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Abstract 

Free vibration analysis of higher-order shear deformation beam resting on one- and two-parameter elastic 

foundation is studied using differential transform method (DTM) as a part of a calculation procedure. First, 

the governing differential equations of beam are derived in a general form considering the shear-free 

boundary conditions (zero shear stress conditions at the top and bottom of a beam). Using DTM the derived 

equations governing beams, followed by higher-order shear deformation model, Timoshenko model and 

Bernoulli-Euler model are transformed to algebraic forms and a set of recurrence formulae is then derived. 

Upon imposing the boundary conditions of the beam at hand, a set of algebraic equations are obtained and 

expressed in matrix form. Finally, the transverse natural frequencies of the beam are calculated through an 

iterative procedure. Several numerical examples have been carried out to demonstrate the competency of 

the present method and the results obtained by DTM are in good agreement with those in the literature. 

Afterward, the free vibration of beams followed up by different models (i.e. Bernoulli-Euler, Timoshenko 

and different higher-order models) are taken into consideration.   

Keywords: differential transform method (DTM), elastic foundation, free vibration, higher-order 

beam theory (HOBT). 

 

1. Introduction 

Many researchers have used classical beam 

theory (CBT) or Bernoulli-Euler beam model 

for beam analysis over the years in both static 

and dynamic analyses [1-5]. In this model, it is 

assumed that the plain sections of the cross 

section remain plain and perpendicular to the 

beam's neutral axis as shown in Figure 1a. 

To overcome restrictions of the CBT 

(neglecting the shear deformation), another 

model widely used by researchers is the 
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Timoshenko beam theory (TBT) in which the 

effects of shear and rotational inertia are taken 

into account [6]. In this theory, the plain 

sections of the cross section remain plain but 

not necessarily perpendicular to the beam's 

neutral axis as shown in Figure 1b. 

However, the problem is the presence of the 

shear correction coefficient,  , which was 

introduced to correct the contradictory shear 

stress distribution over the cross section of the 

beam [7] that does not satisfy shear-free 

boundary conditions [8]. This is because an 

accurate estimation of the shear correction 
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coefficient is quite complex for different cross 

sections. Timoshenko beam model has been 

widely employed to study the behavior of 

beams in both static and dynamic analyses [9-

17]. However, Levinson [18] and Bickford [19] 

presented a shear deformation theory for 

rectangular beams called higher-order beam 

theory (HOBT). Figure 1c schematically shows 

deformation of a Higher-Order beam. 

Levinson's third order shear beam theory meets 

the requirement of the zero shear stress 

conditions at the top and bottom of a beam. As 

reported in [20], by using Levinson’s 

kinematics, Bickford [19] presented a 

variational consistent sixth-order beam theory 

and Reddy [21] developed a variational 

consistent third-order shear plate theory in 

which the plate kinematics are identical to 

those of Levinson [18] and then Wang and 

Wang [22] and Gao and Wang [23] proposed a 

complicated beam theory that was not able to 

properly account for the constraints restriction 

at a clamped end of shear deformable beams. 

Different Higher-Order theories emerging 

gradually over the years have been well 

presented by Bhimaraddi and Chandrashekhara 

[24]. In addition, different Higher-Order 

models have been applied to analyze various 

applications of beam and plate [25- 29]. 

 
Fig. 1.Cross section displacement in different beam 

theories: (a) Beroulli-Euler model; (b) Timoshenko 

model; (c) Higher-Order model 

The problem of a beam on elastic foundation 

is important in civil and mechanical engineering 

fields as it constitutes a practical idealization of 

many problems. Various types of foundation 

models, such as those of Winkler, Pasternak, 

Flinenko-Borodich, Hensity, and Vlasov and 

Leontev have been presented for the analysis of 

structures on elastic foundation. First, Winkler 

[30] proposed a simple model with only one 

parameter but the vertical deformation 

characteristics of the foundation were defined 

by means of continuous, independent, discrete, 

linearly and closely spaced springs which is its  

most important deficiency. To overcome this 

problem, Pasternak [31], Filonenko-Borodich 

[32], Hetenyi [33], Hetenyi [34] and Vlasov and 

Leontev [35] proposed a two parameter 

foundation model in which the effects of the 

interaction between springs and continuity and 

cohesion of the soil are taken into account. In 

the two parameter model, the first parameter is 

the same as in the Winkler model and the 

second one is the stiffness of the shearing layer. 

The importance of the problem is indicated by 

the large number of papers which have appeared 

in the literature about beams on one- and two-

parameter elastic foundations using different 

beam models i.e. Bernoulli-Euler [1,3,4,36, 37], 

Timoshenko [9, 10, 11, 12, 14, 17] and different 

Higher-Order Models [29, 38]. Among them, 

Sayyad [38] used unified shear deformation 

theory to analyze simply supported thick 

isotropic beams and the results of displacement, 

stresses, natural bending and thickness shear 

mode frequencies for the beam were presented 

and discussed critically with those of exact 

solution and other higher order theories. Not all 

problems can be solved by theoretical approach 

because of its complexity. Therefore many 

researchers have used different efficient 

numerical methods to study various structural 

elements resting on elastic foundations [10, 11, 

14, 38]. Differential Transform method is one of 

these numerical methods. 

Differential Transform Method (DTM) is an 

efficient numerical  method for solving 

ordinary and partial differential equations, 

based on Taylor series expansion of the main 

variables and coefficients to derive solutions in 

polynomial form. The concept of one-

dimensional DTM was first proposed and 

applied to solve linear and nonlinear initial 

value problems in electric circuit analysis by 
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Zhao [39]. Using one-dimensional differential 

transform technique, Chen and Ho [40] 

proposed a method to solve eigenvalue 

problems. Other authors applied this method to 

different beam and plate problems [41-47] 

among which were Yalcin et al. [43] who 

derived the governing differential equation of 

circular plate in terms of radial coordinate and 

studied free vibration of circular plates via one-

dimensional DTM.  Semnani et al. [47] 

extended DTM to two-dimensional DTM (2D-

DTM) to investigate free vibration analysis of 

Kirochhof plate.  

In this paper, considering a higher-order 

shear deformation beam, conventional 

Bernoulli-Euler and Timoshenko beam resting 

on one- and two-parameter elastic foundations, 

one-dimensional differential transform method 

(DTM) is employed to derive transverse 

natural frequencies of the beam. First, the 

governing equations of a beam are derived in a 

general form after which by using DTM, the 

derived equations and boundary conditions of 

the beam are transformed to a set of algebraic 

equations and expressed in matrix form. 

Finally, the unknown transverse natural 

frequencies of the beam are calculated through 

an iterative procedure. Several numerical 

examples have been carried out to prove the 

competency of the present method and results 

are discussed for different models. 

2. Structural Model  

Consider a general beam resting on one- and 

two-parameter elastic foundation. The 

geometrical and material properties of the 

considered beam are: the rectangular cross-

sectional area A , second moment of inertia I , 

modulus of elasticity E and mass density  . 

The considered beam is oriented in Cartesian 

co-ordinate  xyz as shown in Figure 2. Also, 

the elastic foundation parameters are Winkler 

elastic foundation parameter wk , and second 

foundation parameter k . In this section, 

considering a general beam, the constitutive 

equations are presented first and then the 

governing differential equations are derived. 

Finally, the derived governing equations are 

reduced for different beam models i.e. 

Bernoulli-Euler, Timoshenko and four Higher-

order models. 

 

 

Fig. 2. A general beam resting on two-parameter elastic foundation (Winkler foundation, wk and Second foundation 

parameter, k ) 

Assuming shear strain xz  has the general 

form 

xz   (1) 

where  is the shear strain at the mid-plane of 

the beam. Taking into account the shear-

traction free boundary condition at the top and 

bottom surfaces of the beam, the trial 

distribution of the transverse shear strain  

should satisfy the required boundary conditions 

i.e. 

   / 2 / 2 0h h     (2) 

Substituting Equation (1) into the following 

strain compatibility equation for infinitesimal 

strains, we obtain: 

xz
x

W

z

U











 

(3) 
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Afterwards, integrating both sides with 

respect to z (the coordinate along the thickness 

of the beam), the longitudinal displacement 

function, U could be derived as: 

W
U z

x
 


 


 (4) 

where 

dz    (5) 

Introducing the rotation angle of cross-

section perpendicular to the mid-plane as 

/U z    at 0z  , then substituting into 

Equation (3), we obtain: 

W

x
 


 


 (6) 

Thus the normal strain is derived as: 

 
2

2xx

U W
z

x x x


  

  
   
  

 (7) 

Ignoring body forces, the equations of 

motion are [48]: 

2

2

xz zz W

x z t

 


  
 

  
 (8) 

2

2

xx xz U

x z t

 


  
 

  
 (9) 

where   is mass density of the beam 

and 0zz  . 

Integrating Equation (8) with respect to 

z over the beam cross-section, we obtain: 

2 2

2 2w

V W W
q k W k A

x x t
 

  
   

  
 (10) 

where q  is applied distributed load on the 

beam. 

Afterward, multiplying both sides of 

Equation (9) by z and substituting U from 

Equation (4), then integrating with respect to z  

over the beam cross-section, it can be derived: 

 
2 3

1 12 2
1

M W
V

x t x t


  

  
   

   
 (11) 

In Equations (10) and (11), V , the shear 

force resultant, M , the bending moment, 

1 and 2I  are defined as: 

/2 /2

/2 /2

;

h h

xz xx

h h

V bdz M zbdz 
 

    (12) 

/2 /2

2

1 2

/2 /2

;

h h

h h

zbdz I z bdz 
 

    (13) 

Also, strain-stress relations can be 

expressed as (Hook's law):   

;xx xx xz XZE G      (14) 

Substituting Equations (1), (6), (7) and (14) 

into (12), we obtain: 

2 2

W h h
V Gb

x
  

       
         

      
 (15) 

 
2

1 1 2 2

W
M E I

x x


 
  

   
  

 (16) 

where b  is width of the beam. 

Finally, substituting V and M from 

Equations (15) and (16) into Equations (10) 

and (11), the governing differential equations 

can be derived in terms of W  and   as [49, 

50]. 

2

2

2

2

2 2

2 2

w

h h W
Gb k

x

h h
Gb

x

W
k W q A

t

 


 



      
        

     

     
      

    


 



 (17) 

 

 

3 2

1 2 13 2

2 3

1 12 2

2 2

2 2

1

W
E I E

x x

h h W
Gb

x

h h
Gb

W

x x t


 

 

  


  

 
  

 

     
      

    

    
      

    

 
 

  

 (18) 

The function of   for Bernoulli-Euler, 

Timoshenko and different higher-order beam 

models is shown in Table 1 in which Model 1 

is a parabolic shear deformation beam model 

of Reddy [21], Model 2 is a sinusoidal shear 

deformation beam model of Touratier [51], 

Model 3 is an exponential shear deformation 
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beam model of Soldatos [52] and Model 4 is a 

new higher-order shear deformation model of 

Aydogdu [53]. Substituting corresponding 

 from Table 1 into Equations (8) and (9), the 

governing differential equation of any theory 

can be obtained.                                                                         

Table 1. Function of  for different models 

Model Function 

CBT 0  

TBT
 z  

Model 1  22 3/41 hzz   

Model 2  hz
h

/sin 


   

Model 3  2/2 hzze  

Model 4 
 
 ln

/2
2

hz

z



 with 3  

3. Differential Transform Method 

At this stage, the basic definitions and 

theorems of One-Dimensional DTM are given 

according to Arikoglu et al. [54]. 

0

1 ( )
( )

!

k

x xk

W x
W k

k x






 (19) 

where ( )W x is the original function and ( )W k is 

the transformed function that is called T-

function. Also, the inverse differential 

transform of ( )W k is defined as: 

 0

0

( ) ( )

k

k

W x x x W k




   (20) 

It is concluded from Equations (19) and 

(20) that 

 
0

0

0

( )
( )

!

k k

x xk
k

x x W x
W x

k x







 



  (21) 

Since infinite terms are not attainable in 

practice, in real applications the function 

( )W x is expressed by a finite series. Thus, 

Equation (21) can be rewritten  as: 

 

0

0

0

( )
( )

!

k k

k
k x x

x x W x
W x

k x



 

 



  (22) 

where   determines the exactness of the 

results. Appropriate value of  for each 

problem could be determined by trial and error. 

Some fundamental operations of the one-

dimensional differential transform to be 

applied later in this text are shown below 

through Theorems [1-4]: 

Theorem [1]   If ( ) ( )w x u x , then 

( ) ( )W k U k  .  is a constant. 

Theorem [2]   If  ( ) ( ) ( )w x u x v x  , then 

( ) ( ) ( )W k U k V k  . 

Theorem [3]   If  ( ) ( )r rw x u x x   , then 

( ) ( )! ! ( )W k k r k U k r   . 

Theorem [4]   If ( ) ( ) ( )w x u x v x , then 

 
0

( ) ( )
k

r

W k U r V k r


  . 

4. Application of Differential Transform 

Method 

In general, the following steps are carried out 

to solve one or a set of PDEs with boundary 

conditions via DTM. 

Step 1. Using the concept of DTM, the 

governing differential equation(s) of the 

problem is transformed to algebraic equation(s) 

and a set of recurrence formula is obtained 

which presents all Differential Transform 

terms (DT) in terms of a minimum of DT terms 

namely, Fundamental DT terms (FDT). 

Step 2. The boundary conditions of the 

problem are transformed to a set of algebraic 

equations by using DTM. 

Step 3. Using recurrence formula(s) 

obtained in  Step 1, this set of algebraic 

equations is presented in terms of Fundamental 

DT terms. Afterward, these equations can be 

represented in matrix form. 

Step 4.Through an iterative procedure, the 

natural frequencies of the problem in hand are 

derived.  

In what follows, DTM is employed for a 

beam resting on one- and two-parameter elastic 

foundations considering different beam 

models, i.e. Bernoulli-Euler, Timoshenko and 

different higher-order models, respectively, 

and how to derive the recurrence formula for 

any model is shown.  

4.1. Recurrence Formula for Bernoulli-

Euler beam model 

Due to neglecting shear strains in this theory; 

shear force resultant cannot be defined. 

Consequently, V is eliminated from equilibrium 

equations. In order to achieve this purpose, one 
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can differentiate Equation (11) and then adding 

it to Equation (10) results in the following: 

 

2 2 2

2 2 2

4 3

1 12 2 2
1

w

M W W
k W k q A

x x t

W

x t x t

 


  

  
    

  

 
 

   

 (23) 

Substituting M from Equation (8) into 

Equation (15), the governing differential 

equation is derived in terms of W  and   as 

follows:  

 

 

4 3

1 14 3

2 2 4

12 2 2 2

3

1 2

1

1

w

W
E E k W

x x

W W W
k q A

x t x t

x t




 

  




 
   

 

  
   

   




 

 (24) 

Substituting 0   into Equation (24), the 

governing differential equation is reduced to 

4 2 2 4

4 2 2 2 2w

W W W W
EI k W k A

x x t x t
  

   
    

    
 (25) 

In order to carry out a free vibration 

analysis, q  is set to zero and by assuming a 

harmonic variation of W  with circular 

frequency  , 

( , ) ( ) i tW x t W x e   (26) 

and substituting Equation (26) into Equation 

(25), the governing equation becomes 

   
4 2

2 2

4 2
0w

W W
EI A k W k

x x
  

 
     

 
 (27) 

Using DTM, the obtained governing 

differential equation can be transformed into 

the following algebraic equation 

    

    

 

4

2 2

2

4 3 2 1

2

1 0 , 0,1,2,...

i

w i

i

EI i i i i W

A k W k i

i W i

  





    

    

  

 (28) 

The recursive formula readily can be 

derived as follows  

      

    

2 2

2

4

2 1

4 3 2 1

w i i

i

A k W k i i W
W

EI i i i i

   



    


   
 (29) 

 

4.2. Recurrence Formula for Timoshenko 

beam model 

Substituting z    into Equations (17) and 

(18), the governing differential equations are 

reduced to: 

 
2 2

2 2w

W W
GA k GA k W q A

xx t





  
    

 
 (30) 

2 2

2 2

W
EI GA GA I

xx t

 
 

  
  

 
 (31) 

The Timoshenko beam theory assumes 

constant shear strain and stress over the cross-

section, thus the shear-traction free boundary 

condition at the top and bottom surfaces of the 

beam is violated. Although it does not correct 

this fault, the use of a shear correction factor 

can adjust the solutions to match the static or 

dynamic behavior of the beam [9]. Including 

the shear correction factor, , the governing 

Equations (30) and (31) can be rewritten in the 

form: 

 
2 2

2 2w

W W
GA k GA k W q A

xx t



  

  
    

 
 (32) 

2 2

2 2

W
EI GA GA I

xx t

 
   

  
  

 
 (33) 

In order to carry out a free vibration 

analysis, q is set to zero and a sinusoidal 

variation of W  and   is assumed with circular 

frequency  : 

( , ) ( ) i tW x t W x e   (34) 

( , ) ( ) i tx t x e    (35) 

Substituting Equations (34) and (35) into 

Equations (32) and (33), the governing 

equations become   

   
2

2

2
0w

W
GA k GA A k W

xx



   

 
    


 (36) 

 
2

2

2
0

W
EI GA I GA

xx


    

 
   


 (37) 

Consequently, the DT form of derived 

governing differential equations can be 

expressed as  
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     

 
2 1

2

1 2 1

0

i i

w i

GA k i i W GA i

A k W

  

 

     

  
 (38) 

    
 

2

2 1

1

1 2

1 0 ; 0,1,2,...

i i

i

EI i i I GA

GA i W i

    



 



   

   
 (39) 

Afterwards, the following recurrence 

formulas can be obtained 

   

   

2

1

2

1

1 2

w i i

i

k A W GA i
W

GA k i i

   







  


  
 (40) 

   

  

2

1 1

2

1

1 2

i i

i

GA I GA i W

EI i i

    


 



  


 
 (41) 

4.3. Recurrence Formula for Higher-Order 

beam model 

At this stage, the recursive formula is obtained 

for different Higher-Order beam theories 

named Model 1, 2, 3 and 4. 

 Model 1 

Substituting  2 21 4 / 3z z h   into Eqs. (17) 

and (18), the governing differential equations 

are reduced to:   

2 2 2

2 2 2

2

3
w

W W W
GA k k W q A

xx x x





    
     
   

 (42) 

2 3

2 3

2 3

2 2

1 2
4

5 3

1
4

5

W W
EI GA

xx x

W
I

t x t







    
      

    

  
 

   

 (43) 

Imposing the free vibration conditions i.e. 

0q  and by assuming a sinusoidal variation of 

W and   with circular frequency    

( , ) ( ) i tW x t W x e   (44) 

tiextx  )(),( 
 

(45) 

and substituting Equations (44) and (45) into 

Equations (42) and (43), the governing 

differential equations become 

2 2
2

2 2

2
0

3
w

W W
GA k k W A W

xx x



 

   
     
  

 (46) 

2 3

2 3

2

1 2
4

5 3

1
4 0

5

W W
EI GA

xx x

W
I

x




  

    
      

    

 
  
 

 (47) 

If one differentiates Equation (46) with respect 

to x ,multiply it by    1/ 5 / 2 / 3F EI GA k   

and then add it to Equation (47), after rearranging 

the governing equations take the form 

2

2

2

2 2

3 3

( ) 0w

W
GA k GA

xx

A k W





 

  
   

 

 

 (48) 

2
2

2

2 2

2 4 4 2

3 5 5 3

1 2
( ) 0

5 3
w

GAF EI I GA
x

W
I GA F A k

x


  

   

   
      

   

 
      

 (49) 

Using DTM, the two governing differential 

equations can be transformed to a set of 

algebraic equations as follows 

2

2

1

2
( 1)( 2)

3

2
( 1) ( ) 0

3

i

i w i

GA k i i W

GA i A k W



  





 
    

 

   

 (50) 

2

2

2 2

1

2 4
( 1)( 2)

3 5

4 2

5 3

1 2
( )

5 3

( 1) 0 ; 0,1,2,...

i

i

w

i

GAF EI i i

I GA

I GA F A k

i W i



  

   





 
    

 

 
  

 

 
   

 

  

 (51) 

in which 

1
1

5

2
( )
3

E

F

GA k

 
 
 





 (51-1) 

Therefore, the following recurrence 

formulae can be readily derived 

2

1

2

2
( ) ( 1)

3

2
( 1)( 2)

3

w i i

i

k A W GA i

W

GA k i i

   



  


 

   
 

 (52) 
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  

2 2 2

1

2

2 4 2 1
( ) ( ) ( 1)
3 5 3 5

2 4
1 2

3 5

i w i

i

GA I GA I F k A i W

GAF EI i i

      






 
      

 


 
   

 

 (53) 

 Model 2  

Following the same procedures as in the case 

of Model 1, the two governing differential 

equations of Model 2 by assuming 

 sin /h z h 


  are obtained: 

2 2

2 2

2 2
( ) w

W W
GA k GA k W q A

xx t





 

  
    

 
 (54) 

3 2 2 3

3 3 3 2 3 2 3 2

24 24 2 2 24 24
( 1) ( 1)

W W W
E EI GA GA I EI

xx x t x t

 
 

    

    
      

    
 (55) 

and the two recursive formulae of the free vibration analysis can be obtained 

2

1

2

2
( ) ( 1)

2
( 1)( 2)

w i i

i

k A W GA i

W

GA k i i

  








  


 

   
 

 (56) 

  

2 2 2

13 3

2

3

2 24 24 2
( ) (1 ) ( ) ( 1)

2 24
1 2

i w i

i

GA I I GA F k A i W

GAF EI i i

      
  



 





 
       

 


 
   

 

 (57) 

in which 

3

24
(1 )

; 0,1,2,...
2

( )

E

F i

GA k







 



 (58) 

 Model 3 
Similarly, the two governing differential 

equations can be expressed as follows by 

considering  
2

2 /z h
ze


  for this model  

1 12 2

2 2
2 2

( ) w

W W
e GA k e GA k W q A

xx t





 
  

    
 

 (59) 

1 13 2 2 3

2 2
1 1 1 13 2 2 2

( 1) ( 1)
W W W

E E e GA e GA
xx x t x t

 
     

 
    

      
    

 (60) 

Also, the recursive formulae can be derived as 

1

2 2
1

2 1

2

( ) ( 1)

( 1)( 2)

w i i

i

k A W e GA i
W

e GA k i i

  




 

  


 
   

 

 
(61) 

  

1 1

2 2 22 2
1 1 1

2 1

2
1

( ) (1 ) ( ) ( 1)

1 2

i w i

i

e GA e GA F k A i W

e GAF E i i

      





 



 

 
       

 


 
   

 

 (62) 

in which 
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1

1

2

(1 )
; 0,1,2,...

( )

E
F i

e GA k





 



 
(63) 

and 
2

/2

2 2( / )

1

/2

h

z h

h

z e bdz 



  can be evaluated 

numerically. 

 Model 4 

Similarly, the two differential equations 

governing this model are obtained by imposing 
22( / ) /lnz hz    with 3   as:  

1 12 2

2 ln 2 ln
2 2

( )L L
w

W W
GA k e GA k W q A

xx t
 




 

 
  

    
 

 (64) 

1 13 2 2 3

2 ln 2 ln
1 1 1 13 2 2 2

( 1) ( 1)L L
W W W

E E GA GA
xx x t x t

 
 

       
 

    
      

    
 (65) 

Afterwards, the following recursive formulas are obtained 

1

2 2 ln
1

2 1

2 ln

( ) ( 1)

( 1)( 2)

L
w i i

i

L

k A W GA i
W

GA k i i






   







 

  


 
   

 

 
(66) 

1 1

2 2 22 ln 2 ln
1 1 1

2 1

2 ln
1

(1 ) ( ) ( 1)

( 1)( 2)

L L
i w i

i

L

GA GA F k A i W

GAF E i i

 



         



 

 



 

   
         

   


 
   

 

 (67) 

in which 

1

1

2 ln

(1 )
; 0,1,2,...

L

E
F i

GA k








 



 
(68) 

and 
2

/2

2( / ) / ln

1

/2

h

z h

h

z bdz  



   can be evaluated 

numerically. 

4.4. Derivation of the transverse natural 

frequencies 

At this stage, the boundary conditions of the 

beam are transformed to a set of algebraic 

equations and then, using the obtained 

recurrence formula, these algebraic equations 

can be presented in terms of Fundamental DT 

terms. The transformed boundary conditions 

for different cases of boundary conditions of 

the left and right side of the beam are shown in 

Table 2. There exist four transformed boundary 

conditions for the beam which can be 

presented in matrix form by regarding 

Fundamental DT terms as follows 

0mC FDT
      

 (69) 

where mC and FDT  are called coefficient 

matrix and Fundamental matrix, respectively, 

which include unknown natural frequency 

( ) and Fundamental DT terms 

( , 1,2,3,4)iFDT i  . For non-trivial solution of 

Equation (69), determinant of matrix mC , i.e. 
mC , must be zero. Accordingly, applying an 

iterative procedure, natural frequencies can be 

derived to the desired precision. The 

convergence criterion is 

1m m     (70) 

where the superscript m , implies the number 

of DT terms taken into account and  is a small 

positive value, such as 0.001  . 

5. Numerical Examples 

In this section, several numerical examples are 

carried out to verify the results obtained with 

one-dimensional DTM and the competency of 

the method is demonstrated. First, using 

recurrence formula(s) obtained in section 4 and 

imposing corresponding boundary conditions of 

the beam from Table 2, the coefficient matrix is 

constructed. Then, setting the determinant of the 

mentioned matrix equal to zero, the natural 

frequencies of the beam at hand are calculated 

for different models mentioned in section 4. 

Any case of boundary conditions could be 
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considered for the beam such as: Simply 

supported beam (SS), Clamped-Free beam (CF) 

and Clamped-Simply supported beam (CS). In 

Example 1, a simply supported (SS) beam is 

considered and the first five natural frequencies 

are shown for Timoshenko beam model and 

different Higher-Order models. The obtained 

results are shown in Table 3 and compared with 

those reported in Ruta [13] and Attarnejad et al. 

[14]. For different values of /L h  ( L  and h  

denote the whole length and height of the beam, 

respectively) and different elastic foundation 

parameter i.e. k  and wk , the first transverse 

natural frequencies are calculated for a simply 

supported beam (SS) through Example 2 and the 

results are shown in Table 4. Different theories 

are considered in the Example 2 and it is shown 

that the results obtained by DTM are in good 

agreement with those reported in Matsunaga 

[29]. 

 

Table 2. Properties of differential transform for boundary conditions ( x l  ) 
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Table 3. The first five natural frequencies of Simply Supported (SS) Timoshenko and different Higher-Order beams 

(
11

2.1 10E   Pa,
3

8
G E , 0.3  ,

3
7850

Kg

m
   , 0.4L m , 0.02b m , 0.08h m , 0

w
k k  , 2 3  ) 

Simple Supported 

(SS) 

Frequency number 

1  2  3  4  5 

[13] TBT 6838.8336  23190.827  43443.493  64939.185  86710.889 

[14] TBT 6838.8333  23190.8264  43443.4922  64939.1839  86710.8977 

DTM 

CBT 7368.0740  29472.3330  66312.7189  117889.5010  184203.0784 

TBT 6838.8333  23190.8265  43443.4923  64939.1842  86710.8238 

Model 1 7481.0913  24373.4153  47528.8753  72175.3324  98725.7733 

Model 2 7545.0993  24388.5839  47647.3762  72322.4613  99054.4827 

Model 3 6907.3135  23852.8268  45395.1112  68674.063  92517.9678 

Model 4 6907.3135  23852.8268  45395.1112  68674.063  92517.9678 
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Table 4. The first dimensionless natural frequency of the Simply Supported (SS) beam on elastic foundation for 

different values of  /L h  ( 0.3  ,
11

2.1 10E   ,
2

L A EI   , 5 6  ) 

2L
h
  

k  
 0   1 

w
k  0 10 100 1000  0 10 100 1000 

[29] 

CBT  9.8696 10.3638 14.0502 33.1272  13.9577 14.3115 17.1703 34.5661 

TBT  7.4127 8.0106 12.1084 29.0828  12.0106 12.3836 15.3153 29.9225 

HOBT  7.4664 8.0102 11.282 17.5208  11.2136 11.4721 13.2672 17.663 

Present 

TBT  7.4127 8.0106 12.1084 29.0828  12.0106 12.3836 15.3153 29.9225 

Model 1  8.202 8.7788 12.847 27.1746  12.7546 13.1316 16.1257 27.1746 

Model 2  8.2835 8.8599 12.9354 26.9969  12.8444 13.2227 16.2311 26.9969 

Model 3  7.3799 7.9812 12.0941 26.8188  11.9961 12.3701 15.3083 26.8188 

Model 4  7.3799 7.9812 12.0941 26.8188  11.9961 12.3701 15.3083 26.8188 

10L
h
  

k   0  1 

w
k   0 10 100 1000  0 10 100 1000 

[29] 

CBT  9.8696 10.3638 14.0502 33.1271  13.9577 14.3115 17.1703 34.5661 

TBT  9.7071 10.2057 13.9086 32.9615  13.8162 14.1709 17.0326 34.3963 

HOBT  9.7121 10.2078 13.8941 32.8494  13.8018 14.1548 17.0046 34.2741 

Present 

TBT  9.7074 10.2058 13.909 32.9615  13.8162 14.1708 17.0326 34.3963 

Model 1  10.4547 10.9204 14.4514 33.2375  14.3634 14.7058 17.4886 34.666 

Model 2  10.5427 11.0048 14.5167 33.2716  14.4293 14.7704 17.544 34.6995 

Model 3  9.7043 10.2028 13.9068 32.9607  13.814 14.1686 17.0309 34.3956 

Model 4  9.7043 10.2028 13.9068 32.9607  13.814 14.1686 17.0309 34.3956 

5L
h
  

k   0  1 

w
k  0 10 100 1000 0 10 100 1000 

[29] 

CBT  9.8696 10.3638 14.0502 33.1272  13.9577 14.3115 17.1703 34.5661 

TBT  9.274 9.7848 13.5408 32.5378  13.4473 13.8045 16.6781 33.9613 

HOBT  9.2903 9.7912 13.4726 31.6171  13.3812 13.7307 16.5354 32.9239 

Present 

TBT  9.274 9.7848 13.5408 32.5378  13.4473 13.8045 16.6781 33.9613 

Model 1  10.0325 10.5121 14.1134 32.9487  14.0251 14.3721 17.1824 34.3741 

Model 2  10.1185 10.595 14.1804 33.0002  14.093 14.4389 17.2426 34.4262 

Model 3  9.2631 9.7746 13.5337 32.5363  13.4402 13.7976 16.6727 33.96 

Model 4  9.2631 9.7746 13.5337 32.5363  13.4402 13.7976 16.6727 33.96 

 

6. Conclusion 

In DTM, the number of DT terms chosen to 

expand the unknown functions directly affects 

the accuracy of the results. Figure 3 shows the 

convergence of the first four transverse natural 

frequencies with the number of DT terms for a 

simply supported beam resting on an elastic 

foundation (Model 1). Figure 4 depicts the 

same for Timoshenko beam. As shown in 

Figures 3 and 4, DTM exhibits fast 

convergence in first mode but by increasing the 

mode number, the required DT terms increase 

(10, 20, 30 and 40 required DT terms for first, 

second, third and fourth mode, respectively). 

As a result, it is concluded that the present 

method has the advantage of yielding accurate 

results through a simple iterative procedure 

with fast convergence and little computational 

effort. 
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Fig. 3. Convergence of of the first four dimensionless natural frequencies( ) with the number of DT terms for a 

simply supported beam followed up Timoshenko model  (Dimensionless parameter: 
4

w w
k k L EI , 

2 2
k k L EI   ,  2

L A EI   ) 

 

Fig. 4. Convergence of of the first four dimensionless natural frequencies(  ) with the number of DT terms for a 

simply supported beam followed up Model 1. (Dimensionless parameter: 
4

w w
k k L EI , 

2 2
k k L EI   , 

2
L A EI   ) 

To depict the difference between the first 

natural frequency of different higher-order 

beam and Timoshenko beam with the Winkler 

elastic foundation stiffness model, Figure 5 is 

presented. It can thus be concluded that the 

natural frequencies calculated by employing 

Models 3 and 4 have approximately the same 

values as Timoshenko beam. It seemed Models 

1 and 2 show about 3.29% of error while 

Models 3 and 4, 0.03% error compared with 

the Timoshenko beam results. Consequently, 

using Timoshenko beam theory is 

recommended both economically and accuracy 

in comparison with Models 3 and 4 for free 

vibration analysis of a beam resting on one- 

and two-parameter elastic foundation. 
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Fig. 5. Difference between the first natural frequency of different Higher-Order model and Timoshenko model with 

the Winkler elastic foundation stiffness ( 1k   and / 5L h  , simply supported beam) 

Differential transform method (DTM) was 

employed to solve the free vibration problem 

of a beam resting on one- and two-parameter 

elastic foundations followed up by different 

beam models i.e. Bernoulli-Euler model, 

Timoshenko model and different higher-order 

models (model 1, 2, 3 and 4). First, the 

governing equations of a beam were derived in 

a general form by considering the shear-free 

boundary conditions. Then using DTM, the 

recurrence formulas were obtained from the 

derived governing equations. Finally, imposing 

the boundary conditions of the beam, the 

unknown transverse natural frequencies were 

calculated through an iterative procedure for all 

mentioned models. To verify the results and 

show the competency of the method, several 

numerical examples were carried out and the 

results presented. Based on the results, it was 

concluded that the DTM shows fast 

convergence in the free vibration analysis of 

the beam with higher-order and other models 

mentioned in this study. Also, the results 

showed that Models 3 and 4 produced 

approximately the same results as Timoshenko 

beam model in the free vibration analysis of a 

beam resting on an elastic foundation. 

Finally, the effects of the different higher-order 

beam on mode shapes are shown in Figure 6. 

 

Fig. 6. First normalized mode shapes of different higher order beams as described in Example 1( 1
w

k  , 1k   

and / 5L h  , simply supported beam) 
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