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Abstract

In this paper, we present an edge detection method based on wavelet transform and
Hessian matrix of image at each pixel. Many methods which based on wavelet
transform, use wavelet transform to approximate the gradient of image and detect edges
by searching the modulus maximum of gradient vectors. In our scheme, we use wavelet
transform to approximate Hessian matrix of image at each pixel, too. The main idea of
our methods lies in the fact that, the direction of largest surface curvature is the
eigenvector of the Hessian matrix corresponding to the largest absolute eigenvalue.
Infact, we use the Hessian matrix's information to increase or decrease the effect of

wavelet transform in and directions.
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Introduction

The images are two-dimensional arrays of intensity
values with locally varying statistics. However, images
have different features which are separated by edges.
The edges which have different structures are often the
most important assignments in image segmentation [2].
Moreover, edge detection plays an essential role in
computer and machine vision [7,18,16], image analysis,
pattern recognation, [1], and material processing in the
medical imaging, [5,15]. The process of edge detection
is based on the hypothesis that the edge is a point where
an image has sharp intensity transition [4,14].

Many edge detectors such as Sobel, Roberts, Prewitt,
Robinson, Kirsch, Frei-Chen and Marr-Hildreth use the
local gradient of the image, [14]. They detect edges by
convolving image with a weighted matrix which is
called local gradient mask. However, the large class of

edge detectors look up points where the gradient of the
image has local maximum. Canny's edge detector is a
multiscale version of this approach, [3]. Wheihong Guo
and Ming-Jun Lai in [6] peresent a new wavelet frame
to detecte edges. In [8], auther proposes an edge
detector based on the Green function.

In recent decades, wavelet analysis fostered as a
useful research method. The proposed method is based
on multiscale wavelet which is one of the new edge
detection methods [11]. The traditional edge detectors
based on wavelet transform implement the wavelet
multiresolution for image firstly, and then pull out the
low-frequency sub-image for further process. In the
low-frequency sub-image some details and noise will be
removed. So, some noise which may be considered as
edges are cancelled [3].

In this paper we present a new algorithm based on
wavelet and Hessian matrix that may be approximated
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by wavelet transform. The paper is organized as
follows. Section 2, contains a brief summary of wavelet
transform. In section 3, a brief exposition of edge
detection and our method is stated. In section 4, we
provided several examples for our proposed method and
a traditional method.

Materials and Methods

Wavelet transform

The wavelet transform is a decomposition of signal
as a combination of a set of basis functions. These
functions are obtained by means of dilation a and
translation b of a original wavelet function ¥ (x). In
other word, the continuous wavelet transform of a signal
f(x) is defined as

Waf () = =17 F©).9 (5F)dt,a >0 (1)

However, when the dilation factor a grows up, the
basis function becomes broader. In this way, the
corresponding coefficients give informations about
lower frequency components of the signal and vice
versa. So, the time resolution at high frequencies is
higher than at low frequencies.

If the original wavelet ¥(x) is derivative of a
smoothing function 6(x), it can be shown [11,12] that
the wavelet transform of a signal f(x) at scale a is

Waf () = —a () 12 F(©8a(x - ), @

where 6,(x) = \/%0(2) is the scaled version of the

smoothing function. The wavelet transform at scale a is
correspondence to the derivative of the smoothed signal
(which is convolved with @). Therefore, the zero-
crossings of the wavelet transform correspond to the
local maxima or minima of the smoothed signal at
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different scales, and the maximum absolute values of
the wavelet transform are associated with maximum
stops in the filtered signal.

The function 8(x) is called a smoothing function if
its integral is equal to 1 and it tends to zero at infinity.
For example, a Gaussian function can be a smoothing
function. If one defines ¥ (x) as the first derivative of

6(x):
Y =

do(x)
Tax 3)

then the function ¥ (x) can be considered as wavelet,
because

[27 w@dz = o. “

Figure 1, shows the smoothing function 6(x) and its
first derivative P (x).

One kind of wavelet systems is biorthogonal wavelet
system. Biorthogonal wavelet system has important role
in signal and image processing. B-spline wavelet family
is one kind of this system. B-spline scaling function are
produced by convolving Haar function with itself, [9]. If
we write Haar function ¢(x) as

1 0<5x<1,
b(x) =B'(x) = {0 otherwise,
(%)
then
X 0<x<1,
B?(x) =B'+*B'(x) =2 —x 1<x<2, 6)
0 otherwise.

In general case, the B-spline of order n defined by
following convolotion,

B"(x) = B" '+ BY(x) =B+ B+ -+ B} (). (7)

n times

B-spline wavelets have a fantastic property which
allows us to use them in our method. According to [19],
we can say the Gaussian function may be an
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Figure 1. Gaussian function (left) and its first derivative (right)
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Figure 2. Gaussian (dotted line) and spline (line) (left for n=1 and right for n=3)

approximation of B-spline function and their wavelet.
The following theorem wuses the well-knwon
convolution property of B-spline to show that these
functions converge to Gaussian as the order of the
spline n tends to infinity.

Theorem 2.1 [9]. The B-spline function B™(x) and
its fourier transform B™(w) both converge to Gaussian
as n tends to infinity:

' ’”_“ Be it R _%

iﬂ( 12'B ( 12 x)>_\/ﬁ3Xp( 2)’
. sn, @ [n+l w?
i‘l&(B”(; 7)>=EXP(—7)-

©)
Moreover B (——m)

Ly (=00, +00) for p € [1,+00), and n1_+213n<

®)

w?, .
converge to exp(— 7) in
n+1 )
—x

12

L in Lg(—0,+o0) for q €

?[2
converge to exp(— 7)E

[2, +00) as n goes to infinity.
Proof. See [19].

For example, the B-spline basis functions of order
n =1 (piecwise linear), and n = 3 (cubic spline) are
shown in Figure 2. The dotted lines are the Gaussian
approximations derived from the previous theorem. As
we can see from the proposed figure, the quality of the
approximation is pretty good forn = 1 and n = 3.

Now one can approximate the wavelet transform of a
signal by convolving the signal with B-spline wavelet,
i.e. the wavelet transform of f(x) at the scale a and
position x, wghich computed with respect to the wavelet
P (x), may be defined by

Wof () = f %o (x), (10)

where 1, can be considered as a scaled version of B-
spline wavelet. Moreover, theorem 2.1 shows the
convolotion between signal f(x) and B-spline scaling
function, B™(x), produces the smoothed signal.

When the signal is two-dimensional, like an image, it
is suitable to represent the signal components by two-
dimensional wavelets and a two-dimensional scaling
function or smoothing function. For any scaling
function ¢ with its corresponding wavelet 1, there are

Figure 3. Image decomposition based on wavelet transform
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three different two-dimensional wavelets and one two-
dimensional scaling function wusing tensor product
approach. We write the two-dimensional wavelets as

P (xy) =Y. o), an

W2 (x,y) = 6. Y(B), (12)

V() =Y ). PO) (13)
and the two-dimensional scaling function as

¢(x,y) = ¢(x). d(¥). (14)

Based on image decomposition model of wavelet
transform, the original image can be divided into four
areas. The area LL which is obtained by convolution
between the image and ¢&(x,y). This area shows the
smoothing image of the original image which contains
the most information of the original image. LH and HL
that preserves the vertical and horizontal edge details
respectively, can be computed by convolving the image
with Y!(x,y) and ¥P2(x,y). In the last, one can
convolve the image with ¥3(x,y) to compute HH who
preserves the diagonal details which are influenced by
noise greatly. The result LL can be decomposed as
needed. The process for peppers image is shown in
Figure 3.

Edge detection

This section explains how we can use wavelet
transform for detecting edges in an image. Most
multiscale edge detectors smooth the signal at various
scales and detect abrupt variation points from their first-
or second-derivative. The zero-crossing of the second
derivative corresponds to the extrema of the first
derivative and the inflection points of the smoothed
signal, [10,11]. In section 2, we have showed the
smoothed signal could be obtained by convolving signal
with B-spline scaling function. Moreover, we have used
B-spline wavelets for computing wavelet transform of
signal.

In two-dimensional case, we need to define two-
dimensional smoothing and wavelet functions.
However, 6(x,y) is a smoothing function if converges
to O at infinity and its integral over x and y is equal to 1.
Moreover, we can define two wavelet functions
Y*(x,y) and Y? (x, y) as following

x _ 06(x.y) y _ 06(x.y)
Y0 y) = 2 andy (x,y) = 222,

(15)

Now, the image f(x,y) can be smoothed by a
convolution with 8(x,y). Then, according to (3), (4)
and theorem 2.1, we can obtain the wavelet transform of
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smoothed image in the x and y directions by
convolution with ! (x, y) and 1?2 (x, y) respectively,

Wif (e, y) = f* Pt y), (16)
W2f(x,y) = f* P2 (%, p). (17)

In other hand, if we denote the smoothed image by
9(x,y), ie.

9x,y) =f*6(x,y), (18)
then the gradient vector of g(x,y) is

Va(xy) = (22063, (x,y) (19)
g ’ y ox ’ ’ ay ’ .

Now, we can approximate the gradient vector,
Vg(x,y), by convolving the original image f(x,y) with
Y!(x,y) and P2 (x,y) as following

2 (x,y) == (f *0(y)) = f + 22 (x,y) = f *
PH(x, ), (20)

¢} 4 00
@M = (Fr0y) =f* (xy)=f+

Y, y). 1)
So, by equations (16) and (17) we have
Vg(x,y) = (W'f(x,y), W2f(x,y)). (22)

If we define the modulus of the gradient vector as the
following

Mf(x,y) = W f ()2 + W (x, )2,

(23)

then we can detect edges of image f (x,y) by finding
modulus maximum points, [12]. Since the edge points
are those pixels where the image has sharp intensity
variatoin, the information about the direct of this
variation is helpful. In geometric concept, the Hessian
matrix could be considered as a tool for finding the
maximum variation direction, [13,17].

The matrix of second order derivatives of an image at
each pixel is called Hessian matrix H. In other word, if
an image is supposed as a two variable function f (x, y),
then H is

v
0x2 0x dy

H=| o (24)
dydx dy?
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Since taking derivatives of discrete image is an ill-
posed operation, we use the wavelet transform of image
to approximate the Hessian matrix H. In other word, one
can compute the Hessian matrix's elements by using
equations (11), (12), (13), (20) and (21).

The eigenvector ¥ corresponding to the Hessian
matrix's largest absolute eigenvalue A demonstrates the
direction of largest surface curvature. So, we can use
this dirction to modify the modulus of gradient vector.
Suppose ¥ = (v;,v,), we compute the modulus of the
gradient vector by the following formula:

Mf(x,y) = [vr. W (2, 9) 2 + [v2. W2 (x, ) 2. (25)

Infact, we use the Hessian matrix's information to
increase or decrease the effect of wavelet transform in x
and y directions. In next section some examples which
show the effeciency of our method will be stated.

Results

This section consists of experimental results for a set
of standard images. In order to verify the efficiency and
accuracy of the proposed algorithm, some images are

used as experimental subjects. Unlike other common
signal-processing applications, such as compression,
resizing/interpolation, and filtering (in some cases),
there is no ground truth (GT) of the actual edge
locations typically known, so comparing the achieved
output to an “ideal” is impossible. Thus, one must create
the ground truth egdes outlined by hand. In this case, the
GT is known, Pratt’s figure of merit (FOM) [20] can be
used to compare the edge detection output to the actual
edge map. It indicates not only the detected correct edge
pixels but also it can determine the accuracy of location
with a distance parameter. Figure 4 shows results of the
persented method in comparing with Sobel, Prewitt and
Canny edge detection methods [4]. The FOM factor of
each method is computed for quantitative comparison.

Next, we compare those edge detectors on natural
images with more details (Figures 5-8). No ground truth
edges are available for quantitative comparison, but
visual comparison shows the efficiency of our method.

As we can see from these results, the edges are
detected by our method is thinner than those are found
by canny method. Moreover, the proposed method
detected more correct edge pixels in copmaring with
Sobel and Prewitt edge detectors.
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(d) Prewitt edges, FOM= 0.8939

(e) Canny edges, FOM=0. 8574

(f) proposed edges, FOM=0.8618

Figure 4. Quantitative and visual comparsion of four edge detection methods. Next, we compare those edge detectors on
natural images with more details (Figures 5-8). No ground truth edges are available for quantitative comparison, but visual

comparison shows the efficiency of our method.
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Figure 6. (a) Original Image (b) Prewitt method (c) Sobel method (d) Canny method (e) proposed method

168



Edge Detection with Hessian Matrix Property Based on ...

@ ' ©

Figure 8. (a) Original Image (b) Prewitt method (c) Sobel method (d) Canny method (e) proposed method
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Discussion

In this paper, we proposed an edge detector which
obtained by combining wavelet transform based edge
detector and Hessian matrix property of images. In fact,
we approximated Hessian matrix by wavelet transform.
As the experimental results show our algorithm reliable
than the traditional ones. The edges of five images were
detected to show the efficiency of our method.
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