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Abstract 
he purpose of this study is estimation of daily Value at Risk (VaR) 
for total index of Tehran Stock Exchange using parametric, 

nonparametric and semi-parametric approaches. Conditional and 
unconditional coverage backtesting are used for evaluating the accuracy 
of calculated VaR and also to compare the performance of mentioned 
approaches. In most cases, based on backtesting statistics Results, 
accuracy of calculated VaR is approved for historical, Monte Carlo and 
Volatility-Weighted historical simulation methods. It is also approved 
for GARCH type of volatility models under normal distribution and 
Riskmetrics model under student-t distribution. On the other hand, it is 
observed that parametric approach measures VaR value more than non-
parametric and semi-parametric approaches. This result indicates that 
GARCH type of volatility models under student-t distribution 
overestimate magnitude of value at risk. Finally, four volatility models 
of parametric approach including NARCH, NAGARCH and 
APGARCH under normal distribution and Riskmetrics under student-t 
distribution are selected best methods to measure accurate value of VaR. 
Keywords: Nonparametric Approach, Parametric Approach, Semi-
Parametric Approach, Value at Risk.  

 

1. Introduction 

Risk is considered as one of important issue in financial markets. The crisis of 

financial markets in 2007-2008 confirms this fact. In addition, historical 

volatility in financial markets such as switching from fixed exchange rate 

regime to flexible one, U.S. stock market crash in black Monday 1987, 

Bursting the bubble of Japanese stock price in 1989, Asian southeast financial 

crisis in 1997, closure of financial markets and fall of U.S. stock price indices 

in 11th September of 2001 represents the necessity of risk management.   

In general, there are several types of risk in financial markets. Market risk, 

liquidity risk, credit risk and operational risk are the main types of financial 
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risks. Value at Risk (VaR) is mainly related to market risk and considered as 

an important measure of risk. From the perspective of financial institution, 

VaR can be defined as maximum loss of financial position during specific 

time period (1 day, 1 week, 1 month) at a given  confidence level. VaR is 

considered as a key instrument for risk management of financial institutions. 

Panning (1999) expressed it as an approach for risk evaluation, risk 

management and making decision about risk. 

After introduction of VaR by JPMorgan in 1994, it is considered as an 

important measure for calculating risk in financial institutions. The 

application of VaR expanded from securities houses to commercial banks, 

insurance companies and etc. Since VaR responds to complications of 

financial instruments and summarizes different types of risk in one number, 

therefore it can be used for risk regulation and also determination of 

adequate capital requirement for financial institutions. 

Although VaR is a simple concept to understand, but it is difficult to 

calculate and estimate its value. In fact finding probability distribution of 

returns which is not constant over time creates problems for estimating 

critical values at desired probability level and therefore leads to difficulties 

in calculation of VaR. In general there are several techniques to measure 

VaR. The purpose of this study is to evaluate different methods VaR for 

Tehran stock exchange and select the more accurate approach by comparing 

them through backtesting. 

In the next section a brief overview of last studies relating to VaR is 

presented .Literature review and different approaches of VaR evaluation is 

expressed in section III. In section IV conditional and unconditional 

coverage tests of back testing are reviewed. Empirical results are presented 

in section V. general conclusion of this paper is presented in the last section. 

 

2. An Overview of Last Studies 

Even if the concept of VaR was first introduced by Bamoul (1963) in a 

model as "expected-gain confidence limit criterion", the word VaR was not 

officially entered the finance literature until the early 1990s. Before 1990 

and mainly due to fall of stock market in October 1988, many countries 

decided to have better control over the risk of financial institutions in order 

to guarantee themselves against unexpected great losses. In 1988, countries 

of group G-10 formed the first Basel capital accord. In 1990, due to other 

financial crisis many financial institutions proposed new approach to 

evaluate risk that was the VaR. In October 1994, VaR was used in 

Riskmetrics model by JPMorgan. In 1996 Basel committee on bank 

supervision offered commercial banks to calculate minimum regulatory 

capital using internal model and based on the VaR threshold. Much attention 

is paid to calculation of VaR after current financial crisis (2007-2008). In 

this section some previous studies related to VaR are reviewed.  

Samir Mabrouk and Samir Saadi (2012) used GARCH type of volatility 
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models under normal, student-t and skewed student-t distributions in order to 

estimate the one-day-ahead VaR for 7 U.S. stock indices. Their result shows 

that the skewed Student-t FIAPARCH model included more realistic 

assumptions of financial markets such as fat tails, asymmetry, volatility 

clustering and long memory for all stock market indices.  

Chen, Gerlach, Hwang and McAleer et al. (2012) used conditional 

autoregressive value at risk (CAViaR) models to predict VaR and employ 

Bayesian method to estimate them. Results show that in comparison with 

other models threshold CAViaR is more accurate and efficient. 

Chaker and Mabrouk (2011) estimated VaR by ARCH and GARCH type 

models such as FIGARCH, FIAPARCH, and HYGARCH. These models 

were estimated based on normal, student-t and skewed t-student 

distributions. Results show that by considering features of financial time 

series data such as long memory, fat tail and asymmetrical performance, 

daily VaR predictions would be more accurate. Also they indicate 

FIGARCH has better performance compared to other models. P.T. Wu and 

Shieh (2007), and T.L. Tang (2006) are also investigated Value-at-risk 

analysis for long-term interest rate futures and long memory in stock index 

future markets. 

Enocksson and Skoog (2011) studied different volatility models (ARCH, 

GJR-GARCH, GARCH) in order to identify proper model to estimate VaR 

for some exchange rates (including dollar, euro, pound, and yen). Their 

research findings show that GARCH (1,1) and GJR-GARCH (1,1) under 

normal distribution are more appropriate model to estimate conditional 

variance and VaR. 

Qi Chen and Rongda Chen (2013) used equally weighted moving 

average, exponentially weighted moving average, historical simulation and 

Monte Carlo simulation methods to calculate VaR for Shanghai stock 

market. Their paper shows that Monte Carlo simulation is a best method of 

VaR calculation. 

 

3. Literature Review 

Based on value at risk definition, the decrement of portfolio value will not be 

more than calculated VaR, at a given confidence level in the future. 

Therefore, this downside risk criteria measures the worst expected loss at 

determined confidence level under normal conditions of market over a 

specified period of time. According to the definition, VaR has two main 

parameters. One is time horizon shown in form of days and the other is 

confidence level.   

In general by assuming N days as time horizon and C=1-𝛼 as confidence 

level, VaR (which is expressed in terms of currency) is the loss equivalent 

with (1-𝛼) of probability distribution curve of portfolio value change during 

future N days. In other words, we have C percent sure that our loss will not be 

more than V in N future days. Mathematically speaking, it can be written as: 
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         inf : 1 inf :     VVaR C v R P V v α v R F v α  (1) 

where FV is loss distribution function. In general in order to calculate 

quantity, VaR is defined as negative (1-𝛼) quantile of return distribution as 

below: 

    c

t 1 α t t 1 t t 1Q r Ω inf r R :P r VaR Ω 1 α        VaR  (2) 

where Ωt-1 is available information set at time t-1. 

For more explanation, a time series of financial returns is considered 

which follows a stochastic process as below (Abad, Benito & Lopez, 2013):  

    t t t t t tr μ μ σ z  (3) 

    2 2

t 1 t 1~ 0,1 , Ω 0, (e Ω )   t t t tz iid       E   σ E  

where µt is expected mean of returns at time t according to information of 

time t-1, εt is innovation of returns, σ2
t is conditional variance and Zt is 

sequence of N(0,1) i.i.d random variable. So, at confidence level of C on 

information of last period VaR will be equal to: 

    c

t 1 α t t 1 1 αQ R Ω Q      t tVaR μ σ z  (4) 

where Q1-a(z) is (1-α) quantile of z distribution. As it can be seen from 

equation (4), VaR is defined based on both return distribution (rt) quantile 

and z distribution quintile. By assuming f and F as density function and 

cumulative distribution function (CDF) of r, g and G as density function and 

cumulative distribution function of z, then: 

       1 1

1 11 , 1 

      α r α zQ r F α              Q z G α  (5) 

Therefore, a VaR model will be achieved as: 

   c 1 1

t 1 1     r t z tVaR F α σ G α μ  (6) 

Thus, calculation of VaR contains inverse specification of return’s CDF 

(F-1
r) or estimation of conditional variance and determining the type of z 

distribution. 

In a general classification, there are three main approaches including 

nonparametric, parametric and semi-parametric to calculate VaR. 

nonparametric approach is related to estimation of returns quantile and does 

not impose any restrictions on the distribution of returns. Historical 

simulation and Monte Carlo simulation methods belong to this approach. For 

parametric approach VaR is calculated based on determined assumptions 

about selection of conditional or unconditional return distribution and also 

dynamics of model. GARCH-type volatility models and Riskmetrics models 

are examples of this approach. Finally, the third approach is called semi-
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parametric approach which defines default for dynamics of model but not for 

type of innovation distribution. Volatility-Weighted historical simulation and 

filtered historical simulations are examples of this approach.  

 

3.1. Parametric Approach 

For the first time, parametric approach is described in detail by J.P. Morgan 

in Riskmetrics programming. Assumptions of parametric approach are as 

follows: firstly, returns and risk factors follow the certain distribution such 

as normal or student-t distribution. Secondly, asset return is time 

independent and also there is a linear relationship between market risk 

factors an asset value. 

According to equation (6), for calculation of VaR through parametric 

approach the main focus is on second part of equation: VaRc
t= σtG

-1
z(1-α)-µt. 

Based on this equation calculation of VaR includes estimates of µt, σt and  

G-1
z. Since mean of return (μ) can be simply achieved from mean equation of 

ARMA (p,q), therefore the main focus in this method is to determine the 

type of z distribution and estimate conditional variance. In this study 

standard normal and student-t distributions will be considered for z 

distribution, thus VaRc
t will be calculated as: 

 c 1

t 1   t tVaR σ α μ  (7) 

 c 1 1

t d( 2) T 1    t tVaR σ d d α μ  (8) 

where ϕ-1(1-α) is inverse CDF of standard normal distribution and Td
-1  

(1-α) is inverse PDF of student-t distribution with d degree of freedom. 

According to above discussion, calculation of σt that is one of the main 

indicators for measuring market volatility plays an important role in 

parametric approach. Thus, in different methods of VaR calculation the main 

focus is on prediction of σt. In this section different models of volatility 

equations are presented.   

 

3.1.1. Riskmetrics Model (RM) 

In this method, exponentially weighted moving average model (EWMA) is 

used for conditional variance prediction. Since more weight is given to new 

innovations, variance of return responses faster related to innovations that 

occur in market. Also, after innovation occurrence, volatility decreases 

exponentially. In this case by defining λ which is known as decay parameter 

between 0 and 1, risk metrics model is expressed as: 

 2 2 2

1 11    t t tσ λσ λ  (9) 

As it can be observed from above equation, new innovations have more 

impact on variance when λ has smaller value. Selection of optimized is an 

empirical issue. Many researchers select λ=0.94 and λ=0.97 for daily and 

monthly volatility, respectively.  



46/ Evaluation Approaches of Value at Risk for Tehran Stock Exchange 

3.1.2. GARCH Type Models  

In this paper, in order to examine the performance of GARCH type models 

in explaining the behavior of mean, variance and VaR for returns of total 

price index of Tehran stock exchange, several types of these models are 

estimated. General form of such model is as GARCH (p,q) and specified as: 

2 2 2

0

1 1

 

 

    
p q

t i t i j t j

i j

σ α α β σ  (10) 

In many studies p and q is considered equal to 1 and research findings 

show that these models provide acceptable results in financial time series 

discussion (So & Yu, 2006). Nine types of GARCH models are given in 

Table 1 by assuming p=q=1. (See Bollerslev, 1986; Nelson, 1991; Glosten & 

Jagannathan Runkle, 1993; Engle, 1982 & 1990; Engle & Bollerslev, 1986; 

Engle & V.K. Ng, 1993; Higgins & Bera, 1992; Granger & Engle, 1993). 

 

Table 1. GARCH models 

Model Formulation 

GARCH(1,1) 𝜎𝑡
2 = 𝛼0 + 𝛼1ԑ𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

IGARCH(1,1) 𝜎𝑡
2 = 𝛼0 + 𝛼1ԑ𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

EGARCH(1,1) ln(𝜎𝑡
2) = 𝛼0 + 𝛼1⎸ԑ𝑡−1⎹ − 𝛾ԑ𝑡−1 + 𝛽1ln⁡(𝜎𝑡−1

2 ) 
GJR(1,1) 𝜎𝑡

2 = 𝛼0 + 𝛼1ԑ𝑡−1
2 + 𝛾ԑ𝑡−1

2 ⎹ԑ𝑡−1 < 0 + 𝛽1𝜎𝑡−1
2 ,⁡⁡⁡ 

AGARCH(1,1 𝜎𝑡
2 = 𝛼0 + 𝛼1ԑ𝑡−1

2 + 𝛾ԑ𝑡−1 + 𝛽1𝜎𝑡−1
2  

NAGARCH(1,1) 𝜎𝑡
2 = 𝛼0 + 𝛼1[ԑ𝑡−1 + 𝛾𝜎𝑡−1]

2 + 𝛽1𝜎𝑡−1
2  

NARCH(1,1) 𝜎𝑡
2 = 𝛼0 + 𝛼1⎸ԑ𝑡−1⎹

𝛿 + 𝛽1𝜎𝑡−1
2  

NGARCH(1,1) 𝜎𝑡
𝛿 = 𝛼0 + 𝛼1⎸ԑ𝑡−1⎹

𝛿 + 𝛽1𝜎𝑡−1
𝛿  

APGARCH(1,1) 𝜎𝑡
𝛿 = 𝛼0 + 𝛼1[⎸ԑ𝑡−1⎹ + 𝛾ԑ𝑡−1]

𝛿 + 𝛽1𝜎𝑡−1
𝛿  

 

3.2. Nonparametric Approach 

Nonparametric approach is an alternative approach for VaR calculation 

which includes simulation methods. These methods do not impose any 

assumption on distribution of financial returns and use empirical distribution 

of returns to evaluate risk. Historical simulation and Monte Carlo simulation 

are two main methods of nonparametric approach which will be discussed 

bellow. 

 

3.2.1. Historical Simulation (HS) 

This method is the simplest way for calculation of VaR and discards some 

problems related to parametric method such as main assumptions of normal 

distribution returns and constant correlation between risk factors. In fact, the 

main advantage of this method is that there are no distributional assumptions 

about the data. The only assumption is that distribution of returns in the past 

is similar to distribution of returns in the future. In fact, the main assumption 

of historical simulation is that past can be the good measure to predict future. 

This method uses historical distribution of portfolio returns to simulate VaR 

by assuming that combination of portfolio does not change during the period 

of historical returns Collection (Gupta, 2008).   
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Historical simulation method for VaR estimate introduced during 

investigations of Boudoukh (1998) and Barone-Adesi (1999). In this method 

first, series of asset return of one portfolio is collected, and then current 

weight of each asset is multiplied by its historical returns in order to achieve 

historical return of portfolio as: 𝑟𝑝𝑡 = ∑ 𝑤𝑖𝑟𝑖𝑡
𝑛
𝑖=1  Where n is the number of 

assets, rit is the return of asset i  at time t, wi is share of each asset in 

portfolio and rpt is simulated historical returns of portfolio. Therefore, VaR is 

calculated as quantile of time series simulated historical returns. 

In general, for series of stock index data which is the purpose of this 

study, VaR is equal to (1-𝛼) quantile of past returns distribution extracted 

from this index as shown: 

  c 1

t 1 1
VaR 

 


nα

t t
Q r  (11) 

3.2.2. Monte Carlo Simulation (MCS) 

Monte Carlo simulation method is one of the powerful tools in risk analysis 

which is similar to the historical simulation method in some aspects. In this 

method, by using of stochastic processes and simulations, future returns data 

are predicted. VaR is calculated through quantile of new returns distribution 

similar to historical simulations. 

Steps of VaR calculation in Monte Carlo simulation method are as 

follows: 

1. Determination of stochastic process and its parameters for financial 

variables. 

2. Virtual simulation of price for all used variables. 

3. Determination of financial assets price at time t, determination of assets 

return from simulated prices and calculation of portfolio value at time t. 

4. Repeating step 2 and 3 for many times in order to create distribution of 

portfolio value. 

5. Measurement of VaR from simulated distribution returns at confidence 

level of 1-α. 

 

3.3. Semi-Parametric Approach  

Semi-parametric approach combines both parametric and nonparametric 

approaches in a way that there are pre assumptions for dynamics of volatility 

model but no pre assumptions regarding innovation distribution. Volatility-

Weighted historical simulation and filtered historical simulation are two 

important methods of this approach. 

 

3.3.1. Volatility-Weighted Historical Simulation Method (WHS) 

As it is expressed, traditional historical simulation method only use historical 

data and does not consider recent changes in volatility. In 1998 Hull and 

White presented a new approach that combines benefits of traditional 

historical simulation method with volatility models. The main purpose of 
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this approach is to update return information in order to consider recent 

changes in volatility. 

Assume that rt,i is return on asset i at time t, σt,i be the prediction of 

volatility at time t in the end of t-1 and σT,i is the most recent of forecast 

volatility. However, it should be noted that σt,i and σT,i are achieved using 

GARCH models. In this case, the adjusted return (r*
t,i) based on volatility 

models are obtained as: 

T,i t ,i*

t ,i

t ,i

σ r
r

σ
  (12) 

In this method VaR at confidence level (C) is achieved through (1-𝛼) 

quintile of adjusted return distribution. In fact, in this new approach, 

volatility changes are considered directly and calculated VaR based on this 

approach is properly sensitive to recent volatility changes. 

 

3.3.2. Filtered Historical Simulation Methods (FHS) 

This method is proposed by Barone-Adesi et al. which combines advantages 

of historical simulation methods with conditional volatility models. In this 

method mean and variance of returns are predicted using parametric 

approach (GARCH type models) and standardized returns quantile is used 

for VaR calculation. 

In general, the filtered historical simulations are done in three stages: at 

first step, an appropriate conditional volatility model is selected (usually 

GARCH or EGARCH is selected) and then the standardized residuals of the 

model are predicted as �̂�𝑡 =
�̂�𝑡

�̂�𝑡
 in which �̂�𝑡 is residuals of GARCH or 

EGARCH model and σ̂t is conditional variance. The second step includes 

bootstrapping and simulation of standardize residual so that new series of 

returns achieved as: 

n n

i i 1 i i 1 t 1{r } {eˆ ˆ ˆ} .σ    (13) 

where n is the number of simulations. At third step, VaR is obtained through 

quantile of simulated   returns as bellow: 

  nc 1 α

t 1 t t 1
ˆVaR Q r

 
  (14) 

 

4. Backtesting 

The essence of VaR measure is such that its forecasting is different with other 

prediction variables in many aspects. The most obvious difference is that the 

actual value of VaR cannot be observed and the only measure for comparison 

is actual observations. So, the concept of error prediction in VaR approaches 

also differs. While the main concern in usual prediction models is that to what 

extent predictions are close to actual data, in VaR models the main concern is 

that how many times is the actual loss greater than the predicted loss. 
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Therefore, many common criteria to measure accuracy of prediction models 

such as mean square error (MSE) and Mean absolute deviation error (MADE) 

are not applicable in VaR predictions. For this reason, backtesting is used to 

evaluate the accuracy of VaR models. In this study, the accuracy of calculated 

VaR and performance of different VaR approaches are examined through 

conditional and unconditional coverage tests.  

 

4.1. Kupiec’s Proportion of Failure Test 

This test is an unconditional coverage test and has a null hypothesis 

of(H0: α = α̂ =
X

N
), where α is probability level or predicted failure proportion 

and (α̂) is actual failure proportion. N is the number of observations and X is 

the number of failures or the number of times that actual loss are greater than 

VaR estimated loss. Kupiec (1995) shows that assuming the probability of 

failure is constant, then the number of failures (x) follows binomial 

distribution B(N,𝛼).The likelihood ratio statistic of this test is represented as: 

 

 
2

1

ˆ1ˆ




 
 
  

T xx

POF T xx

α α
LR Ln

α α
 (15) 

 

4.2. Kupiec’s Time Until First Failure (TUFF) Test 

Main assumption of this test Like Kupiec’s POF test is that the number of 

failures follows binomial distribution but null hypothesis of Kupiec’s TUFF 

test will be: 

0

1
:  α

v
α̂ H  

where V is the first time that failure occurred. In this situation statistic of 

likelihood ratio for this unconditional test as: 

 

v 1

v 1

1 1
1

v v
2

1





  
  

  
 
 
 

TUFFLR Ln
α α

 (16) 

It’s should be noticed that both of 𝐿𝑅𝑇𝑈𝐹𝐹 and 𝐿𝑅𝑃𝑂𝐹 is asymptotically 

distributed χ2(1). 
 

4.3. Christoffersen Interval Forecast Test 

Christoffersen (1998) proposed conditional coverage test. For This test, 

equality hypothesis of actual and expectation failure rate is not considered. It 

examines serial independence against first-order Markov dependence. In fact 

based on independent null hypothesis, failure of today should not depend on 

previous or next day. The likelihood ratio statistic of this test which is 

asymptotically distributed χ2(1) as below: 
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 

   

00 10 01 11

00 1001 11

0

1
2

1 1

  
  
   

n n n n

IND n nn n

π π
LR Ln

π π π π
 (17) 

01 01 1111
0 1

00 01 10 11 00 01 10 11

n n nn
π ,π ,π

n n n n n n n n


  

    
 

where ni,j indicate the number of observation that situation j after situation i 

occurred and πi is a probability of observing a failure conditional on 

condition i on the previous day. 

 

4.4. Joint Test 

This test is the combination of independent and POF tests, so the hypothesis 

test not only examines the equality of observed and execrated failures but 

also considers independent of failures. The statistic likelihood ratio of this 

conditional coverage test is specified as: 

 MIX POF INDLR LR LR  (18) 

𝐿𝑅𝑀𝐼𝑋 Statistic is Chi-square distributed with 2 degree of freedom. 

 

5. Empirical Research 
5.1. Statistical Description of Data 

In this study daily price index of Tehran stock exchange from 14/09/2004 to 

14/09 /2014 is used. This time series data includes 2350 observations which 

are divided to 1880 in sample observations and 470 out of sample section in 

order to estimate volatility models and predictions, respectively. The series 

of returns are achieved from equation 𝑟𝑡 = ln⁡(
𝑃𝑡

𝑃𝑡−1
) where P is a price index. 

The index and return time series diagram of Tehran stock exchange in 

mentioned period is given in Figure 1. 

 
Figure 1. Time series plot of index and return 
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Table 2 shows some statistical description of Tehran exchange return. 

The mean of Daily returns is equal to 0.0004 with standard error about 

0.0058. Skewness statistic is equal to 0.16 and close to zero which shows 

that return distribution of Tehran stock exchange is close to symmetrical 

distribution. Kurtosis index has great value which represents conditional 

distribution of Tehran exchange return is fat tail. Big value for Jarque–Bera 

statistic also shows that null hypothesis of normality for return distribution 

of Tehran stock exchange is rejected at probability level of 1%. 

 
Table 2. Descriptive statistics 

Jarque–Bera Kurtosis Skewness Std.Dev.
 

Maximum Minimum mean
 

11708.95 
(0.00) 

15.22 
(0.00) 

0.1671 
(0.00) 

0.0058 0.0525 -0.0545 0.0004 

 

5.2. Estimation Results 

5.2.1. First Step: Parameters Estimates of Volatility Models 

The purpose of this study is to calculate and evaluate VaR for Tehran stock 

exchange through parametric, nonparametric and semi-parametric 

approaches. As mentioned in above sections, in nonparametric approach, 

VaR is directly calculated based on distribution of historical returns or 

predicted returns. In parametric method, VaR is achieved through mean and 

volatility equations and also distribution of returns innovations. In semi-

parametric approach VaR is estimated through combination of volatility 

equations and historical returns. Thus at first step volatility models are 

estimated and then VaR is estimated through three mentioned approaches. 

Maximum likelihood is used to estimate volatility models. In estimates of 

Riskmetrics and GARCH (1,1) type models, by assuming that the 

conditional mean of returns follows an AR(m) process, the best model for 

total price index is selected based on Akaike criteria. Results show that mean 

of return index follows an AR (1) process as: rt= a0+a1rt-1+εt. In this section, 

proposed GARCH type models and Riskmetrics model are estimated using 

data related to total price index of Tehran stock exchange. All models are 

estimated by assuming normal and student-t distributions. Estimation results 

of these models are given in Table 3. 

According to the results of Tables 3.1 to 3.3, some points can be 

explained. First, based on the results of t-statistics, all estimated parameters 

of mean and variance equations for nine GARCH type models and 

Riskmetrics model are significant at 95 percent confidence level. Also, 

Akaike criteria results show that these volatility models have goodness of fit 

in sample. Moreover, for volatility models with student-t distribution, degree 

of freedom is greater than 3 which ensure existence of first, second and third 

order conditional moment. Finally, negative sign of γ for some asymmetric 

volatility models such as GJR, AGARCH and APGARCH confirm the 

leverage effect in Tehran Stock Exchange. In short, by substituting of 
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forecasted conditional 𝜇 and 𝜎 from these volatility models into equation 7 

and 8, parametric VaR are calculated. Note that predicted VaR via this 

method is presented in the next step.      

 
Table 3.1. Estimated Parameters of GARCH, IGARCH and RM Models 

  GARCH-N GARCH-T IGARCH-N IGARCH-T RM-N RM-T 

M
ea

n
 e

q
u
at

io
n
 

α0 -0.0002 -0.0000 -0.0002 -0.0000 -0.0000 -0.0001 

T-Statistic -1.4976 -0.0000 -2.1878 -0.1488 -0.2286 -0.7327 

α1 0.4755 0.4936 0.4656 0.4936 0.4592 0.4644 

T-Statistic 69.103 0.0005 16.728 21.826 18.774 21.041 

V
o
la

ti
li

ty
 e

q
u
at

io
n

 α0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

T-Statistic 706.29 0.0000 8.2232 3.4193 0.0000 0.0000 

α1 0.3283 0.4257 0.5353 0.4250 0.0342 0.00001 

T-Statistic 47.271 0.0001 11.611 6.6045 8.3949 0.0000 

β1 0.4948 0.5743 0.4647 0.5750 0.9658 0.99999 

T-Statistic 306.53 0.0001 8.7612 6.1045 3. 8535 0.0000 

 df  3.2179  3.2149  3.5920 

T-Statistic  0.0001  21.953  21.665 

Log likelihood 7375 7653 7360 7653 7207 7444 

AIC -14739 -15293 -14712 -15295 -14405 -14850 

 

Table 3.2. Estimated Parameters GJR, AGARCH, EGARCH and  

NAGARCH Models 
  GJR-N GJR-T AGARCH-N AGARCH-T EGARCH-N EGARCH-T NAGARCH-N NAGARCH-T 

M
ea

n
 e

q
u
at

io
n
 

 

α0 -0.0002 -0.0000 -0.0001 0.0000 -0.0002 0.0000 0.0108 0.0086 

T-Statistic -2.8781 -0.0000 -0.6932 0.0001 -2.3270 0.1348 2.8513 50990 

α1 0.4565 0.4858 0.4675 0.4906 0.4648 0.4945 -0.5804 -0.4700 

T-Statistic 11.2563 0.0027 19.010 0.1389 18.098 22.004 13.2431 -7491142 

V
o
la

ti
li

ty
 e

q
u
at

io
n
 

α0 0.0000 0.0000 0.0000 0.0000 -2.7736 -0.9638 0.0003 0.0001 

T-Statistic 10.828 0.0000 6.7054 0.0004 -9.890 -3.8419 4.2987 1606.5 

α1 0.5132 0.4765 0.3029 0.3989 0.5009 0.6256 0.0413 0.0265 

T-Statistic 67.677 0.0001 7.5071 0.0007 12.622 7.2436 23.3428 432428 

β1 0.4072 0.6042 0.5290 0.6011 0.7343 0.8939 0.2286 0.2523 

T-Statistic 4.0734 0.0001 10.893 0.0220 27.779 38.351 6.1284 1815148 

𝜸 -0.098 -0.1615 -0.0011 -0.0006 0.0370 0.0942 0.3646 0.4014 

T-Statistic -0.4180 -0.0000 -3.8830 -0.0053 1.3935 2.7937 1.7884 2334751 

 df  3.2397  3.2258  3.6609  2.8746 

T-Statistic  0.0002  0.0022  12.931  828828 

Loglikelihood 7241 7655 7382 7656 7368 7667 4028 4806 

AIC -14472 -15296 -14752 -15297 -14723 -15321 -8043 -9598 
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Table 3.3. Estimated Parameters of NARCH, NGARCRCH and  

APGARCH Models 
 

 NARCH-N NARCH-N NGARCH-N NGARCH-T APGARCH-N APGARCH-T 

M
ea

n
 e

q
u

at
io

n
 

α0 -0.0002 0.0000 -0.0003 0.0000 -0.0001 0.0001 

T-Statistic -1.8141 0.1570 -6.2240 0.6192 -0.1280 0.0002 

α1 0.4740 0.4858 0.4477 0.4816 0.4538 0.4726 

T-Statistic 17.924 20.229 18.170 0.5355 10.843 588.36 

V
o

la
ti

li
ty

 e
q
u

at
io

n
 

α0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

T-Statistic 6.4707 0.6499 0.7919 0.0001 0.3359 0.0000 

α1 0.1679 0.0263 0.0037 0.0066 0.0002 0.0029 

T-Statistic 1.3835 1.7423 1.8758 0.1586 0.9375 0.0001 

β1 0.5026 0.5856 0.5252 0.5151 0.4585 0.4996 

T-Statistic 10.325 10.901 13.252 0.1299 3.1726 0.0001 

δ 1.8575 1.3113 0.9473 0.9790 1.5381 1.1515 

T-Statistic 12.399 14.170 10.419 3.7319 10.557 78.852 

γ     -0.1540 -0.1365 

T-Statistic     -3.6939 -0.0002 

 df  3.6498  3.2179  2.6703 

T-Statistic  18.349  0.2662  0.0006 

Loglikelihood 7375 7677 7373 7670 7367 7672 

AIC -14738 -15340 -14694 -15326 -14720 -15328 

 

5.2.2. Second Step: Calculation of VaR and Statistics of Backtesting 

In this section, calculated VaR through different approaches and backtesting 

statistics are presented. Daily VaR of total price index based on parametric 

approach (including Riskmetrics model and nine GARCH type volatility 

models under normal and student-t distributions) and two other simulation 

methods along with expected and real failures at two confidence levels of 

95% and 99% are reported in Table 4. It should be noted that V (the first day 

that failure occurs) is required to calculate Kupiec’s TUFF Test statistics. 

Also, decision criteria are needed to achieve independence statistic of 

Christoffersen. If failure occurs the index value would be equal to 1, 

otherwise index value would be equal to 0, thus contingency matrix is 

formed as matrix 2x2 with 4 members. The first value (n00) is equal to the 

number of days that no failure occurs for two consecutive days. The second 

value ((n10)) shows the number of days that the failure on the first day 

accompanied with no failure on the next day. The third (n01) is the number of 

days that the absence of failure on the first day accompanied with no failure 

on the next day. Finally, the fourth value ((n11)) is the number of days that 

failure occurs in two consecutive days. Results related to V, nij and 

probability ratios (πi) for different approaches at two confidence levels of 

95% and 99% are given in Tables 5 and 6. Results related to statistics of four 
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backtesting tests including Kupiec’s POF Test, Kupiec’s TUFF Test, 

Christoffersen's interval forecast test and joint test at two confidence levels 

of 95% and 99% are given in Tables 7 and 8.   

 

Table 4. VaR Statistics at 95% and 99% Confidence Levels 

 

C=0.95 C=0.99 

VaR Expectatio
n Failures 

No. 
Failures 

Failure 
Rate 

VaR Expectati
on 

Failures 

No. 
Failures 

Failure 
Rate 

N
o

n
 p

ar
am

et
ri

c 

MCS -0.01389 23.5 17 0.036 -0.0203 4.7 3 0.006 

HS -0.00752 23.5 64 0.14 -0.01779 4.7 7 0.015 

S
em

i 
p
ar

am
et

ri
c 

WHS -0.0078 23.5 60 0.13 -0.01882 4.7 3 0.006 

FHS -0.0079 23.5 60 0.13 -0.02867 4.7 0 0 

p
ar

am
et

ri
c 

GARCH-N -0.01355 23.5 18 0.038 -0.02205 4.7 1 0.002 

GARCH-t -0.02716 23.5 1 0.002 -0.06 4.7 0 0 

IGARCH-N -0.0182 23.5 7 0.015 -0.0256 4.7 1 0.002 

IGARCH-t -0.0272 23.5 1 0.002 -0.0576 4.7 0 0 

RM-N -0.0092 23.5 41 0.087 -0.0138 4.7 18 0.038 

RM -t -0.0128 23.5 23 0.049 -0.0165 4.7 7 0.015 

GJR-N -0.016 23.5 7 0.015 -0.0235 4.7 1 0.002 

GJR-t -0.02606 23.5 1 0.002 -0.05522 4.7 0 0 

AGARCH-N -0.01298 23.5 21 0.045 -0.02122 4.7 2 0.004 

AGARCH-t -0.02668 23.5 1 0.002 -0.05655 4.7 0 0 

EGARCH-N -0.0146 23.5 16 0.034 -0.0203 4.7 3 0.006 

EGARCH-t -0.02991 23.5 0 0 -0.06 4.7 0 0 

NAGARCH-N -0.0133 23.5 20 0.042 -0.0188 4.7 3 0.006 

NAGARCH-t -0.18776 23.5 0 0 -0.28 4.7 0 0 

NARCH-N -0.01289 23.5 22 0.047 -0.02109 4.7 2 0.004 

NARCH-t -0.03100 23.5 0 0 -0.18 4.7 0 0 

NGARCH-N -0.0154 23.5 11 0.023 -0.0214 4.7 1 0.002 

NGARCH -t -0.02569 23.5 1 0.002 -0.06008 4.7 0 0 

APGARCH-N -0.0128 23.5 22 0.046 -0.0179 4.7 7 0.015 

APGARCH -t -0.01979 23.5 3 0.006 -0.04746 4.7 0 0 
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Table 5. Input Data for Kupiec TUFF and Independence Back-Test at 0.95 

Confidence Level 
  V N00 N01 N10 N11 Π0 Π1 π 

N
o

n
 p

ar
am

et
ri

c 

MCS 21 435 17 17 0 0.038 0 0.036 

HS 5 360 45 45 19 0.11111 0.29688 0.13646 

S
em

i 
p
ar

am
et

ri
c 

WHS 5 367 42 42 18 0.10269 0.3 0.12793 

FHS 5 367 42 42 18 0.10269 0.3 0.12793 

P
ar

am
et

ri
c 

GARCH-N 21 433 18 18 0 0.039911 0 0.03838 

GARCH-t 306 467 1 1 0 0.0021368 0 0.0021322 

IGARCH-N 73 455 7 7 0 0.0151 0 0.0149 

IGARCH-t 306 467 1 1 0 0.0021368 0 0.0021322 

RM-N 5 397 31 31 10 0.072 0.24 0.087 

RM -t 21 423 23 23 0 0.051 0 0.049 

GJR-N 73 455 7 7 0 0.0151 0 0.0149 

GJR-t 306 467 1 1 0 0.0021368 0 0.0021322 

AGARCH-N 21 427 21 21 0 0.046875 0 0.044776 

AGARCH-t 306 467 1 1 0 0.0021368 0 0.0021322 

EGARCH-N 21 441 14 14 0 0.0307 0 0.0298 

EGARCH-t na na na na na na na na 

NAGARCH-N 21 429 20 20 0 0.0445 0 0.0426 

NAGARCH-t na na na na na na na na 

NARCH-N 21 425 22 22 0 0.049217 0 0.046908 

NARCH-t na na na na na na na na 

NGARCH-N 62 447 11 11 0 0.0240 0 .0234 

NGARCH -t 306 467 1 1 0 0.0021368 0 0.0021322 

APGARCH-N 21 425 22 22 0 0.0492 0 0.0469 

APGARCH -t 215 463 3 3 0 0.0064378 0 0.0063966 
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Table 6. Input data for Kupiec TUFF and Independence Back-Test at 0.99 

Confidence Level 
  V N00 N01 N10 N11 Π0 Π1 π 

N
o

n
 p

ar
am

et
ri

c 

MCS 215 463 3 3 0 0.0064 0 0.0063 

HS 73 455 7 7 0 0.015152 0 0.014925 

S
em

i 
p

ar
am

et
ri

c 

WHS 215 463 3 3 0 0.0064378 0 0.0063966 

FHS na na na na na na na na 

P
ar

am
et

ri
c 

GARCH-N 306 467 1 1 0 0.0021368 0 0.0021322 

GARCH-t na na na na na na na na 

IGARCH-N 306 467 1 1 0 0.0021368 0 0.0021322 

IGARCH-t na na na na na na na na 

RM-N 21 433 18 18 0 0.039911 0 0.03838 

RM -t 73 455 7 7 0 0.015152 0 0.014925 

GJR-N 306 467 1 1 0 0.0021368 0 0.0021322 

GJR-t na na na na na na na na 

AGARCH-N 215 465 2 2 0 0.0042827 0 0.00426 

AGARCH-t na na na na na na na na 

EGARCH-N 215 463 3 3 0 0.0064 0 0.0063 

EGARCH-t na na na na na na na na 

NAGARCH-N 215 463 3 3 0 0.0064 0 0.0063 

NAGARCH-t na na na na na na na na 

NARCH-N 215 465 2 2 0 0.0042827 0 0.00426 

NARCH-t na na na na na na na na 

NGARCH-N 306 467 1 1 0 0.0021 0 0.0021 

NGARCH -t na na na na na na na na 

APGARCH-N 73 455 7 7 0 0.0151 0 0.0149 

APGARCH -t na na na na na na na na 

 

5.2.3. Third step: results analysis 

In this section, the accuracy of estimated VaR is analyzed and evaluated 

based on different backtesting criteria. At first glance it can be seen from 

Table 4 that in most cases, parametric approach estimate the value of VaR 

more than two other methods which this value under student-t distribution is 

greater than normal distribution. In order to provide more accurate 

evaluation of results, confidence level, and type of backtesting and number 

of out of sample observations should be taken in to account.  
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Table 7. Backtesting result at confidence level 0.95 
  LRPOF H0 LRTUFF H0 LRind H0 LRuc H0 

N
o

n
 p

ar
am

et
ri

c 

MCS 2.08 accept 0.0025 accept 1.28 accept 3.36 accept 

HS 51.03 reject 1.3978 accept 13.3771 reject 64.4081 reject 

S
em

i 
p
ar

am
et

ri
c 

WHS 42.54 reject 1.3978 accept 14.7022 reject 57.252 reject 

FHS 42.54 reject 1.3978 accept 14.7022 reject 57.252 reject 

p
ar

am
et

ri
c 

GARCH-N 1.47 accept 0.0025 accept 1.4372 accept 2.906 accept 

GARCH-t 39.80 reject 23.84 reject 0.0042735 accept 39.8055 reject 

IGARCH-N 16.65 reject 2.81 accept 0.2121 accept 16.8592 reject 

IGARCH-t 39.80 reject 23.84 reject 0.0042735 accept 39.8055 reject 

RM-N 11.33 reject 1.40 accept 10.13 reject 21.44 reject 

RM -t 0.011 accept 0.002 accept 2.37 accept 2.38 accept 

GJR-N 16.65 reject 2.81 accept 0.2121 accept 16.8592 reject 

GJR-t 39.80 reject 23.84 reject 0.0042735 accept 39.8055 reject 

AGARCH-N 0.29 accept 0.0025 accept 1.9695 accept 2.2594 accept 

AGARCH-t 39.80 reject 23.8365 reject 0.0042735 accept 39.8055 reject 

EGARCH-N 3.69 accept 0.0025 accept 0.86 accept 4.55 accept 

EGARCH-t na reject na reject na reject na reject 

NAGARCH-N 0.57 accept 0.0025 accept 1.78 accept 2.35 accept 

NAGARCH-t na reject na reject na reject na reject 

NARCH-N 0.11 accept 0.0025449 accept 2.1664 accept 2.2693 accept 

NARCH-t na reject na reject na reject na reject 

NGARCH-N 8.64 reject 2.01 accept 0.52 accept 9.16 reject 

NGARCH -t 39.80 reject 23.8365 reject 0.0042735 accept 39.8055 reject 

APGARCH-N 0.102 accept 0.002 accept 2.16 accept 2.26 accept 

APGARCH -t 29.58 reject 15.2084 reject 0.038627 accept 29.6154 reject 
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Table 8. Backtesting result at confidence level 0.99 
  LRPOF H0 LRTUFF H0 LRind H0 LRuc H0 

N
o

n
 p

ar
am

et
ri

c 

MCS 0.71 accept 0.77 accept 0.038 accept 0.75 accept 

HS 0.98825 accept 0.090431 accept 0.21213 accept 1.20 accept 

S
em

i 
p
ar

am
et

ri
c 

WHS 0.7125 accept 0.77527 accept 0.038627 accept 0.75 accept 

FHS na reject na reject na reject na reject 

p
ar

am
et

ri
c 

GARCH-N 4.3342 accept 1.8971 accept 0.0042735 accept 4.34 accept 

GARCH-t na reject na reject na reject na reject 

IGARCH-N 4.3342 accept 1.8971 accept 0.0042735 accept 4.34 accept 

IGARCH-t na reject na reject na reject na reject 

RM-N 22.125 reject 1.5717 accept 1.4372 accept 23.56 reject 

RM -t 0.98825 accept 0.090431 accept 0.21213 accept 1.20 accept 

GJR-N 4.3342 accept 1.8971 accept 0.0042735 accept 4.34 accept 

GJR-t na reject na reject na reject na reject 

AGARCH-N 1.998 accept 0.77527 accept 0.017131 accept 2.01 accept 

AGARCH-t na reject na reject na reject na reject 

EGARCH-N 0.71 accept 0.77 accept 0.038 accept 0.75 accept 

EGARCH-t na reject na reject na reject na reject 

NAGARCH-N 0.71 accept 0.77 accept 0.038 accept 0.75 accept 

NAGARCH-t na reject na reject na reject na reject 

NARCH-N 1.998 accept 0.77527 accept 0.017131 accept 2.01 accept 

NARCH-t na reject na reject na reject na reject 

NGARCH-N 4.33 accept 1.89 accept 0.004 accept 4.33 accept 

NGARCH -t na reject na reject na reject na reject 

APGARCH-N 0.99 accept 0.09 accept 0.21 accept 1.2 accept 

APGARCH -t na reject na reject na reject na reject 

 

For example, in POF test, number of real failures should be close to 

expected failures (𝛼.T) at confidence level of (1-𝛼) %. Results related to 

number of failures and failure rates at two confidence level of 95% and 99% 

are given in Table 4. Likelihood ratio statistics for POF test is presented in 

second column of Tables 7 and 8 for confidence level of 95% and 99%, 

respectively. Reject or accept results of null hypothesis (𝛼=�̂�) are given in 

third columns of Tables 7 and 8.  

It can be observed that based on unconditional coverage test of POF, for 
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confidence level of 95%, null hypothesis is only accepted for some volatility 

models (including GARCH, AGARCH, NARCH, EGARCH,NAGARCH 

APGARCH under normal distribution and Riskmetrics under student-t 

distribution) and Monte-Carlo simulation method. But for confidence level 

of 99%, H0 is accepted for all nine GARCH type models under normal 

distribution and Riskmetrics model under student-t distribution. 1t is also 

accepted for historical, Monte Carlo and volatility-weighted historical 

simulation. 

TUFF statistics and reject or accept result of H0 for all mentioned 

approaches are given in fourth and fifth columns of Tables 7 and 8, 

respectively. Results show that based on TUFF test the accuracy of 

estimated VaR at confidence level of 95% is approved for semi-parametric 

approach, nonparametric approach and all nine GARCH type models under 

normal distribution. Also null hypothesis according to Riskmetrics model 

under student-t distribution is accepted. These results at 99% confidence 

level are the same except for filtered historical simulation.  

Results of independence statistics about calculated VaR are given in fifth 

column of Tables 7 and 8 and the result of acceptation or rejection are given 

in 6th column of these tables. It can be found that at confidence level of 

95%, independence hypothesis is accepted for Monte Carlo simulation and 

also for all models of parametric approach except than EGARCH, 

NAGARCH and NARCH models under normal distribution and Riskmetrics 

under student-t distribution. At 99% confidence level, independence 

hypothesis is accepted for Monte-Carlo simulation, historical simulation and 

volatility-weighted historical simulation. In addition to, it is also accepted 

for all ten volatility models under normal distribution and Riskmetrics under 

student-t distribution. 

Finally, 8th and 9th column of Tables 7 and 8 are related to conditional 

coverage test which is the combination of Kupiec failure test and 

Christoffersen independence test. Results show that at 95% confidence level, 

Monte Carlo simulation method, Riskmetrics volatility model under student-

t distribution and some of GARCH type models under normal distribution 

such as GARCH, AGARCH, NARCH, NAGARCH, EGARCH and 

APGARCH have the both characteristics of optimum failures and 

independent failures. But, at 99% confidence level accuracy of calculated 

VaR is accepted based on this test via all GARCH family models under 

normal distribution and Riskmetrics under student-t distribution. Also 

validity of Monte Carlo simulation, historical simulation and volatility-

weighted historical simulation are approved. 

As mentioned before, proposing VaR as a risk measure created an 

important evolution in risk management. In fact, major application of this 

measure for financial institution is determination of capital requirement in 

order to loss coverage. Therefore, accurate forecasting of VaR is essential. 

According the results of this paper, correct amount of VaR for total index is 
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obtained close to 0.013 and .020 at 95 and 99 percent confidence levels 

respectively. This means that for an individual who hold one million Rial 

stock, he will exposure up to 13000 Rial loss for next day with 95 percent 

probability. In other words, capital adequacy ratio for risk coverage is 0.013. 

Since accuracy of these results is tested by backtesting statistics, findings of 

this study can be proposed to financial investors and participants for their 

investing and analyzing.          

 

6. Conclusion 

In this study, daily VaR is estimated for total index of Tehran stock 

exchange through parametric, nonparametric and semi-parametric 

approaches between 2004 and 2014. Also, the accuracy of calculated VaR is 

evaluated using conditional and unconditional coverage backtesting tests.   

The results show that, null hypothesizes based on equality of actual and 

expectation failures and serial independence of failures are accepted for 

Monte-Carlo simulation, historical simulation and volatility-weighted 

historical simulation at confidence level of 99%. They are also accepted for 

all GARCH type models of parametric approach under normal distribution 

and Riskmetrics model under student-t distribution. But, at confidence level 

of 95%, accuracy of calculated VaR is approved only for Monte-Carlo 

simulation and some of volatility models including GARCH, AGARCH, 

EGARCH, NARCH, NAGARCH and APGARCH models under normal 

distribution and Riskmetrics model under student-t distribution. 

We also found that volatility models measure VaR value more than non-

parametric and semi-parametric approaches. Moreover, this value under 

student-t distribution is more than normal distribution. In fact by comparing 

of obtained backtesting statistics and results of occurred failures, volatility 

models of parametric approach under student-t distribution overestimate the 

magnitude of VaR. Finally, it can be concluded that four volatility models of 

parametric approach (including NARCH, NAGARCH, and APGARCH 

under normal distribution and Riskmetrics under student-t distribution) 

provide more accurate VaR estimates. 
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