Parallelized Coupled Navier-Stokes/Vortex Panel Solver’ to the NREL Phase VI Rotor, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (2003) AIAA 2003-0593. [11] Zahle F., Johansen J., Sorenson N., Wind Turbine Rotor-Tower Interaction Using an Incompressible Overset Grid Method, AIAA 45th Aerospace Sciences Meeting and Exhibit, Reno, Nevada,(2007) AIAA 2007-0425. [12] Simms D. A., Schreck S., Hand M., Fingersh L., NREL Unsteady Aerodynamics Experiment in the NASA Ames Wind Tunnel: A Comparison of Predictions to Measurements, (2001) NREL/TP-500-29494. [13] Chaviaropoulos P. K., Flap/Lead –Lag Aeroelastic Stability of Wind Turbine Blade Sections, wind energy journal, 2,(1999) 99-112. [14] Zhao Y.H, Hu H. Y., Aeroelastic Analysis of a Non-Linear Airfoil Based on Unsteady Vortex Lattice Model, Journal of Sound and Vibration, 276, (2004) 491-510. [15] Abianaki M. R., Nejat A., Aeroelastic Computation of Awind Turbine Blade Profile, Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition(2012). [16] Gebrad C.G., Roccia B.A., Non-Linear Aeroelasticity: An Approach to Compute the Response of Three-Blade Large-Scale Horizontal-Axis Wind Turbines, Journal of Renewable Energy(2014). [17] Lee J. W., Lee J. S., Han J. H., Shin H. Ki., Aeroelastic Analysis of Wind Turbine Blades Based on Modified Strip Theory, Journal of Wind Engineering and Industrial Aerodynamics, 110 (2012) 62–69. [18] Technical Information Regarding the ANSYS-CFX solver, ANSYS CFX-SOLVER Modeling Guide, release 12.1(2009). [19] Technical Information Regarding the ANSYS-CFX solver, ANSYS CFX-SOLVER Theory Guide, release 12.1(2009). [20] Hand M.M., Simms D.A., Fingersh L.J., Jager D.W., Cotrell J.R., Schreck S., Larwood S.M., NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements, technical report, (2001) NREL/TP-500-29955. [21] Nejat A., Abenaki M., rahbari i., A Robust Engineering Approach for Wind Turbine Blade Profile Aeroelastic Computation, Journal of Energy Equipment and System (2014). [22] Anjuri E., Comparison of Experimental results with CFD for NREL Phase VI Rotor with Tip Plate, Journal of Renewable Energy Research (2012). [23] Drela M., XFOIL: An analysis and Design System for Low Reynolds Number Airfoils, Conference on Low Reynolds Number Airfoil Aerodynamics, University of Notre Dame (1989). [24] Bazilevs Y., Hsu M-C., Akkerman I., Wright S., Takizawa K., Henicke B., Spielman T., Tezduyar T. E., 3D Simulation of Wind Turbine Rotors at Full Scale. PartI: Geometry Modeling and Aerodynamics, International Journal for NumericalMethods in Fluids, 65 (1-3) (2011) 207–35. [25] Bazilevs Y., Hsu M-C., Kiendl J., Wüchner R., Bletzinger K-U., 3DSimulation of Wind Turbine Rotors at Full Scale. Part II: Fluid-Structure Interaction Modeling with Composite Blades. International Journal for Numerical Methods inFluids 65 (1-3) (2011) 236–53. [26] Yuwei Li, Coupled Computational Fluid Dynamics/Multibody Dynamics Method with Application to Wind Turbine Simulations, University of Iowa, PhD thesis(2014). [27] Carrión M., Steijl R., Woodgate M., Barakos G.N., Munduate X., Gomez-Iradi S., Aeroelastic Analysis of Wind Turbines Using a Tightly Coupled CFD–CSD Method, Journal of Fluid and Structure (2014). | ||
آمار تعداد مشاهده مقاله: 1,598 تعداد دریافت فایل اصل مقاله: 1,480 |