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Abstract: This paperdeals withthe dynamicanalysis ofstressfield in cylindrically layered
structures reinforced by carbon nanotube (CLSR8M)ected to mechanical sholdading.
Application of meshless local integral equations based on meshless local-@Galedkin
(MLPG) methodis developed for dynamic stress analysighis article Analysis iscarried
outin frequency domain bgpplying theLaplace transformatioon governing equationand
then the stress are transferred to time domaiasing Talbotinversion Laplacdechniques.
The mechanicaproperties ofthe nanocompositeare mathematically simulatedsing four
typesof carbon nanotubdistributions inradial vdume fractionforms The propagatiomof
stressess indicated through radial direction for various grading patterns at different time
instants. The effects of various gradipgtternson stresses arspecifically investigated
Numerical examples, presentéd the accompanying section 4 of this paper, shbat
variation of vV, has no significant effect on the amplitude of radial stresSgamples
illustrate that stress distributions in cylindrical lagtructures made af CNT type L are
more sensitive rather than other grading pattern types of CRdsults derived in this
analysisare compared with FEM and previous published work @andood agreemenis
observedetween them.

Keywords Carbon nanotuheCylinder, Dynamic analysis Layeredstructures,Meshless
local Petre-Galerkin method

INTRODUCTION graphitic sheets rolled into seamless tubes,
are anew nanoscalenaterial discovered
Laminated fiber reinforced compositase by lijima (1991) These materialsare
widely used in light weight structures.  cyrrently receiving much attention due to
Recently, a new member ttie advanced their interesting properties, and various
material family called carbon nantbe methods have been presenteddssessing
reinforced corpositeswas introduced by their attributes. Lu (1997) presented an

Esawiet al.(2007). Carbon nanotubes with  experimental moel for prediction of the

particularstiffness and strength have been  g|astic attributes of single and multilayered
noted as ideal reinforcements of nanotubes.

compositesCarbon nanotubes, which are The literature review revealed thathe
dynamic problem and wave propagation
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analysis of FGMshave beercarried out.
Gilhooley et al. (2008) employed the
MLPG method for twedimensional stress
analysis of functionally graded solids
using radial basis functions. In their work,
static and dynamic deformations of
functionally graded materials (FGMSs)
were studied in detailconsidering both
linear elastic and linear viscoelastic
simulations. The dispersion behavior of
waves in a functionally graded elastic plate
was studied using laminate plate theory by
Chen et al.(2007) Hosseini et al(2007)
studied dynamic response and radial wave
propagation velocity in thick hollow
cylinder made of FGMs. They solved the
Navier equationusing theGalerkin finite
element and Newmark method®eattering
relationswere obtainedy considering the
continuity conditions at the interfaces
between any two layers and the boundary
conditions at the pper and lower surfaces.
In another work, elastic radial wave
propagation and dynamic analysis of
functionally graded thick hollow cylinders
was studid by Hosseini and Abolbashari
(2010) They proposed an analytical
method for the dynamic response analysi
of functionally graded thick hollow
cylinders under impact loadin@ahmyari
and Rahbarranji (2012) applied element
free Galerkin method for free vibration
analysis of orthotropiplates with variable
thickness resting on nemmiform elastic
foundation.They considered the effects of
thickness variation, foundation parameter
and boundary conditions on frequency.
The thermeelastic wave propagation was
stochastically studied using a hybrid
numerical method (GFE, NFD and Monte
Carlo simulation) for isotrap and
functionally graded thick hollow cylarer
by Hosseini and Shahabia011a,b.
Similar to this study, n the design and
analysis of laminated composite cylinders,
axisymmetric loads andaxisymmetric
geometries were often assumed for
developing closgform analytic solutions.
In addition, the cylinder is assumed to
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have an infinite length such that the
stresses are not only independent of the

circumferential coordinate but also
independent of the axial coordinate.
Approximate solutions of realistic

engineering problemsire usually obtained
numerically. Recently, many meshless
methodshave beemproposed to solve these
problems (Sladek et al.2013) Meshless
methods such ahe elenentfree Galerkin
(EFG) method the ReproducingKernel
particle method(RKPM), hpclouds the
partition of unity method (PUM) the
meshless localPetrov Galerkin (MLPG)
method, the smoothed particle
hydrodynanics (SPH) the corrected
smoothd particle hydrodynamics (CSPH)
and the modified smootte particle
hydrodynamics (MSR), have attracted
considerable attentidi$ladek et a).2013)

Recently, radiabasis functions (RBFs)
have been employed to solvpartial
differential equationsand to approximate
the trial function in meshless methods
(Singh et al 2011). The modified multi
guadrics (MQ) and the thin plate spline
(TPS) radial basis functions have been
successfully employed to approximate a
trial solution in the MLPG formulation
(Xiao et al, 2003) for solving 2D elastic
problems. The MQ and TP&dial basis
functions have been employedor the
analysis of homogeneousnd laminated
plates (Xiao et al, 2008) Singh et al.
(2013 used meshless collocations method
by applying Gussian and MQ radial basis
functions for the stability analysis of
orthotropic and cross ply aiinated
composite plates subjected to thermal
mechanical loading.Meshless methods
have been used @nalyzedeformations of
structures emprised of FGMsChing et al.
(2005) used the MLPG method with test
function equal to the weight functipmo
generag the MLS basis functiofior the
study of  transient thermoelastic
deformations of & solids

In this studythe transient stresmalysis
of multilayered FG nanocomposite cylinder
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reinforced by carbon nanotubeis and $iear modulus can be found @&hen
investigated for  four  types  of 2009)
nanocompos#ts using MLPG methodIn
MLPG method a Heavisidestep function E,=xV, E" «_ E" (1)
was assumed to be test function.The
. . x, V \%

obtained results are compared with data 2=+ (2)
reported in previoustudies The application E, E En,
of MLPG method has a high capability to X _Ven Va 3)
study the effects of carhonanotubes with G, GJ' G,
grading distributions for reinforcement of r=Vg, ™ w_ " (4)
composite structures. _

Contributions of this work include Uy Noy §° Ao T (5)
using the performance othe MLPG i, =423 1 |
method for a classof dynamicproblems Voo tV, 4 (6)
for nonhomogenoudayeredbodies. It is
found that for dynamicproblems the where ESN ESN GSV g and rV: are

MLPG method give results that coame
very well with those obtained iprevious
research.

Programs of the MLPG methodre

elasticity modulus, shear modulé#sp i ssonds
ratio and eénsity of the carbon nanotube,
respectively, and E",G™,g",r™: are

developed in MATLAB, and a number of corresponding properties for the matrix. The

numerical examples of free vibration parametersVe, and V,: are volume
analysis are presented to demonstrate the fractions of carbon metube and matrix,
preent method. Theeffect of some respectively. The subscrip®N andm: stand
important parameters such as CNT types for carbon nanotube and matrikhe terms
and CNT volume fractions on the stress X (J=1,2,3: are CNT efficiency
wave propagation at the different paiof parameters. Fouypesof variationof CNT

cylindrical layered structures reinforced by  along the radial directionf cylinder were

CNT is also investigated thoroughly, and  proposeds folows(Figurel).

the results arerpsented in detal

MATERIAL  PROPERTIES  OF ?’w type UD
CARBON NANOTUBE i.ar-r 0.
Tzo'er T N typeV
Considera cylindrically layered structure i EO ! ‘
with three layersn which the inner and Vow =1 ar-r, 6. (7)
12—\ typel

outer layers are made of functionally ;
graded materials and middle layer is i
isotropic. In this paper each carbm 14
nanotube reinforced composi{f€NTRC) !
layer is made from a mixture of SWCNT,

r'r * rI'H'
_""VCN,W 5 e X

graded disibution in the radial direction, where

and material matrix with isotropic material

property. Various micromechanicalodels _ o

have been proposed to calculate the oN ar,, O (8)
effective mataial properties of CNTRCs Men Tae ™ &/en

(Seidel et a].2006) Glen =

According to the extended rule of

mixture, the effectiveY o u n ghadslus The termmg, - is the mass fraction of

nanotube.
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Fig. 1. Four types of variation of nanotube volume fract(MgN ) along the radial direction

o o o

Basic Formulations Jg={ 0 ,p,. 4} U

Considering a 2D elasiynamic Y T
problem, the constitutive equations in a == M= (13)
domainW are writtenas: o '

o Wl W
4, o i

e B2, ) B 8 '

Hr le ' 9 where 0 and U: are the stress and strain

=r(rz)Ek tensors u ,u,and B ,B,: are the
displacement and body force components,

W, MG +]_-trz B, respectively, andr : is the mass density

Hr le r (10) D : denotes forthe elastic constants

=r(r,z) H uzz which aredefined as follows:

é,Dll(r) D) D) O

Accordingt o Hdawk 6 s
gDzl(r) D,(r) D) O

> 14
DZ[D]l (]_1) 2D31(r) D32(I’) D33(I’) 0 ( )
g) 0 0 D55(r)
where
where
={§ 0 0.} (12)
D (r):]-' Os I 19 B %r) _ -~ sl 14509 b ) - %, 10 )rg
. E,(NEq(r)/ % E(NELr) /'~ % E(NELr) /
_ O I +) 519 Hfr ) L ol + gL ) g ()
NG TNGY Bat) EL(DELr) / (15
_ Qe 1 +) 519 6T ) )
Dys(r) = E, (1) Ey(r)/ ) %55&)—Glz(r)
/:l' O 0 %19 -(n0) 8 (- 9:0( ) -9 () 95 ( 16
E, (N E,(NE,(r) (16)
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In this study, i was assumed that the a qu(r,Z) 5
body force is zero &l 0
~ pr AW -
ng Hw, (r,z) ©
Local Weak Form Yo ggr 0, —= 5
A weak form ofEgs. (9) and (10) in ¢ -
poar coordinateover a subdomainw fYw, (r.z)(nz, +nt,)dG
which is bounded byG, as shown in K 2, (r,z,1)
Figure 2, obtained using the weighted + iy (r.z)——5—W,(r,z)rd W#
residual method is Vg h
19
épus, WG
R A
g1 1 a w(rz), h)
[+ 2o -5 by (n2)e we x -
wi T L] (17) e MW 8
7 7 aw (r,z)l w
}-r(r,z)”uzr ;L/ B r\(N (zz")" )
b TP ULI
St a ¢ " .
TR Mo o AW, (r,2)(n6, +nt,)dG
R %
o hN r,z)d W 2
V\(:]’:\ r 1 1:2) (18) +ﬁr(r,z)—“u'(rz’z’t)wr(r,z)rd W8
T W, 1 vg
AU (20

The testand trial function can be
where W, (r,z) and W, (r,z) are the chosen from different functional spaces.
weighted functiosat the fieldnodel . Here having chosen the test function as

By applying divergence theorem the Heaviside unit step function with
relation inthe aboveequationsit can be support on the local subdomain.
concludedhat )

ﬁl , W

WMD) Ty o @D

Fig. 2.Local domains used in the MLP@ethod
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where G,: is composedof three parts,
.e.G =6 GG [fasshown irFigure

2. Here G; : is the internal boundary of the

quadrature domain, which does
intersect the globaboundary G; G, : is

the part of the prescribedgeneralized
displacementboundarythat intersects the

quadrature domain, i.e, G, =G 4
G,: is the part of the prescribed
generalzed traction boundary that
intersects the quadraturedomain, i.e.,
G =& A&
a w,(rz), o}
é ( )urr 0
e W )
W, (r,z)a,, aw-
e W, (r.2). 5
e ) g
¢ Kz -
A W, (r.z)(nd, +nt¢,)dc
Gy +de
2
t
PRCAAE)
+ pit =

WaWw, (r,z) rdw
Arw, (r.z)(nd, +nt,)d G

Gy
(22)
a W._(r,z o}
s, - u(r ) 0
e ow
o HW(rz) O
c pz -
- A W, (r.z)(ns, mi,,)d
Gy *de
r(r.z)
+ 2 =
n—uuZ(rz’z’t)Wz(r,z)rdW
pt
ﬁrWz (r’z)(nr[rz + nz&zz) dG
Gy
(23)
in which
tr znrljrr -Hltrz (24)

not
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tZ :nZGZZ +nrl‘rz (25)
where t, and t,: are radial and axial
tractions respectivelyand n, and n, : are
unit vectos in r and z directiors,
respectively
Interpolation  Using  Radial  Basis
Functions

In the MLPG method, the global domain
of the problemwas divided into many
subdomains, a wedkrm over the local
subd o mai ns Wsowashonstrigteds

These sullomainscan overlapwith each
other, and cover the whole global domain
(Figure 2). The local sullomains could be
of any geometric shape such as circle and
rectangular with various size. In the
present paper, the local sdbmainswere
taken to be of a circularshape for
simplicity. In such a caséhe calculation of
domainintegrals is quite easy.

In  this study the Laplace
transformationwas usedto solvethe time
domain equilibrium equatioccordingto
Egs (22) and (23), by using Laplace
Transformation concept the proposed
relationshipis as follows

frWuﬁ" (zs 1))
”{AN,(r,z)L(ﬁqq(z,s , ﬁpl)/v
| |
WqIHML(rrZ(r z,5) !

I Wz y

@I’ L(Clrr ( z ’S ?

AWt ez,

Qq”@u
W, (r,z)r(r,z)
s’ LU (1.2, 9)- sy g =
W]g(r,z,O)- u (rz,0) @UW
Arw. (r.z)L(t)dG
th

'
u

(26)
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frWVZT(r'Z)L(z‘,Z(r Z,9)) ?
N qw
%1,+r‘“NZ—(r’Z)L(ﬁUr(zs P )
~ en L, (r,z,s
g G
W, (r,z)r(r,z)
+ N&s’L(y,(r,2,9) g W
Y g—suz(r,z,O) -u, (r,z,O)@(J

= YW, (r.z)L(t,)d G
Coy

(27)

he multilayer cylindrical structure is
discretized by the nodes located on the
problem domainThe nodal variable i
fictitious displacement component g, in
the polar coordinate system. In the MLPG
method, the trial functiomwaschosen to be
the interpolation over a number of nodes
randomly distributed within the domain of
influence. For thespatial distribution of
funct i,ove apfpladdhe meshless
approximation over a number of nodes
randomly distributed within the domain of
influence using the radial basis function
(RBF). Thus componentsdisplacement
variable can be expressed as

u (rz.0=u .0 AR (7a

=R" (T)a (1) "r,z 1 W

(28)
u,(r,z,t)=u, (F,t) =an:1 R (T)a,
=R" (T)a (1) "r,z I W

(29)
r=4r ) @ z) %

(30)

where a, and a, arethe coefficiens for
the radial basi®, (T) that is

(31
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where the terms¢ and q are constant

positive values. Thaumber of radial basis
functions nwasdetermined by the number
of nodes in the support domain. This form
of shape funébn has been widely used in
surface fitting and in constructing
approximate  solutions  for  partial
differential equations. The vectdR has
theform:

R™(T) =& (7). R ()R (T)
(32

which arethe set of radial basis functions
centered around; ", and vects a and

a, : aredefined as:

T

3 () ={a,0,0 3,00

(33
al (t)={egl,eyz,az3 ...... ah}
From the interpolatiorEqs (28) and

(29) for theradial functions, the following
system of linear equation for the
coefficiens fia, 0 and fia, 0 were obtained
as

Ra ()=t (9, Ra() =u() (39
where

ay () =g (8),u?(1), 4" () g

al ()= (£),u2(1), .0 (1) ¢ (39

are respectively conposed of the time
variable nodal values of displacements
Ad; (t)o and fa, (t)o while R, : is the
matrix defined by nodal values of the
RBFs as

2R1(T1) RZ(Tl) h Rl(_rl)
f(n) R(T) - R( (36
&R (%) R(T) - R/(T)
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To calculate he vegft)domand i where 7' (F): is the shape function

fia, (t)c‘;, we can write fronEq, (34)_ associated with the node The nodal
shape functions are givédy:
t) =R (t ) =R* 1

By extendng the Eg. (11), it can be

The approximated function can be
bb concludedhat:

expressed in terms of the nodal values and
the shape functionsa

lc'>lrr :Dll( rr) '®12r ng

ur(r,z,t): R’ (T’) RJlﬂ(t) : +D13(r)q2 ’qz}j:D21r ¢

T /e~ S /v a +D22(I’)L°{7q{)23l’( z) U (41)
FT (), (t) :a:lf (Fu2(t) 6,=D,( ) ®,r
(38) +D33(r)ozz 1z L,:’:D55 rog

u,(r,z,t) =R (T)R'L (9 =
By substituting Egs (38)and (41) in

FT(F)a,(t) =£’5;tlfa(r‘)UE‘(t) Eq (26):
(39)
A (02) G 08 T ey 220 B el aoe) 006) 5N 26 8
%T W e a=l n r ar ZH 1]
A n fa n n" .
W (1.2)60,(03 ufr) e 22 B (L) Ba) a@mf 60
w, (r,z) er it (r) () B
D L —— | od W
tr uz 55(r)gg.l u_ (uz (S)) + a?, Zu (UI(S)) %
£ € o (r n N WF(F
A, (r2)fn 5008 ML) 220 e mee) a0 BN L) g
& G T e a1 MI N oas ar A 1]
noufe(F . g i & ",
enDa(1)e ) A Do) Bos s (12)7 (1988 B2 ()uge) 3
Gazt  MI a1 MZ y W, € at u
= W, (rz)Lt)d G + i, (rz)r(rnz)[su(r 200 ®w(rz0] d G
Gy W

(42)
Similar totheabove equatiarby substitutingEqgs (39) and (41) in Eq. (27):
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() er (7)) B(F), v @, W12
&}r r %0)51 " Us(s)+ a e ($)Hﬂ - (r,2)
e nue(r . "W (F i
D3 VL ey 220 e e mot) 800k u;(s»’-gd v
£ en we(r), . wWRA(F) o
- W ) rD55 — L 7 L r
s (n2)inDs(r)ed = T LUE(sh+ &7 L)
Ty (T i
tn, SDgl(r)q“ufr)L(u?(s» Pall) e ()L u(e) Byt) a%wf(s»ga
+ W, (rz)r (rz)esza FTL(E(9) mw
W?I a=1

= ﬁrWZ(r,z)L(tZ)dG + r‘ﬁz(r,z)r(
Gy Wy

By inverse Laplace transform
approaches such as

rz)[su(rz0) #,(r,z0ld G

formul a or Taltibeet 6 s | [;r](et~hod
e _.a

dependenvalues in previous equatiaan

be calculated. In the present analysis, the & ¢nh =+ (

time-dependent values of thteansformed
guantities in the previous consideration
obtained by the Talbot methodlate et
al., 2004). The Talbot method is based on
deformation ofthe Bromwich inversion
integral contour A good review of the
above method is given in Davies (2002)
study. In fact, we recommend reading that
chapter because iprovides a sense of
numerical calculan considerations in a
computing environment.

The fomula for this method to
numerically calculates, (t) can bewritten

as:

(44)

wheren: is the number of samples and

43
We@)l? Qne , Post 6s
ot B i =3 0 k<n
(45)
1 &
=—e", =
9 5 g
e 3 % 5
arif? § foo 12 OB
e ¢ =%
é ” g~(; ®
é akp 0 u
-1 cot <
§ ¢n 2 4
0<k <«
(46)

NUMERICAL RESU LTS AND
DISCUSSION

In this study to verify the presented
methodand resultsa problemwas solved
with geometry and boundarconditions
used by Moussavinezhad et al. (20I@)e
comparison between results obtained from
the preseted method with thoseepated

by Moussavinezhad et al. (2013how
good agreemer{Figure3).
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Fig. 3. The comparison of obtained results from MLPG with those udiogssavinezhadt al. (2013) for
radial stress

The following boundary conditions and where fiP, =4GP4d Se® and
parameter values/ere usal to verify the fit, =0.0055ec O .
results.
6 (1 Rt @7 Yoy T 9 (59
. _ X = X =Xk (51)
a, (r, t)= (48)
To show the accuracy andpadbility of
So that, the MLPG method a multilayerd
compositecylinder with infinite length is
( ):fépot tet, (49) presented with 6, =0.25n 6 and
0 t>t, 6r, =0.5m § which are inner radius and

outer radius, rgpectively(Figure4).

FGNRCN Mat

Fig. 4. Cylindrically layered structure with three layers
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Table 1 shows the geometry properties
of multilayered cylinder in which the inner
and outer layers are made of FGCNTs with
four types of distributions as shown in
Figure 1 The middle layer is made of
isotropic material. The inner and outer
layers consist of polymethyhethacrylate
(PMMA) as matrix, with CNT as fibers
aligned in the circumferential direction.
Properties of these two kinds of materials
are presented as:

For PMMA (Shen 2011):
E™=2.5GPa,r™ =150kg ni,g"

0.

Radial Stress (pa)

5.08 5.1 5.12

Time (Sec)

5.04 5.06

hoop Stress (pa)

5.12
x10°

5.08 5.1
Time (Sec)

(c)

5.04 5.06

Radial Stress (pa)

For SWCNT(Shen 2011):
EN =5.6466 Pa ,ESY =7.0800 Pa G

=1.9449Pa ;N =140kg/ n ¢&' 0 .

For middle layer
E, =70GPa,r, =2707kg/ M g,, 9.

The time histories of hoop and radial
stresses of middle point on thickness of
cylindrically  layered  structure are
illustrated in Figure 5, for various types of
V., distributions alonghe radial direction

with V¢, =0.12 andV/,, =0.28.

5.12
3
x 10

5.08 5.1
Time (Sec)

(b)

5.04 5.06

0.5

=
T

hoop Stress (pa)

&
w

151

5.12
x10°

5.08 5.1
Time (Sec)

(d)

5.04 5.06

Fig. 5. Time history of radl stress and hoop stress for the middle point of cylinder thickness for various g
patterns oV

245



Ghouhestani, S. et al.

Table 1.Geometry property of three layered cylinder

Positionof layer  Thickness( cm) r...(cm) r..(cm) Material type
inner layer 5 25 30 FGCNTstypel-
middle layet 15 30 45 Iso
outer layel 5 45 50 FGCNTstypel-

As shown in this figure, it can be
concluded that CNT distribatn types have
little effect on the amplitude of radial stress
as compared to hoop stress. By comparing
stresses plotted in Figure 5, the following
results can be obtained: First, the variation
in CNTs type distributions along radial
direction has more efté on the time
history of hoop stress. Second, the
maximum hoop stress and the maximum
radial stress are achieved when CNT

x 10’

—_
W
T

0.5F

Radial Stress (pa)

5.04 5.06 5.08 51 5.12

Radial Stress (pa)

5.04 5.06 5.08 5.1 5.12
Time (Sec)

(c)

variation type isV . Third, the minimum
hoop stress and minimum radial stress were
achieved when CNT variatn type isL .

Figures 6 and 7 depict the time history
of radial stress and hoop stress at middle
point on the thickness of multilayer
nanocomposite cylinder for various values
of VS, and four types of CNTs

distributions.

Radial Stress (pa)

5.04 5.06 5.08 5.1 512

(b)

Radial Stress (pa)

5.04 5.06 5.08 5.1 5.12
Time (Sec) x10°

(d)

Fig. 6. Time history of radial stress at middle point of cylinder thickness for various valuéc%\, of
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By comparing stresses plotted in these From these figures, it is understood that
figures, it is concluded that the variation in L grading pattern has more effect on
V¢, reducesthe magnitudes of hoop stress  reduction of hoop stress and grading
and has little effect on radial stre§hese pattern has little effect on reduction of
conclusions are further supported by hoop stress with various valuesv, . As
results plotted in Figures (6¢) and (7c), an example, the layered cylinder with inner

where stresses are plotted fargrading and outerlayer made ofL CNT grading
pattern with varyingv/,. These results pattern and isotropic middle layer with
imply that increasing V., leads to varying Vc, is analyzed here. Comparison
decreased hoop stresses asulgio be of the radial stress and hoop stress at
expected since the CNTs aligned in different point of layered cylindes shown
circumferential direction. in Figure 8.
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Fig. 7. Time history of hoop stress at middle point of cylinder thickness for various valt\r{{% of
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Fig. 8. Time history of radial stress and hoop stress for middle point on thickness of each layer

From these figures, the following Fourth, the radial distance has a vital
propertiesof time history of radial stress effect on the amplitude of stresses. When
and hoop stress were observed: changes from 0.25 to 0.5, amplitude of

First, by varying the point of stress from radial stress and hoop stress decrease
the inner to the outer area of the layered Fifth, time history of hoop stress is more
cylinder, both time history variation sensitive to variation of with respect to
stresses decreased. Second, the hoop stress thetime history of radial stress.

is the most sensitive tthe variation.
Third, the minimum radial stress occurs
when . The effect on the In this article, a multilayer functionally

hoop stress plotteid Figures(8c) and (8d) graded nanocomposite cylinder reinforced
is more involved, with increasing radius.  py carbon nanotubes under shock loadings

CONCLUSIONS
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