تعداد نشریات | 161 |
تعداد شمارهها | 6,486 |
تعداد مقالات | 70,061 |
تعداد مشاهده مقاله | 123,043,176 |
تعداد دریافت فایل اصل مقاله | 96,277,485 |
ارتقای روش MOLA با توجه به معیارهای سیمای سرزمین و بهرهگیری از الگوریتم ژنتیک | ||
مجله علمی " آمایش سرزمین " | ||
مقاله 2، دوره 7، شماره 1، فروردین 1394، صفحه 29-48 اصل مقاله (902.58 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jtcp.2015.54780 | ||
نویسندگان | ||
حمیدرضا کامیاب* 1؛ عبدالرسول سلمان ماهینی2؛ محمد شهرآئینی3 | ||
1دانشجوی دکتری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران | ||
2دانشیار، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران | ||
3استادیار، دانشکدة فنی و مهندسی، دانشگاه گلستان، ایران | ||
چکیده | ||
در فرایند اختصاص مکانی کاربریها به یک پهنه، بهطور معمول میان کاربریها رقابت وجود دارد. برای حل این رقابت، دو رویکرد تخصیص زمین به چند کاربری (MOLA) و الگوریتم ژنتیک (GA) برای شهرستان گرگان بهکار گرفته شدند. رویکرد MOLA بر اساس تناسب و روش نزدیکی به نقطة مطلوب عمل میکند و برای GA، با بهکارگیری لایة تناسب و شاخص پیوستگی (Cohesion Index) کاربری تخصیص میشود. جهت بهبود رویکرد MOLA، لایة نهایی به عنوان جمعیت اولیه در GA استفاده شد. همچنین، با تعریف شاخص پیوستگی به عنوان معیار سیمای سرزمین، تلاش شد لکههای ایجادشده شکل منسجمتری داشته باشند، که این ویژگی در رویکرد MOLA غایب است. نتایج نشان داد بهکارگیری GA بر اساس خروجی رویکرد MOLA در بهبود قابلیت این رویکرد از نظر معیارهای سیمای سرزمین تأثیری بسزا دارد. اگرچه واردکردن معیارهای سیمای سرزمین باعث ازدسترفتن بخشی از تناسب برای کاربریها میشود، با متوازنکردن تناسب و شاخص سیمای سرزمین در GA میتوان حد متعادلی از آنها را لحاظ کرد. لایة ایجادشده توسط GA از لحاظ معیارهای سیمای سرزمین و تناسب، قابلیت بهکاریگری ترکیبی از رویکردهای مختلف را در آمایش برای رسیدن به راهحل بهینه نشان داد. | ||
کلیدواژهها | ||
الگوریتم ژنتیک؛ تخصیص سرزمین به چندکاربری؛ تعارض مکانی؛ شاخص پیوستگی | ||
عنوان مقاله [English] | ||
A Genetic Algorithm Enhancement of MOLA Approach Using Landscape Metrics | ||
نویسندگان [English] | ||
Hamidreza Kamyab1؛ Abdolrassoul Salman Mahiny2؛ Mohammad Shahraini3 | ||
1PhD Student, Gorgan University of Agricultural Science & Natural Resource, Gorgan, Iran | ||
2Associate Professor, Gorgan University of Agricultural Science & Natural Resource, Gorgan, Iran | ||
3Assistant Professor, Engineering & Technological Collage, University of Golestan, Iran | ||
چکیده [English] | ||
There is competition between land uses in spatial land use allocation. In this research two approaches including Multi Objective Land Allocation (MOLA) and optimization with Genetic Algorithm (GA) were used for conflict resolution. The MOLA approach is based on suitability and proximity to ideal point whereas in GA, a suitability layer together with a cohesion index was used for land use allocation. The output from MOLA application was fed into the GA approach as the initial population and contiguity index as a landscape metric was used in the process to improve the result. With inclusion of contiguity in the GA approach which is absent in MOLA, and has no precedence in Iran, the final patches in the land use pattern were compacter and better shaped. Results showed GA application using MOLA output improves landscape metrics specifications in the final land use plan. However, including landscape metrics compromises suitability for land use, but there is possibility of balancing suitability and landscape indices in the GA application process. The final layer created through GA showed capability of considering suitability and landscape metrics simultaneously in land use planning towards achieving an optimal solution. | ||
کلیدواژهها [English] | ||
Contiguity Index, Genetic Algorithm, Spatial Conflict, Multi objective land allocation | ||
مراجع | ||
1. سلمان ماهینی، عبدالرسول (1392). «طرح آمایش استان گلستان». گزارش فاز اول، استانداری گلستان. 2. سلمان ماهینی، عبدالرسول؛ کامیاب، حمیدرضا (1390). سنجش از دور و سامانههای اطلاعات جغرافیایی با نرمافزار ایدریسی. چاپ دوم، تهران، انتشارات مهر مهدیس. 3. شایگان، مهران؛ علیمحمدی، عباس؛ منصوریان، علی (1391). «بهینهسازی چندهدفة تخصیص کاربری اراضی با استفاده از الگوریتم NSGA-II»، فصلنامة سنجش از دور و GIS ایران، سال چهارم، شمارة دوم، صفحات 18-1. 4. Aerts, Jeroen; Heuvelin, Gerard (2002). "Using simulated annealing for resource allocation". International Journal of Geographical Information Science,16(6), 571-587.
5. Aerts, Jeroen; Eisinger, Erwin; Heuvelink, Gerard. B. M; Stewart, Theodor (2003). "Using linear integer programming for multi-site land-use allocation". Geographical Analysis, 35(2), 148–169.
6. Aerts, Jeroen; Van Herwijnen, Marjan; Janssen, Ron; Stewart, Theodor. J. (2005). "Evaluating spatial design techniques for solving land-use allocation problems". Journal ofEnvironmental Planning and Management, 48(1), 121–142.
7. Bettinger, Pete; Graetz, David; Boston, Kevin; Sessions, John;Chung, Woodam (2002). "Eight heuristic planning techniques applied to three increasingly difficult wildlife planning problems". Silva Fennica, 36(2), 561–584.
8. Cao, Kia; Huang, Bo;, Wang Shawen; Lin, Hui. "Sustainable land use optimization using Boundary-based Fast Genetic Algorithm", Computers, Environment and Urban Systems, 36, 257-269.
9. Cao, Kia; Huang, Bo; Zhao, Qing; Wang, Shengxiao, (2009). "Land use allocation optimization towards sustainable development based on genetic algorithm". In Geoinformatics, 2009 17th international Conference. Fairfax, USA. 1–5.
10. Cao, Kia., Batty, Michael., Huang, Bo., Liu, Yan., Yu, Le, and Jiongfeng, Chen (2011). " Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II, "International Journal of Geographical Information Science, 1-21.
11. Carver, Stephen. J. (1991). "Integrating multi-criteria evaluation with geographical information systems". International Journal of Geographical Information Science, 5(3), 321-339.
12. Duh, Jiunn-Der; Brown, Daniel. G. (2007). "Knowledge-informed pareto simulated annealing for multi-objective spatial allocation". Computers, Environment and UrbanSystems, 31, 235–281.
13. Feng, Cheng-Min; Lin, Jen-Jia (1999). "Using a genetic algorithm to generate alternative sketch maps for urban planning". Computers, Environment and Urban Systems, 23, 91–108.
14. Goldberg, David E. (1989).Genetic algorithms in search, optimization, and machine learning. Boston, MA: Addison-Wesley Longman.
15. Holland, John-Henry (1975).Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor, MI: University of Michigan Press.
16. Holzka¨mper, Annelie; Lausch, Angela; Seppelt, Ralf (2006). "Optimizing landscape configuration to enhance habitat suitability for species with contrasting habitat requirements". Ecological Modelling, 198, 277-292.
17. Huston Michel(2006). The Need for Science and Technology in Land Management, Online Book: The International Development Research Centre. http://www.idrc.ca/en/ev-29587-201-1-DO_TOPIC.html (Last Visit: 08.2014).
18. Janssen, Ron; Van Herwijnen, Marjan; Stewart, Theodor. J.; Aerts, Jeroen. C. J. H. (2008). "Multi objective decision support for land-use planning. Environment and Planning " B: Planningand Design, 35, 740–756.
19. Liu, Xiaoping;, Ou, Jinpei; Ai, Bin (2013). "Combining system dynamics and hybrid particle swarm optimization for land use allocation", Ecological Modeling, 257, 11-24.
20. Matthews, K. B.; Buchan, K.;Sibbald, A. R.; Craw, Susan (2006). "Combining deliberative and computer-based methods for multi-objective land-use planning". Agricultural Systems, 87, 18–37.
21. McGarigal, Kewin; Cushman, Sam. A.; Neel, Maile. C.; Ene, Eduard (2002). "FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps". University of Massachusetts, Amherst. Available from: <www.umass.edu/landeco/research/fragstats/fragstats.html> (Last Visit: 09.2014)
22. Michalewicz, Zbigniew (1996). Genetic algorithms+data structures=evolution programs. Berlin, Springer.
23. Mitchell, Melanie; Crutchfield, James P.; Hraber, Peter T. (1994). "Evolving cellular automata to perform computations: Mechanisms and impediments". Physica D, 75, 361–391.
24. Porta, Juan; Paraper, Jorge; Doallo, Ramon; Rivera, Francisco; Sante, Ines; Crecente, Rafael (2013). "High performance genetic algorithm for land use planning". Computers, Environment and Urban Systems, 37, 45-58.
25. Stewart, Theodor. J.; Janssen, Ron.; Van Herwijnen, Marjan (2004). "A genetic algorithm approach to multi objective land use planning". Computers & Operations Research, 31, 2293–2313.
| ||
آمار تعداد مشاهده مقاله: 3,002 تعداد دریافت فایل اصل مقاله: 1,539 |