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Abstract: This paper deals with the dynamic analysis of stress field in cylindrically layered 
structures reinforced by carbon nanotube (CLSRCN) subjected to mechanical shock loading. 
Application of meshless local integral equations based on meshless local Petrov-Galerkin 
(MLPG) method is developed for dynamic stress analysis in this article. Analysis is carried 
out in frequency domain by applying the Laplace transformation on governing equations and 
then the stresses are transferred to time domain, using Talbot inversion Laplace techniques. 
The mechanical properties of the nanocomposite are mathematically simulated using four 
types of carbon nanotube distributions in radial volume fraction forms. The propagation of 
stresses is indicated through radial direction for various grading patterns at different time 
instants. The effects of various grading patterns on stresses are specifically investigated. 
Numerical examples, presented in the accompanying section 4 of this paper, show that 

variation of *

CNV  has no significant effect on the amplitude of radial stresses. Examples 

illustrate that stress distributions in cylindrical layer structures made of a CNT type L are 
more sensitive rather than other grading pattern types of CNTs. Results derived in this 
analysis are compared with FEM and previous published work and a good agreement is 
observed between them.  

Keywords: Carbon nanotube, Cylinder, Dynamic analysis, Layered-structures, Meshless 
local Petrov-Galerkin method. 

 

INTRODUCTION
 
 

Laminated fiber reinforced composites are 

widely used in light weight structures. 

Recently, a new member of the advanced 

material family called carbon nanotube- 

reinforced composites was introduced by 

Esawi et al. (2007). Carbon nanotubes with 

particular stiffness and strength have been 

noted as ideal reinforcements of 

composites. Carbon nanotubes, which are 
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graphitic sheets rolled into seamless tubes, 

are a new nanoscale material discovered 

by Iijima (1991). These materials are 

currently receiving much attention due to 

their interesting properties, and various 

methods have been presented for assessing 

their attributes. Lu (1997) presented an 

experimental model for prediction of the 

elastic attributes of single and multilayered 

nanotubes. 

The literature review revealed that the 

dynamic problem and wave propagation 
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analysis of FGMs have been carried out. 

Gilhooley et al. (2008) employed the 

MLPG method for two-dimensional stress 

analysis of functionally graded solids, 

using radial basis functions. In their work, 

static and dynamic deformations of 

functionally graded materials (FGMs) 

were studied in detail, considering both 

linear elastic and linear viscoelastic 

simulations. The dispersion behavior of 

waves in a functionally graded elastic plate 

was studied using laminate plate theory by 

Chen et al. (2007). Hosseini et al. (2007) 

studied dynamic response and radial wave 

propagation velocity in thick hollow 

cylinder made of FGMs. They solved the 

Navier equation using the Galerkin finite 

element and Newmark methods. Scattering 

relations were obtained by considering the 

continuity conditions at the interfaces 

between any two layers and the boundary 

conditions at the upper and lower surfaces. 

In another work, elastic radial wave 

propagation and dynamic analysis of 

functionally graded thick hollow cylinders 

was studied by Hosseini and Abolbashari 

(2010). They proposed an analytical 

method for the dynamic response analysis 

of functionally graded thick hollow 

cylinders under impact loading. Bahmyari 

and Rahbar-ranji (2012) applied element 

free Galerkin method for free vibration 

analysis of orthotropic plates with variable 

thickness resting on non-uniform elastic 

foundation. They considered the effects of 

thickness variation, foundation parameter 

and boundary conditions on frequency. 

The thermo-elastic wave propagation was 

stochastically studied using a hybrid 

numerical method (GFE, NFD and Monte 

Carlo simulation) for isotropic and 

functionally graded thick hollow cylinder 

by Hosseini and Shahabian (2011a,b). 

Similar to this study, in the design and 

analysis of laminated composite cylinders, 

axisymmetric loads and axisymmetric 

geometries were often assumed for 

developing closed-form analytic solutions. 

In addition, the cylinder is assumed to 

have an infinite length such that the 

stresses are not only independent of the 

circumferential coordinate but also 

independent of the axial coordinate.  

Approximate solutions of realistic 

engineering problems are usually obtained 

numerically. Recently, many meshless 

methods have been proposed to solve these 

problems (Sladek et al., 2013). Meshless 

methods such as the element-free Galerkin 

(EFG) method, the Reproducing Kernel 

particle method (RKPM), hp-clouds, the 

partition of unity method (PUM), the 

meshless local PetrovïGalerkin (MLPG) 

method, the smoothed particle 

hydrodynamics (SPH), the corrected 

smoothed particle hydrodynamics (CSPH), 

and the modified smoothed particle 

hydrodynamics (MSPH), have attracted 

considerable attention (Sladek et al., 2013).  

Recently, radial basis functions (RBFs) 

have been employed to solve partial 

differential equations and to approximate 

the trial function in meshless methods 

(Singh et al., 2011). The modified multi 

quadrics (MQ) and the thin plate spline 

(TPS) radial basis functions have been 

successfully employed to approximate a 

trial solution in the MLPG formulation 

(Xiao et al., 2003) for solving 2D elastic 

problems. The MQ and TPS radial basis 

functions have been employed for the 

analysis of homogeneous and laminated 

plates (Xiao et al., 2008). Singh et al. 

(2013) used meshless collocations method 

by applying Gaussian and MQ radial basis 

functions, for the stability analysis of 

orthotropic and cross ply laminated 

composite plates subjected to thermal 

mechanical loading. Meshless methods 

have been used to analyze deformations of 

structures comprised of FGMs. Ching et al. 

(2005) used the MLPG method with test 

function equal to the weight function, to 

generate the MLS basis function for the 

study of transient thermoelastic 

deformations of FG solids. 

In this study, the transient stress analysis 

of multilayered FG nanocomposite cylinder 
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reinforced by carbon nanotube is 

investigated for four types of 

nanocomposites, using MLPG method. In 

MLPG method, a Heaviside step function 

was assumed to be a test function. The 

obtained results are compared with data 

reported in previous studies. The application 

of MLPG method has a high capability to 

study the effects of carbon nanotubes with 

grading distributions for reinforcement of 

composite structures.  

Contributions of this work include 

using the performance of the MLPG 

method, for a class of dynamic problems 

for non-homogenous layered bodies. It is 

found that for dynamic problems, the 

MLPG method give results that compare 

very well with those obtained in previous 

research. 

Programs of the MLPG method are 

developed in MATLAB, and a number of 

numerical examples of free vibration 

analysis are presented to demonstrate the 

present method. The effect of some 

important parameters such as CNT types 

and CNT volume fractions on the stress 

wave propagation at the different points of 

cylindrical layered structures reinforced by 

CNT is also investigated thoroughly, and 

the results are presented in details. 

MATERIAL PROPERTIES OF 
CARBON NANOTUBE   

Consider a cylindrically layered structure 

with three layers in which the inner and 

outer layers are made of functionally 

graded materials and middle layer is 

isotropic. In this paper, each carbon 

nanotube reinforced composite (CNTRC) 

layer is made from a mixture of SWCNT, 

graded distribution in the radial direction, 

and material matrix with isotropic material 

property. Various micromechanical models 

have been proposed to calculate the 

effective material properties of CNTRCs 

(Seidel et al., 2006). 

According to the extended rule of 

mixture, the effective Youngôs modulus 

and shear modulus can be found as (Shen, 

2009): 
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where 
1 2 12,E , ,ɡCN CN CN CNE G and CNr : are 

elasticity modulus, shear modulus, Poissonôs 

ratio and density of the carbon nanotube, 

respectively, and , ,ɡm m mE G , mr : are 

corresponding properties for the matrix. The 

parameters CNV  and mV : are volume 

fractions of carbon nanotube and matrix, 

respectively. The subscripts CN and m: stand 

for carbon nanotube and matrix. The terms 

( )1,2,3J Jx = : are CNT efficiency 

parameters. Four types of variation of CNT 

along the radial direction of cylinder were 

proposed as follows (Figure 1). 
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The term CNm : is the mass fraction of 

nanotube. 
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Fig. 1. Four types of variation of nanotube volume fraction ( )CNV  along the radial direction 

 

Basic Formulations 

Considering a 2D elasto-dynamic 

problem, the constitutive equations in a 

domain W are written as: 
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According to Hookôs law: 
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where ů and Ů: are the stress and strain 

tensors, ,r zu u and ,r zB B : are the 

displacement and body force components, 

respectively, and r: is the mass density. 

D : denotes for the elastic constants, 

which are defined as follows: 
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In this study, it was assumed that the 

body force is zero. 

 
Local Weak Form 

A weak form of Eqs. ()9  and ( )10  in 

polar coordinate over a subdomain qW  

which is bounded by qG  as shown in 

Figure 2, obtained using the weighted 

residual method is: 
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where ( ),rW r z  and ( ),zW r z  are the 

weighted functions at the field nodeI .  

By applying divergence theorem 

relation in the above equations, it can be 

concluded that: 
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The test and trial function can be 

chosen from different functional spaces. 

Here, having chosen the test function as 

the Heaviside unit step function with 

support on the local subdomain. 
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Fig. 2. Local domains used in the MLPG method 
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where qG : is composed of three parts, 

i.e., q qi qu qtG =G ÇG ÇG as shown in Figure 

2. Here qiG : is the internal boundary of the 

quadrature domain, which does not 

intersect the global boundary G; quG : is 

the part of the prescribed generalized 

displacement boundary that intersects the 

quadrature domain, i.e., qu q uG =G ÆG; 

qtG : is the part of the prescribed 

generalized traction boundary that 

intersects the quadrature domain, i.e., 

qt q tG =G ÆG. 
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in which 

 

ůr r rr z rzt n nt= +  (24) 

ůz z zz r rzt n nt= +  (25) 

 

where rt  and zt : are radial and axial 

tractions respectively, and rn  and zn : are 

unit vectors in r  and z  directions, 

respectively. 

 
Interpolation Using Radial Basis 
Functions 

In the MLPG method, the global domain 

of the problem was divided into many 

subdomains, a weak-form over the local 

sub-domains such as ñqWò was constructed. 

These sub-domains can overlap with each 

other, and cover the whole global domain 

(Figure 2). The local sub-domains could be 

of any geometric shape such as circle and 

rectangular with various sizes. In the 

present paper, the local sub-domains were 

taken to be of a circular shape for 

simplicity. In such a case, the calculation of 

domain-integrals is quite easy. 

In this study, the Laplace 

transformation was used to solve the time 

domain equilibrium equation. According to 

Eqs. ( )22  and ( )23 , by using Laplace 

Transformation concept the proposed 

relationship is as follows. 
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he multilayer cylindrical structure is 

discretized by the nodes located on the 

problem domain. The nodal variable is a 

fictitious displacement component (r, z), in 

the polar coordinate system. In the MLPG 

method, the trial function was chosen to be 

the interpolation over a number of nodes 

randomly distributed within the domain of 

influence. For the spatial distribution of 

function ñuò, we applied the meshless 

approximation over a number of nodes 

randomly distributed within the domain of 

influence, using the radial basis function 

(RBF). Thus, components displacement 

variable can be expressed as:  
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where ri
a and zi

a  are the coefficients for 

the radial basis ()iR r  that is:  

 

() 2 2
q

iR r r cè ø= +ê ú (31) 

where the terms c  and q  are constant 

positive values. The number of radial basis 

functions n was determined by the number 

of nodes in the support domain. This form 

of shape function has been widely used in 

surface fitting and in constructing 

approximate solutions for partial 

differential equations. The vector R  has 

the form: 
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which are the set of radial basis functions 

centered around" "ir , and vectors ra and 

za : are defined as: 
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From the interpolation Eqs. ( )28  and 

( )29  for the radial functions, the following 

system of linear equation for the 

coefficients ñra ò and ñza ò were obtained 

as: 
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are respectively composed of the time 

variable nodal values of displacements 

ñ ()i

ru t ò and ñ ()i

zu t ò while 0R  : is the 

matrix defined by nodal values of the 

RBFs as: 
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To calculate the vector ñ()ra t ò and 

ñ ()za t ò, we can write from Eq. ( )34 . 
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The approximated function can be 

expressed in terms of the nodal values and 

the shape function as:  
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where ()i rf : is the shape function 

associated with the node i. The nodal 

shape functions are given by: 
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By extending the Eq. (11), it can be 

concluded that: 
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By substituting Eqs. ( )38 and ( )41  in 

Eq. ( )26 : 
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(42)  

Similar to the above equation, by substituting Eqs. ( )39 and ( )41  in Eq. ( )27 : 
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By inverse Laplace transform 

approaches such as Weekôs method, Postôs 

formula or Talbotôs method time-

dependent values in previous equation can 

be calculated. In the present analysis, the 

time-dependent values of the transformed 

quantities in the previous consideration 

obtained by the Talbot method (Abate et 

al., 2004). The Talbot method is based on 

deformation of the Bromwich inversion 

integral contour. A good review of the 

above method is given in Davies (2002) 

study. In fact, we recommend reading that 

chapter because it provides a sense of 

numerical calculation considerations in a 

computing environment.  

The formula for this method to 

numerically calculate ()iu t  can be written 

as: 
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where n: is the number of samples and  
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NUMERICAL RESU LTS AND 

DISCUSSION 

In this study, to verify the presented 

method and results, a problem was solved 

with geometry and boundary conditions 

used by Moussavinezhad et al. (2013). The 

comparison between results obtained from 

the presented method with those reported 

by Moussavinezhad et al. (2013) show 

good agreement (Figure 3). 
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Fig. 3. The comparison of obtained results from MLPG with those using Moussavinezhad et al. (2013) for 

radial stress 

 

The following boundary conditions and 

parameter values were used to verify the 

results. 

 

ů ( , ) ( )r i ir t P t=  (47) 

( )ů , 0r or t =  (48) 

 

So that, 

 

() 0 0

00

¢ë
=ì

>í
i

P t t t
P t

t t
 (49) 

 

where ñ0 4P GPa Sec= ò and 

ñ0 0.005t Sec=  ò. 

 

0CN mV V= = (50) 

1 2 3 1x x x= = = (51) 

 

To show the accuracy and capability of 

the MLPG method, a multilayered 

composite cylinder with infinite length is 

presented with ó 0.25ir m= ô and 

ó 0.5or m= ô, which are inner radius and 

outer radius, respectively (Figure 4). 

 

 
Fig. 4. Cylindrically layered structure with three layers
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Table 1 shows the geometry properties 

of multilayered cylinder in which the inner 

and outer layers are made of FGCNTs with 

four types of distributions as shown in 

Figure 1. The middle layer is made of 

isotropic material. The inner and outer 

layers consist of polymethyl-methacrylate 

(PMMA) as matrix, with CNT as fibers 

aligned in the circumferential direction. 

Properties of these two kinds of materials 

are presented as: 

For PMMA (Shen, 2011): 
32.5 , 1150m mE GPa kg mr= = ,ɡ 0.34.m =  

For SWCNT (Shen, 2011): 

1 2 12

3

12

5.6466 , 7.0800 ,

1.9445 , 1400 ,ɡ 0.175.

CN CN CN

CN CN

E TPa E TPa G

TPa kg mr

= =

= = =
 

For middle layer: 
370 , 2707 ,ɡ 0.3m m mE GPa kg mr= = = .  

The time histories of hoop and radial 

stresses of middle point on thickness of 

cylindrically layered structure are 

illustrated in Figure 5, for various types of 

CNV  distributions along the radial direction 

with 0.12CNV * =  and 0.28CNV * = . 

  
()a  ()b  

  
()c  ()d  

Fig. 5. Time history of radial stress and hoop stress for the middle point of cylinder thickness for various grading 

patterns of CNV  
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Table 1. Geometry property of three layered cylinder 

Material type 
max

r (cm) min
r (cm) ( )Thickness cm Positionof layer 

FGCNTs type1-4 30 25 5 inner layer 

Iso 45 30 15 middlelayer 

FGCNTs type1-4 50 45 5 outer layer 

 

As shown in this figure, it can be 

concluded that CNT distribution types have 

little effect on the amplitude of radial stress 

as compared to hoop stress. By comparing 

stresses plotted in Figure 5, the following 

results can be obtained: First, the variation 

in CNTs type distributions along radial 

direction has more effect on the time 

history of hoop stress. Second, the 

maximum hoop stress and the maximum 

radial stress are achieved when CNT 

variation type is V . Third, the minimum 

hoop stress and minimum radial stress were 

achieved when CNT variation type is L. 

Figures 6 and 7 depict the time history 

of radial stress and hoop stress at middle 

point on the thickness of multilayer 

nanocomposite cylinder for various values 

of CNV *  and four types of CNTs 

distributions. 

  
()a  ()b  

  
()c  ()d  

Fig. 6. Time history of radial stress at middle point of cylinder thickness for various values of CNV *
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By comparing stresses plotted in these 

figures, it is concluded that the variation in 

CNV * reduces the magnitudes of hoop stress 

and has little effect on radial stress. These 

conclusions are further supported by 

results plotted in Figures (6c) and (7c), 

where stresses are plotted for Lgrading 

pattern with varying CNV * . These results 

imply that increasing CNV * leads to 

decreased hoop stresses as would be 

expected since the CNT is aligned in 

circumferential direction.  

From these figures, it is understood that 

Lgrading pattern has more effect on 

reduction of hoop stress and V grading 

pattern has little effect on reduction of 

hoop stress with various values of CNV * . As 

an example, the layered cylinder with inner 

and outer layer made of LCNT grading 

pattern and isotropic middle layer with 

varying CNV * is analyzed here. Comparison 

of the radial stress and hoop stress at 

different point of layered cylinder is shown 

in Figure 8. 

 

  

()a   ()b  

  
()c  ()d  

Fig. 7. Time history of hoop stress at middle point of cylinder thickness for various values of CNV *
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() *: 0.12CNa V =   () *: 0.28CNb V =  

  
  

Fig. 8. Time history of radial stress and hoop stress for middle point on thickness of each layer 

 

From these figures, the following 

properties of time history of radial stress 

and hoop stress were observed: 

First, by varying the point of stress from 

the inner to the outer area of the layered 

cylinder, both time history variation 

stresses decreased. Second, the hoop stress 

is the most sensitive to the  variation. 

Third, the minimum radial stress occurs 

when . The effect on the 

hoop stress plotted in Figures (8c) and (8d) 

is more involved, with increasing radius. 

Fourth, the radial distance  has a vital 

effect on the amplitude of stresses. When 

 changes from 0.25 to 0.5, amplitude of 

radial stress and hoop stress decreases. 

Fifth, time history of hoop stress is more 

sensitive to variation of with respect to 

the time history of radial stress. 

CONCLUSIONS 

In this article, a multilayer functionally 

graded nanocomposite cylinder reinforced 

by carbon nanotubes under shock loadings 


