
تعداد نشریات | 162 |
تعداد شمارهها | 6,624 |
تعداد مقالات | 71,554 |
تعداد مشاهده مقاله | 126,927,289 |
تعداد دریافت فایل اصل مقاله | 99,972,740 |
وارون سازی داده های گرانی سنجی با استفاده از پایدارکننده نرم یک | ||
فیزیک زمین و فضا | ||
مقاله 9، دوره 42، شماره 2، شهریور 1395، صفحه 337-348 اصل مقاله (1.15 M) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2016.54816 | ||
نویسندگان | ||
کیلان راست بین1؛ سعید وطن خواه* 2؛ وحید ابراهیم زاده اردستانی3 | ||
1دانشگاه آزاد همدان | ||
2دانشگاه تهران | ||
3استاد گروه فیزیک زمین | ||
چکیده | ||
در این مقاله روشی برای وارونسازی دادههای گرانیسنجی با استفاده از تابع منظمکننده نرم یک ارائه شده است. استفاده از این نوع پایدارکننده مساله وارون را به سمت حصول جوابهایی متراکم و با مرزهای تیز سوق میدهد، بنابراین برای بازسازی ساختارهای زمین-شناسی دارای مرزهای گسسته مناسب است. ارتباط نزدیک بین منظم کننده نرم یک با قید فشردگی بررسی شده است. برای محاسبه جوابی که تابع هدف نرم 1 را کمینه کند، الگوریتمIRLS (Iteratively Reweighted Least Square) به کار میرود. در هر تکرار تابع وزندهی پارامترهای مدل با استفاده از مدل بهدست آمده در تکرار قبل بهنگام میشود. حل عددی مساله وارون با استفاده از تجزیه مقادیر تکین تعمیم یافته انجام پذیرفته است. پارامتر تنظیم کننده تعادل بین دو عبارت تابع هدف با استفاده از روش UPRE (Unbiased Predictive Risk Estimator) محاسبه میشود. برای بررسی کارایی روش، داده مصنوعی تولید شده توسط یک دایک شیبدار استفاده شده است. مدل حاصل از وارونسازی تفکیکپذیری نسبتا بالایی دارد، مرزهای بازسازی شده، شیب و تباین چگالی آن نزدیک به مدل اصلی هستند. نتایج دلالت برآن دارد که استفاده از منظمکننده نرم یک، به همراه سایر قیود مورد نیاز، میتواند روشی موثر برای شناسایی مرزهای توده زیرسطحی باشد. برای نشان دادن کارایی عملی این روش داده گرانی برداشت شده بر روی سد گتوند در جنوب غربی ایران برای مدلسازی مورد استفاده قرار گرفته است. نتایج حاصل از وارونسازی این دادهها انطباق نسبتا خوبی با نتایج حاصل از حفاریهای صورت گرفته در منطقه نشان میدهند. | ||
کلیدواژهها | ||
گرانیسنجی؛ وارونسازی؛ منظمسازی؛ نرم یک؛ پارامتر تنظیم | ||
عنوان مقاله [English] | ||
Gravity data inversion using L1-norm stabilizer | ||
نویسندگان [English] | ||
Saeed Vatankhah2؛ | ||
چکیده [English] | ||
In this paper the inversion of gravity data using L1–norm stabilizer is considered. The inversion is an important step in the interpretation of data. In gravity data inversion, the goal is to estimate density and geometry of the unknown subsurface model from a set of known observation measured on the surface. Commonly, rectangular prisms are used to model the subsurface under the survey area. The unknown density contrasts within each prism are the parameters which should be estimated. The inversion of gravity data is an example of underdetermined and ill-posed problem, i.e. the solution can be non-unique and unstable. Thus, in order to find an acceptable solution regularization should be imposed. Solution is usually obtained by minimizing a global objective function consisting of two terms, data misfit and the regularization term. Data misfit measures how well an obtained model can reproduce the observed data. Usually, it is assumed noise in gravity data is Gaussian, therefore a L2–norm measure of the error between observed and predicted data is well suited for data misfit. There are several choices for a stabilizer, depends on type of features one wants to see from inverted model. A typical choice is a L2 –norm of a low-order differential operator applied to the model, which also a priori information and depth weighting can be incorporated (Li and Oldenburg, 1996). In this case the objective function is quadratic, then minimization of the function results a linear system to be solved. However, the models recovered in this way are characterized by smooth feature which are not always consistent with the real geological structures. There are situations in which the sources are localized and separated by sharp, distinct interfaces. To deal with this problem, during last decades, researchers have proposed a few types of stabilizer. Last and Kubik (1983) presented a compactness criterion for gravity inversion that seeks to minimize the area (or volume in 3D) of the causative body. Portniaguine and Zhdanov (1999) based on this stabilizer, who named the minimum support (MS), developed the minimum gradient support (MGS) stabilizer. For both constraint, the regularization term can be written as the weighted L2–type norm of the model. Therefore, the problem of the minimization of the objective function can be treated same as conventional Tikhonov functional. The only difference is that a priori variable weighting matrix for model parameters incorporated in the regularization term. Thus the Iteratively Reweighted Least Square (IRLS) algorithm is required to solve the problem. Other possibility for stabilizer is the minimization of the L1-norm of model or gradient of model, the latter indicates total variation regularization. The L1–norm stabilizer allows occurrence of large elements in the inverted model among mostly small values. Therefore, it can be used to obtain sharp boundaries and blocky features. Although the L1–norm stabilizer has favorable properties, in reconstruction of sparse models, its numerical implementation in a minimization problem can be difficult because its derivatives with respect to an element is not defined at zero. To overcome this difficulty, in this paper, the L1–norm stabilizer is approximated by a reweighted L2 –norm term. The algorithm is extended to gravity inverse problem, which needs depth weighting and other priori information to be included in the objective function. For estimating the regularization parameter, which balances between two terms of objective function, the Unbiased Predictive Risk Estimator (UPRE) method is used. The solution of the resulting objective functional is found using Generalized Singular Value Decomposition (GSVD), also provides for efficient determination of the regularization parameter at each iteration. Simulation using synthetic data of a dipping dike demonstrates that the method is capable to reconstruct focused image, boundaries and slop of the reconstructed model are close to those of the original model. The method is applied on gravity data acquired over the Gotvand dam site, in the south-west of Iran. The results show rather good agreement with those obtained from the boreholes. | ||
کلیدواژهها [English] | ||
Gravimetry, inversion, Regularization, L1-norm, Regularization parameter | ||
مراجع | ||
وطنخواه، س.، 1393، استفاده از اطلاعات اولیه برای تخمین پارامتر منظمسازی تیخونف و کاربرد آن در وارونسازی خطی دادههای گرانی، رساله دکتری، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران. Ardestani, V. E., 2013, Detecting, delineating and modeling the connected solution cavities in a dam site via microgravity data, Acta Geod. Geophys., 48, 123-138.
Boulanger, O. and Chouteau, M., 2001, Constraint in 3D gravity inversion, Geophysical Prospecting, 49, 265-280.
Farquharson, C. G., 2008, Constructing piecewise-constant models in multidimensional minimum-structure inversion, Geophysics, 73(1), K1-K9.
Farquharson, C. G. and Oldenburg, D. W., 1998, Nonlinear inversion using general measure of data misfit and model structure, Geophys. J. Int., 134, 265-277.
Farquharson, C. G. and Oldenburg, D. W., 2004, A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems, Geophys. J. Int., 156, 411-425.
Hansen, P. C., 2010, Discrete inverse problems: insight and algorithms, SIAM fundamentals of algorithms, Philadelphia.
Last, B. J. and Kubik, K., 1983, Compact gravity inversion, Geophysics, 48, 713-721.
Li, Y. and Oldenburg, D. W., 1996, 3D inversion of magnetic data, Geophysics, 61, 394-408.
Li, Y. and Oldenburg, D. W., 1998, 3D inversion of gravity data, Geophysics, 63, 109-119.
Li, Y. and Oldenburg, D. W., 1999, 3D Inversion of DC resistivity data using an L-curve criterion, 69th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 251-254.
Loke, M., Acworth, I. and Dahlin, T., 2003, A comparison of smooth and blocky inversion methods in 2D electrical imaging survey, Explor. Geophys., 34, 182-187.
Portniaguine, O. and Zhdanov, M. S. 1999, Focusing geophysical inversion images, Geophysics, 64, 874-887.
Vatankhah, S., Ardestani, V. E. and Renaut, R. A., 2014a, Automatic estimation of the regularization parameter in 2-D focusing gravity inversion: application of the method to the Safo manganese mine in northwest of Iran, Journal of Geophysics and Engineering, 11, 045001.
Vatankhah, S., Renaut, R. A. and Ardestani, V. E., 2014b, Regularization parameter estimation for underdetermined problems by the principle with application to 2D focusing gravity inversion, Inverse Problems, 30,085002.
Vatankhah, S., Ardestani, V. E. and Renaut R. A., 2015, Application of the principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion, Geophys. J. Int., 200, 265-277.
Vogel, C. R., 2002, Computational methods for inverse problems, SIAM frontiers in applied mathematics, SIAM, Philadelphia, U.S.A.
Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems, Elsevier, Amsterdam. | ||
آمار تعداد مشاهده مقاله: 3,032 تعداد دریافت فایل اصل مقاله: 1,401 |