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Abstract 

Nonnegative matrix factorization (NMF) is a common method in data mining that 

have been used in different applications as a dimension reduction, classification or 

clustering method. Methods in alternating least square (ALS) approach usually used to 

solve this non-convex minimization problem.  At each step of ALS algorithms two 

convex least square problems should be solved, which causes high computational cost.   

In this paper, based on the properties of norms and orthogonal transformations we 

propose a framework to project NMF’s convex sub-problems to smaller problems. This 

projection reduces the time of finding NMF factors. Also every method on ALS class 

can be used with our proposed framework. 
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Introduction 

Given a nonnegative matrix 
n mA   and a pre-

specified positive integer  min{n,m}k , non-

negative matrix factorization (NMF) finds two non-

negative matrices 
n kW  and 

k mH   such 

that .A WH   (1.1) 

Here, every column of the data matrix A  is 

approximated by a positive linear combination of 

columns of the positive matrix  W .  So each column of 

H  is a reduced representation of the corresponding 

column of the data matrix .A  The main advantage of 

this factorization is positivity of its factors, which gives 

a simple interpretation of positive data. Therefore,  

NMF differs from previous methods like principal 

component analysis (PCA) [1].  

Due to this advantage, this factorization have been 

used in different applications such as data mining, 

computer vision, bioinformatics and most others as a 

dimension reduction, classification or clustering method 

[2-4]. 

Mathematically NMF factorization can be modeled 

as the following constraint non-convex minimization 

problem 
, 0min || A WH ||W H   , (1.2) 

where ||.|| denotes   the Frobenius norm.  

It’s more than a decade Paatero and Tapper [5] 

proposed an algorithm for NMF named positive matrix 

factorization. But NMF took off after introducing 

multiplicative updates rules (MUR) of Lee and Seung 
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[6-7].  

Recently, the main proposed NMF methods are based 

on the alternating nonnegative least squares (ANLS) 

framework. Methods like projected Quasi-Newton [8], 

projected gradient [9], active set [10], [11] and block 

principal pivoting [12] are well-known examples in this 

approach. An inexact form of ANLS is alternating least 

squares (ALS) algorithm [13] which is a simple and fast 

algorithm for NMF. 

At each step of each method in alternating least 

square class, two convex nonnegative least square sub-

problems should be solved, which is very time 

consuming for real world and large scale applications. 

In this paper we propose a method that project the 

NMF sub-problems to small appropriate spaces and use 

the solution of these reduced sub-problems as 

approximations of NMF factors. 

It’s clear that solving these projected sub-problems is 

faster than solving original sub-problems. By choosing 

suitable projection (such as singular vectors of SVD), 

we can hope to  have a good approximations of  

solutions of the original problem. 

Since nonnegative matrix factorization is an non-

convex problem, so initialization of factor matrices for 

NMF algorithms is very important. Initialization 

techniques should be able to provide good suggestions 

(starting points) in a reasonable time. We show that 

projected version of ALS can be used as an initialization 

method for other NMF algorithms.   

Experimental results on some well-known data sets, 

confirm the power of proposed method in speeding up 

the ALS and ANSL based algorithms. 

The rest of this paper is organized as follows. In the 

second section, we provide a brief overview of several 

existing NMF algorithms. In third section, a framework 

based on projection for computation of NMF will be 

presented. Fourth section, contains some experimental 

results on well know data sets. Finally, the conclusion is 

given in the last section. 

 

Materials and Methods 

In this section, we provide a brief overview of the 

several existing NMF algorithms and then introduce our 

proposed algorithm  based on space projection. 

 

1.   Methods for computing NMF factorization 

Although there are different methods in computation 

of nonnegative matric factorization but they can be 

categorized to three main classes. They are 

multiplicative update rules, alternating non-negativity 

constrained least squares (ANLS)  and gradient 

approaches.  

One of the most commonly utilized NMF algorithms 

developed by Lee and Seung [6], [7] is based on 

multiplicative update rules of W  and H  as follows: 

( )

(W WH)

T

bj

bj bj T

bj

W A
H H ,     (2.1) 

where 1 b k   and1 j m  . Also for 

1 i n   and 1 a k   we have 

(AH )

( )

T

ia
ia ia T

ia

W W
WHH

 .       (2.2) 

 

These rules are a variation of the gradient descent 

method. Many various algorithms have been developed 

for solving Eq. (1.2) after Lee and Seung’s popular 

algorithm. 

The original NMF problem of Eq. (1.2) is not convex 

with respect to both variables W  and H  at the same 

time. But this with respect to one of factors is convex 

and easy to solve.  Methods in Alternative nonnegative 

least square class (ANLS), use this fact in computation 

of NMF factors. So methods in the second ANLS 

approach, reformulate the non-convex problem to two 

convex sub-problems: 
2

0
min || A WH ||
H 

 ,  (2.3) 

With fixed  W  , and 
2

0
min || A H W ||T T T

W 
 ,  (2.4) 

 

where H  is fixed. This framework which is 

illustrated in the Algorithm 1, alternatively fixes one 

matrix factor and improves the other until a 

convergence criterion is satisfied. Different algorithms 

to solve these subproblems give different algorithms in 

ANLS class. 

 

Algorithm 1. ANLS 

1:  input: n kW   

2:  output: n kW  and  k mH   

3:  initialize 𝑊 ≥ 0 

4:  while some condition holds do 

5: solve 2

0
min || A WH ||
H 

  

6: solve 2

0
min || A H W ||T T T

W 
  

7: end while 

 

ANLS can be considered as a 2-block coordinate 

descent method [14-15]. According to presented result 

in [16], any limit point of the sequence { , }W H  

generated by ANLS is a stationary point of Eq. (1.2). 

Achieving a stationary point is a goal that should be 
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mentioned in most algorithms of NMF. 

It’s important to know how we can solve sub-

problems Eq. (2.3) and Eq. (2.4). There are several 

algorithms that solve sub-problems exactly. Kim and 

Park in [10] described applying a fast combinatorial 

NNLS (FC-NNLS) algorithm suggested by Benthem 

and Keenan [17]  in solving constrain  sub-problems Eq. 

(2.3) and Eq. (2.4). In FC-NNLS all the columns of 

current solution with the same passive sets are identified 

and collected together. FC-NNLS computes the 

appropriate pseudo-inverses and solves an 

unconstrained least squares problem for the passive 

variables. We address [17] for more details of FC-

NNLS algorithm. But a limitation of the active set 

method is that typically only one variable is exchanged 

between working sets. Recently, Kim and Park have 

applied block principal pivoting method that allows the 

exchanges of multiple variables with a goal of finding 

the optimal active and passive sets faster [12]. 

Projected gradient methods is another approach to 

solve convex sub-problems Eq. (2.3) and Eq. (2.4). In 

basic gradient based algorithm, these sub-problems are 

considered as unconstraint least squares problem. In 

each iteration of this algorithm calculating gradient, 

choosing step size and projecting the update on the non-

negative space should be done. Another variant of this 

approach can be found in in [9]. 

 In inexact form of ANLS i.e. that will be denoted by 

ALS, the sub-problems Eq. (2.3) and Eq. (2.4) are 

solved as an unconstrained least squares problem. To 

enforce non-negativity in the solutions of normal 

equations, every negative element is set to zero. The 

ALS (inexact ANLS) illustrates in Algorithm 2. 

Although this inexact algorithm doesn’t produce better 

approximation errors but it spends significantly less 

time. To get the other algorithms or their variants, see 

references [10], [13] and the references therein. 

 

 

Algorithm 2. Inexact ANLS (ALS) 

1: input: 
n kW   

2:Output: 
n kW  and  

k mH   

3: Initialize 0W   

4: While some condition holds do 

5: Solve 
2

0
min || A WH ||
H 

  and  

        set all   negative elements in H  to 0. 

6: Solve 
2

0
min || A H W ||T T T

W 
  and 

        set all negative elements in W to 0 

7: End while 

 

1.2   ALS  Approach as  an Initialization Method for 

ANLS Algorithms 

Since in ALS algorithms only unconstraint least 

square problems should be solved,  they can be 

implemented very fast.  But their precision is less than 

methods based on ANLS approach.  

On the other hand the solution and convergence 

provided by NMF algorithms usually are sensitive to 

the initialization of W and H.  So, by having a good 

initialization we have faster convergence to an 

improved local minimum.  

For solving this problem one can use an ANLS 

algorithms several times and set its best solution as 

NMF factorization result. But this is very time 

consuming. Rapid implementation of ALS algorithms 

enable us to use them as an initialization algorithm for 

ANLS algorithms.    Recently, a robust initialization 

based on ALS algorithms is illustrated in [14] that can 

be seen in Algorithm 3.  

In this algorithm we use one simple and rapid NMF 

algorithms such ALS based methods. 

Here we run these algorithms several time with few 

iteration and different initial values. 

Then use the best solution of these implementations 

as an initialization of powerful ANLS algorithms. 

 

Algorithm 3. ALS-based initialization 

1: Input: 
0

n kW   and 
0

k mH    

2: Output: W and H  

3: for 1: cj   do   

4:  Initialize randomly 0W  and 0H  

5:    0 0{W ,H } ALS(A,W ,H ,d)j j    

7: end for 

8: min 1arg min ||| A W H ||j c j jj     

9: 
minjW W and 

minjH H  

 

2.1 A Projection based  ALS  algorithms for 

computation of NMF 

In this section we propose a fast method for 

computing nonnegative matrix factorization, based on 

projection of its sub-problems into appropriate 

subspaces. 

Let Q n n   be an orthogonal matrix. Since 

Frobenius norm is invariant under orthogonal 

multiplication, for arbitrary matrix  
n mA   , we 

have 2 2|| A || || Q A ||T .   (3.1) 
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Now, if  
1 2Q [Q ,Q ]   where 

1Q n l and

(n )

2Q n l  , for l n   , equation (3.1) becomes 

2 2 2

1 2|| A || || Q A || || Q A ||T T  .   (3.2) 

For some appropriate transforms such as singular 

matrices in SVD decomposition [18], Cosine 

transformation and some other transformations, the first 

term 
2

1|| Q A ||T
could be a good approximation of 

2|| A || , even for small dimension l . For example, 

consider the data matrix A  as the CBCL data set of the 

size 361 2429  [19]. Here we use the first left 

singular vectors of A as a projection matrix. Figure 1 

show the relative error between  2|| A ||  and  2

1|| Q A ||T  

defined as 
2 2 2

1Re(l) (|| A || || Q A || )/ || A ||T  , 

for different values of  𝑙. This figure demonstrates 

that even for small vales of the index 𝑙,  
2

1|| Q A ||T
 is 

an appropriate approximation of 
2|| A ||  .Due to this 

fact we can substitute the sub-problems of NMF 

algorithms with small appropriate projected sub-

problems and hope that its solution could approximate 

the solution of the original sub-problems. 

 

Now consider the first sub-problem 
2min || WH A || . 

By appropriate projection matrix 1Q  this 

minimization problem can be substituted with the 

following closed and smaller minimization problem 
2min || H ||W A , 

where,  

1QTW W  , 
1QTA A . 

It is clear that the complexity of solving this small 

problem is more less than the original problem.  The 

same process can be done for the second sub-problem. 

By this approach the transformed version of ALS 

algorithms (TALS) can be summarized in Algorithm 4. 

This approach is very fast and can be used to find 

NMF factorization or as an initialization method for 

ANLS algorithms. 

 

Results 

In this section to show the performance of our 

proposed method, Some experimental results on  some 

well-known datasets with nonnegative elements has 

been reported. Our used data sets are: 

 The CBCL database [19]: The size of this data set 

is 361 2429  which contains 2429 face images with 

19 19 pixels per image. 

  The ORL database [20]: The data set is a 

10304 400  matrix, which contains 400 face images 

of size 92 112 . To reduce the computational com 

plexity, all the ORL images were manually aligned and 

cropped to size 32 32 . 

All experiments have been done in Matlab and 

computer with  Intel(R) 2.10 GHz and  2GB memory. 

First our proposed ALS method applied to find NMF 

of ORL  and CBCL data sets. Here the left singular 

vectors of data sets used as the projection operator. 

There are several methods to solve the unconstrained 

sub-problems in ALS method. In our experiments we 

used QR factorization [18] .   

Figures 2 and 3 show the relative error 

Algorithm 4. Transformed ALS (TALS) 

1: Input:  

    Data matrix 
n mA   

    Initial matrix 
n kW   

     Projection matrices 1

1Q
n l

 and 2

1

m l
P


 . 

2: Output: 
n kW  and 

k mH   

3: Compute  1QTA A  and  1

T TA P A  

4: While some condition holds do 

       a)  1QTW W  

       b) solve min || H ||W A  

       c)  compute 
1

T TH P H  

       d)  solve min || W ||TH A  

10: end while 

 

Figure 1. Relative errors of approximation of  CBCL 

database for different values of l . 
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|| A WH || / ||| A | | for CBCL and ORL data sets when  

15k   and dimensions of projections for the first 

and second subproblems are 1 100l   and 2 100l  , 

respectively. Here proposed TALS method have better 

results in comparision with ALS.  

This  is occured based on denoising prpoperty of the 

first singular vectors. More detailes also can be seen In 

the Table 1. These results demonstrate that by TALS 

method  we obtaine better results in less time in 

comparison with ALS method. 

Also we used TALS and ALS methods as 

initialization methods in Algorithm 3 for ANLS 

algorithm and compare their quality in producing good 

initial points. As we mentioned before, ANLS is an 

approach and different algorithms in solving its sub-

problems lead to different NMF solvers. So our methods 

can be adjusted with different algorithms. 

 In this paper we used active set algorithm based 

method for solving nonnegative sub-problems of 

original and projected models [10]. Also the following 

criteria  
1| f f | / | f |k k k     , (4.1) 

where || A W H ||k k kf    and 1 4e   , has 

been used as the stopping condition in the line 4 of the 

Algorithm 1. The inner iterations c   and  d  in 

Algorithm 3 are considered as 10.  

We apply ANLS algorithm based on ALS and TALS 

initialization method on CBCL and ORL databases 

which k  is 49 and 25 for these data sets, respectively. 

Table 2 shows the time and number of iteration of 

these two methods to achive stopping condition. Also 

the final relative error defined  as || A WH || / || A || , 

 
 

Figure 2. Relative errors of ALS  and TALS algorithms for CBCL data set with 15k   , 1 100l  and 2 100l  . 

 
Figure 3. Relative errors of ALS and TALS algorithms for ORL data set with 15k   , 1 100l  and 2 100l  . 
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(4.2) has been reported in this Table.  From this table its 

clear that ANLS method with TALS initialization  

achives the same relative   error   as  ANLS with ALS 

initialization. But its consuming time is very smaller 

than ALS based initialization. 

Table 2 shows the time and number of iteration of 

these two methods to achieve stopping condition. Also 

the final relative error defined as  || A WH || / || A || , 

(4.2) has been reported in this Table.  From this table it 

is clear that the ANLS method with TALS initialization 

archives the same relative error as the ANLS with ALS 

initialization. But its consuming time is very smaller 

than ALS based initialization. 

Also Figure 4 shows the consuming time by ALS and 

TALS method in initialization step of ANLS method for 

different outer iterations 1,...,10c d  . From this 

figure, it is clear that the time by ALS algorithm is less 

than time by ALS algorithm and their difference by 

increasing of outer iterations becomes larger. 

In the end we compare our initialization TALS based 

method with the well-known SVD based method [21]. 

The numerical results based on SVD for both of 

databases CBCL and ORL are reported in Table 3.  For 

CBCL our proposed method is faster than SVD based 

method and for ORL data set they have almost the same 

time.  

Discussion 

In this paper we proposed a fast ALS type method 

based on projection of  data to an appoperiate subspsces. 

It has been shown that this method can improve both 

approximation and time of convergence in ALS based 

methods. This method does not depend on subproblems 

solving method  and so it can be adjust with every 

method based on alternating approach.  
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