تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,084,679 |
تعداد دریافت فایل اصل مقاله | 97,188,858 |
بررسی تأثیر تلقیح ریزغدۀ سیبزمینی با باکتریهای محرک رشد بر عملکرد و مقدار جذب عناصر غذایی | ||
به زراعی کشاورزی | ||
مقاله 6، دوره 17، شماره 4، دی 1394، صفحه 911-924 اصل مقاله (726.32 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2015.55140 | ||
نویسندگان | ||
فرشید حسنی* 1؛ احمد اصغر زاده2؛ محمدرضا اردکانی3؛ آیدین حمیدی4 | ||
1دانشآموختۀ دکتری، گروه زراعت، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد کرج، کرج، ایران | ||
2استادیار بخش بیولوژی خاک، مؤسسۀ تحقیقات خاک و آب کشور، کرج، ایران | ||
3استاد گروه زراعت، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد کرج، کرج، ایران | ||
4استادیار، بخش تحقیقات کنترل و گواهی بذر، مؤسسۀ تحقیقات ثبت و گواهی بذر و نهال کشور، کرج، ایران | ||
چکیده | ||
بهمنظور بررسی تأثیر باکتریهای محرک رشد بر مقدار جذب عناصر غذایی و افزایش بازده تولید ریزغدۀ سیبزمینی حاصل از کشت بافت، آزمایشی در قالب طرح فاکتوریل با طرح پایۀ کاملاً تصادفی و در چهار تکرار، در گلخانۀ مؤسسۀ تحقیقات ثبت و گواهی بذر و نهال در سال 1391 انجام گرفت. ریزغدههای دو رقم ‘اگریا’ و ‘سانته’ با زادمایۀ 116 و 173 باکتری سودوموناس و نیز دو جنس باکتری باسیلوس (B. subtilisو B. megaterium) بهصورت مجزا و مخلوط با هم مایهزنی شدند. در پایان مرحلۀ پر شدن غده، مقدار عناصر غذایی فسفر، نیتروژن، پتاسیم، آهن، روی و منگنز اندازهگیری شد. ریزغدههای تولیدی در اندازههای مختلف درجهبندی شد و عملکرد کل ریزغدۀ تولیدی در اندازۀ استاندارد تعیین شد. مایهزنی با باکتریها بر تعداد ریزغدۀ تولیدی و جذب عناصر غذایی تأثیر مثبت و معنادار داشت. دو رقم از نظر مقدار جذب عناصر غذایی بهجز پتاسیم و تعداد ریزغدۀ تولیدی در اندازۀ استاندارد اختلاف معنادار نشان دادند. با مقایسۀ میانگین صفات مشخص شد که تیمارهای تلفیقی دو نوع باکتری بیشترین سهم را بر مقدار جذب عناصر غذایی و نیز تعداد ریزغده در اندازۀ استاندارد در قیاس با تیمار شاهد (عدم تلقیح با باکتری) داشت. رقم ‘سانته’ با برتری 48 درصدی، بیشترین تعداد ریزغده را در قیاس با رقم ‘اگریا’ تولید کرد. با توجه به نتایج پژوهش حاضر، تلقیح سیبزمینی با باکتریهای محرک رشد بهصورت مجزا و تلفیقی ضمن تشدید تأثیرات همافزایی از طریق افزایش رشد و توسعۀ ریشه و درنتیجه جذب بهتر عناصر غذایی میتواند سبب افزایش عملکرد و بازده تولید ریزغده شود. | ||
کلیدواژهها | ||
باسیلوس؛ تولید ریزغده؛ جذب عناصر؛ سودوموناس؛ مایهزنی | ||
عنوان مقاله [English] | ||
The impact of potato mini-tuber inoculation with plant growth promoting rhizobacteria on tuber yield and nutrients uptake | ||
نویسندگان [English] | ||
Farshid Hassani1؛ Ahmad Asgharzadeh2؛ Mohammadreza Ardakani3؛ Aidin Hamidi4 | ||
1Graduate Ph.D. Student, Department of Agronomy, Islamic Azad University, Karaj branch, Karaj, IRAN | ||
2Assistant Professor, Department of soil biology, Soil and Water Research Institute (SWRI), Karaj, IRAN | ||
3. Professor, Department of Agronomy, Faculty of Agriculture, Islamic Azad University, Karaj branch, Karaj, IRAN | ||
4Assistant Professor, Department of seed control and certification research, Seed and Plant Certification and Registration Research Institute (SPCRI), Karaj, IRAN | ||
چکیده [English] | ||
This research was conducted to study the effect of PGPR (Plant Growth Promoting Rhizobacteria) on mini-tuber yield and absorption of nutrients in the greenhouse ofSeed and Plant Certification and Registration Research Institute in 2012. Minituber derived from tissue culture of two potato cultivars (‘Agria’ and ‘Sante’) which were inoculated with 116 and 173 strains of Pseudomonas and two species of Bacillus (B. megaterium and B. Subtilis) all along with control treatments as separately and in mixture with each other. A pot experiment was conducted using factorial based on randomized complete design with four replications. After tuber-filling stage nutrient elements percentage was assayed. After harvesting, minitubers were separated and total yield in standard size was determined. Inoculation of PGPRs had a significant effect on yield and nutrient elements. The rate of absorption of nutrients and minituber production of two varieties showed a significant difference. Mean Comparison of traits showed that dual inoculation of two types of bacterial treatments had the most influence on the absorption of nutrients as well as the number minituber in standard size compared to the control (non-inoculated).‘Sante’ cultivarproduced the highest number of minituber compared with cv. ‘Agria’.According to the results, dual and separate inoculation of potatoes with PGPR not only intensify the synergy effects through growth and developments of roots, but also increase the nutrients absorption which cause enhancement of the tuberization and yield. | ||
کلیدواژهها [English] | ||
Bacillus, Elements Absorption, inoculation, Minituber production, Pseudomonas | ||
مراجع | ||
1 . امامی ع (1375) روشهای تجزیۀ گیاه. مؤسسه تحقیقات خاک و آب. سازمان تحقیقات، آموزش و ترویج کشاورزی. وزارت کشاورزی. نشریه شمارّ 982. 99 ص. 2. بینام (1389) آمارنامۀ کشاورزی، معاونت برنامهریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، وزارت جهاد کشاورزی. 1: 66-68. 3 . حسنی ف، درویشی ب و علیپور د (1386) دستورالعمل فنی کنترل و گواهی مزارع بذری سیبزمینی. مؤسسۀ تحقیقات ثبت و گواهی بذر و نهال. کرج. 21 ص. 4 . حسنی ف و رضوانی ع (1387) سیستم کنترل و گواهی مزارع بذری سیبزمینی. اولین همایش ملی علوم و تکنولوژی بذر ایران. گرگان. 18 ص. 5 . علیمددی ا، جهانسوز م ر، بشارتی ح و توکل افشاری ر (1389) ارزیابی تأثیر ریزجانداران حلکنندۀ فسفات، مایکوریزا و پرایمینگ بذر بر گرهزایی در گیاه نخود. پژوهشهای خاک. 24(1): 43-54. 6 . قلاوند ا، حمیدی آ، دهقان شعار م، ملکوتی م ج، اصغرزاده ا و چوگان ر (1385) کاربرد کودهای زیستی (بیولوژیک)، راهبردری بومشناختی برای مدیریت پایدار بوم نظامهای زراعی. مقالات کلیدی نهمین کنگرۀ علوم زراعت و اصلاح نباتات، 7-5 شهریور 1385. پردیس ابوریحان، دانشگاه تهران. 7 . Aliasgharzade N, Neyshabouri MR and Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologiae. 61: 324-328.
8 . Ahmad F and Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiology Research. 163: 173-81.
9 . Biswas JC, Ladha JK, Dazzo FBN, Yanni YG and Rolfe BG (2000) Rhizobial inoculation influence seedling vigor and yield of rice. Agronomy. 92: 880-886.
10 . Cakmakci R, Donmez MF and Erdogan U (2007a) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties and bacterial counts. Turkish Journal of Agriculture and Forestry. 31: 189-199.
11 . Chabot R and Antoun H (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil. 9. Cottenie, A. 1980. Methods of Plant Analysis. In: Soil and Plant Testing. FAO Soils Bulletin. 38: 64-100.
12 . Cong PT, Dung TD, Hien TM, Hien NT, Choudhury ATMA, Kecskes ML and Kennedy IR (2009) Inoculant plant growth-promoting microorganisms enhance utilization of urea-N and grain yield of paddy rice in southern Vietnam. European Journal of Soil Biology. 45: 52-61.
13 . Ekin Z, Faruk O, Murat E and Erdal O (2009) The effect of Bacillus sp. OSU-142 inoculation at various levels of nitrogen fertilization on growth, tuber distribution and yield of potato (Solanum tuberosum L.). African Journal of Biotechnology. 8(18): 4418-4424.
14 . Elkoca E, Kantar F and Sahin F (2008) Influence of nitrogen fixing and phosphate solubilizing bacteria on nodulation, plant growth and yield of chickpea. Journal of Plant Nutrition. 33: 157-171.
15 . Gaur R, Shani N, Kawaljeet BN, Rossi P and Aragno M (2004) Diacetyl phloroglucinol-producing Pseudomonas do not influence AM fungi in wheat rhizosphere. Current Science. 86: 453-457.
16 . Gunasekaran S, Balachandar D and Mohanasundaram K (2004) Studies on synergism between Rhizobium, plant growth promoting rhizobacteria (PGPR) and phosphate solubilizing bacteria in blackgram, in: Biofertilizer technology for rice based cropping system, S. Kannaiyan, K. Kumar and K. Govimdarajan,eds, Scientific Publ. Jodhpur. Pp. 269-273.
17 . Hayat R, Ali S, Amara U, Khalid R and Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology. 60: 98-579.
18 . Khan MS, Zaidi A, Wani PA and Oves M (2008) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters. 7: 1-19.
19 . Khan MS, Zaidi A and Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture: A review. Agronomy. 26: 1-15.
20 . Kloepper JW, Schrorth MN and Miller TD (1980) Effects of Rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopatholgy. 70:1078-1082.
21 . Leben SD, Wadi JA and Easton GD (1987) Effect of Pseudomonas fluorescens on potato plant growth and control of Verticillium dahliae. Phytopathology. 77: 1592-1595.
22 . Neilands JB (1981) Iron absorption and transport in microorganisms. Annual Review of Nutrition. 1: 27-46.
23 . Prasad H and Chandra R (2003) Growth pattern of urdbean Rhizobium sp. with PSB and PGPR in consortia. Journal of the Indian Society of Soil Science. 51: 76-78.
24 . Probanza A, Lucas Garcia JA, Ruiz Palomino M, Ramos B and Gutierrez Manero FJ (2002) Pinus pinea L. Seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology. 20: 75-84.
25 . Puente ME, Bashan Y, Li CY and Lebsky VK ( 2004a) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biology. 6: 629-642.
26 . Puente ME, Li CY and Bashan Y (2004b) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. Ⅱ. Growth promotion of cactus seedlings. Plant Biology. 6: 643-650.
27 . Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology. 28: 897-906.
28 . Serianth J, Bagyaraj DJ and Satyanarayana BN (2003) Enhanced growth and nutrition of micropropagated Ficus benjamina to Glomus mosseae co-inoculated with Trichoderma harziarum and Bacillus coagulans. World Journal of Microbiolog and Biotechnology. 19: 69-72.
29 . Shaharoona B, Arshad M, Zahir ZA and Khalid A (2006) Performance of Pseudomonas ssp. Containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry. 38: 2971-2975.
30 . Sharma A, Johri BN, Sharma AK and Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. Strain GPR(3) influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry. 35: 887-894.
31 . Suneja S, Lakshminarayana K and Gupta PP (1994) Role of Azotobacter chroococcum siderophores in control of bacterial rot and Schlrotinia rot of mustard. Indian Journal of Mycology and Plant Pathology. 24: 202-205.
32 . Verma JP, Yadav J and Tiwari KN (2010) Application of Rhizobium sp. BHURCO1 and plant growth promoting rhizobacteria on nodulation, Plant biomass and yields of Chickpea (Cicer arietinum L.). International Journal of Agricultural Research. 5: 148-156.
33 . Wadi JA and Easton GD (1985) Control of Verticillium dahliae by coating potato seed pieces with antagonistic bacteria. Pages 134-136. in: Ecology and management of soilborne plant pathogens. C. A. Parker, A. D. Rovira, K. J. Moore, and P. T. W. Wong. eds. American Phytopathological Society, St. Paul, MN. 358 pp.
34 . Zhang F, Dashti N, Hynes RK and Smith DL (1997) Plant growth-promoting rhizobacteria and soybean (Glycine max L. Merr.) growth and physiology at suboptimal root zone temperatures. Annals Botany. 79: 243-249.
35 . Zorita MD and Canigia MVF (2009) Field performance of a liquid formulation of Azospirillum brasiliense on dryland wheat productivity. European Journal of Soil Biology. 45: 3-11.
| ||
آمار تعداد مشاهده مقاله: 2,126 تعداد دریافت فایل اصل مقاله: 1,126 |