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Abstract: This paper deals with the dynamic analysis of stress field in cylindrically layered
structures reinforced by carbon nanotube (CLSRCN) subjected to mechanical shock loading.
Application of meshless local integral equations based on meshless local Petrov-Galerkin
(MLPG) method is developed for dynamic stress analysis in this article. Analysis is carried
out in frequency domain by applying the Laplace transformation on governing equations and
then the stresses are transferred to time domain, using Talbot inversion Laplace techniques.
The mechanical properties of the nanocomposite are mathematically simulated using four
types of carbon nanotube distributions in radial volume fraction forms. The propagation of
stresses is indicated through radial direction for various grading patterns at different time
instants. The effects of various grading patterns on stresses are specifically investigated.
Numerical examples, presented in the accompanying section 4 of this paper, show that
variation of v, has no significant effect on the amplitude of radial stresses. Examples
illustrate that stress distributions in cylindrical layer structures made of a CNT type A are
more sensitive rather than other grading pattern types of CNTs. Results derived in this
analysis are compared with FEM and previous published work and a good agreement is
observed between them.

Keywords: Carbon nanotube, Cylinder, Dynamic analysis, Layered-structures, Meshless
local Petrov-Galerkin method.

INTRODUCTION graphitic sheets rolled into seamless tubes,
are a new nanoscale material discovered
Laminated fiber reinforced composites are by lijima (1991). These materials are
widely used in light weight structures. currently receiving much attention due to
Recently, a new member of the advanced their interesting properties, and various
material family called carbon nanotube- methods have been presented for assessing
reinforced composites was introduced by their attributes. Lu (1997) presented an
Esawi et al. (2007). Carbon nanotubes with experimental model for prediction of the
particular stiffness and strength have been elastic attributes of single and multilayered
noted as ideal reinforcements of nanotubes.
composites. Carbon nanotubes, which are The literature review revealed that the

dynamic problem and wave propagation
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analysis of FGMs have been carried out.
Gilhooley et al. (2008) employed the
MLPG method for two-dimensional stress
analysis of functionally graded solids,
using radial basis functions. In their work,
static and dynamic deformations of
functionally graded materials (FGMs)
were studied in detail, considering both
linear elastic and linear viscoelastic
simulations. The dispersion behavior of
waves in a functionally graded elastic plate
was studied using laminate plate theory by
Chen et al. (2007). Hosseini et al. (2007)
studied dynamic response and radial wave
propagation velocity in thick hollow
cylinder made of FGMs. They solved the
Navier equation using the Galerkin finite
element and Newmark methods. Scattering
relations were obtained by considering the
continuity conditions at the interfaces
between any two layers and the boundary
conditions at the upper and lower surfaces.
In another work, elastic radial wave
propagation and dynamic analysis of
functionally graded thick hollow cylinders
was studied by Hosseini and Abolbashari
(2010). They proposed an analytical
method for the dynamic response analysis
of functionally graded thick hollow
cylinders under impact loading. Bahmyari
and Rahbar-ranji (2012) applied element
free Galerkin method for free vibration
analysis of orthotropic plates with variable
thickness resting on non-uniform elastic
foundation. They considered the effects of
thickness variation, foundation parameter
and boundary conditions on frequency.
The thermo-elastic wave propagation was
stochastically studied using a hybrid
numerical method (GFE, NFD and Monte
Carlo simulation) for isotropic and
functionally graded thick hollow cylinder
by Hosseini and Shahabian (2011a,b).
Similar to this study, in the design and
analysis of laminated composite cylinders,
axisymmetric loads and axisymmetric
geometries were often assumed for
developing closed-form analytic solutions.
In addition, the cylinder is assumed to
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have an infinite length such that the
stresses are not only independent of the

circumferential  coordinate but also
independent of the axial coordinate.
Approximate solutions of realistic

engineering problems are usually obtained
numerically. Recently, many meshless
methods have been proposed to solve these
problems (Sladek et al., 2013). Meshless
methods such as the element-free Galerkin
(EFG) method, the Reproducing Kernel
particle method (RKPM), hp-clouds, the
partition of unity method (PUM), the
meshless local Petrov—Galerkin (MLPG)
method, the smoothed particle
hydrodynamics (SPH), the corrected
smoothed particle hydrodynamics (CSPH),
and the modified smoothed particle
hydrodynamics (MSPH), have attracted
considerable attention (Sladek et al., 2013).

Recently, radial basis functions (RBFs)
have been employed to solve partial
differential equations and to approximate
the trial function in meshless methods
(Singh et al., 2011). The modified multi
quadrics (MQ) and the thin plate spline
(TPS) radial basis functions have been
successfully employed to approximate a
trial solution in the MLPG formulation
(Xiao et al., 2003) for solving 2D elastic
problems. The MQ and TPS radial basis
functions have been employed for the
analysis of homogeneous and laminated
plates (Xiao et al., 2008). Singh et al.
(2013) used meshless collocations method
by applying Gaussian and MQ radial basis
functions, for the stability analysis of
orthotropic and cross ply laminated
composite plates subjected to thermal
mechanical loading. Meshless methods
have been used to analyze deformations of
structures comprised of FGMSs. Ching et al.
(2005) used the MLPG method with test
function equal to the weight function, to
generate the MLS basis function for the
study of transient thermoelastic
deformations of FG solids.

In this study, the transient stress analysis
of multilayered FG nanocomposite cylinder
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reinforced by carbon nanotube s
investigated  for  four  types  of
nanocomposites, using MLPG method. In
MLPG method, a Heaviside step function
was assumed to be a test function. The
obtained results are compared with data
reported in previous studies. The application
of MLPG method has a high capability to
study the effects of carbon nanotubes with
grading distributions for reinforcement of
composite structures.

Contributions of this work include
using the performance of the MLPG
method, for a class of dynamic problems
for non-homogenous layered bodies. It is
found that for dynamic problems, the
MLPG method give results that compare
very well with those obtained in previous
research.

Programs of the MLPG method are
developed in MATLAB, and a number of
numerical examples of free vibration
analysis are presented to demonstrate the
present method. The effect of some
important parameters such as CNT types
and CNT volume fractions on the stress
wave propagation at the different points of
cylindrical layered structures reinforced by
CNT is also investigated thoroughly, and
the results are presented in details.

MATERIAL PROPERTIES
CARBON NANOTUBE

OF

Consider a cylindrically layered structure
with three layers in which the inner and
outer layers are made of functionally
graded materials and middle layer is
isotropic. In this paper, each carbon
nanotube reinforced composite (CNTRC)
layer is made from a mixture of SWCNT,
graded distribution in the radial direction,
and material matrix with isotropic material
property. Various micromechanical models
have been proposed to -calculate the
effective material properties of CNTRCs
(Seidel et al., 2006).

According to the extended rule of
mixture, the effective Young’s modulus
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and shear modulus can be found as (Shen,
2009):

E1 :§1VCN ElcN "'VmE " (1)
S Ve Vo
E, ES E, @
S Vo Vi
GlZ G:IFZN Gm (3)
PNy p™ AV, " (4)
v; =Vey ufj;N +V, 0" 5)
i,j=123 i=#]j
Voy +V,, =1 (6)

where ENN ESN GOV N and p™: are
elasticity modulus, shear modulus, Poisson’s
ratio and density of the carbon nanotube,
respectively, and E™,G",0",p": are
corresponding properties for the matrix. The
parameters V., and V_: are volume
fractions of carbon nanotube and matrix,
respectively. The subscripts CN and m: stand
for carbon nanotube and matrix. The terms
&(3=123): are CNT efficiency
parameters. Four types of variation of CNT
along the radial direction of cylinder were
proposed as follows (Figure 1).
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The term mg, : is the mass fraction of
nanotube.
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Fig. 1. Four types of variation of nanotube volume fraction (\/CN ) along the radial direction

Basic Formulations

Considering a 2D elasto-dynamic
problem, the constitutive equations in a
domain Q are written as:
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According to Hook’s law:
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where ¢ and ¢: are the stress and strain
tensors, wu,,u,and B, ,B,: are the
displacement and body force components,
respectively, and p: is the mass density.
D : denotes for the elastic constants,
which are defined as follows:
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In this study, it was assumed that the
body force is zero.

Local Weak Form
A weak form of Egs. (9) and (10) in

polar coordinate over a subdomain Q
which is bounded by T, as shown in

Figure 2, obtained using the weighted
residual method is:

I +1(a"—a%) rwW, (r,z)dQ=0 (17)

W, (r,z)dQ=0 (18)

where W, (r,z) and W, (r,z) are the
weighted functions at the field node | .

By applying divergence theorem
relation in the above equations, it can be
concluded that:

re oW, (r,z)
J‘ or do—
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Y24
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err(r,z )(n,0, +n,7, )dT
g

2
+ jp(r,z)W\N,(r,z)rdQ:o

O

(20)

The test and trial function can be
chosen from different functional spaces.
Here, having chosen the test function as
the Heaviside unit step function with
support on the local subdomain.

1, r,2eQq
W (r,z)=W,(rz)=
(r,z)=W,(rz) 0, rzefo,ur,) (21)

Fig. 2. Local domains used in the MLPG method
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where T, : is composed of three parts,
e, I, =T, uI,, VI, asshown in Figure
2. Here T, : is the internal boundary of the

quadrature domain, which does not
intersect the global boundary T'; T, : is

the part of the prescribed generalized
displacement boundary that intersects the
quadrature domain, i.e., T, =T, N[,;

.. is the part of the prescribed

generalized  traction  boundary that
intersects the quadrature domain, i.e.,
I, =T, NT,.

; oW, (r,z )csrr
or
AW, (r,z)o, dQ—
e oW, (r,z )Trz
q 0z
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Tqt
(22)
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in which

tr =N, o, +N, 7, (24)

t, =n,c,, +n,7, (25)

where t, and t,: are radial and axial
tractions respectively, and n, and n, : are

unit vectors in r and z directions,
respectively.

Interpolation
Functions

In the MLPG method, the global domain
of the problem was divided into many
subdomains, a weak-form over the local
sub-domains such as “Q_” was constructed.

These sub-domains can overlap with each
other, and cover the whole global domain
(Figure 2). The local sub-domains could be
of any geometric shape such as circle and
rectangular with various sizes. In the
present paper, the local sub-domains were
taken to be of a circular shape for
simplicity. In such a case, the calculation of
domain-integrals is quite easy.

In  this study, the Laplace
transformation was used to solve the time
domain equilibrium equation. According to
Egs. (22) and (23), by using Laplace
Transformation concept the proposed
relationship is as follows.

Using  Radial  Basis

r ML(GW(T,Z ,8))
or

fANr(r,z)L(%(r,z,s)) do
’ +rML(rn(r,z,s))

0z
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+n,L(z,(r.z,s))

- I rw,(r,z)

Tai gy
W, (r,z)p(r.z)
+_[{SZL(ur(r,z,s))—su,}dQ=
% (r,z,0)-0,(r,z,0)
[rw, (rz)Le)dr

gy

(26)
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he multilayer cylindrical structure is
discretized by the nodes located on the
problem domain. The nodal variable is a
fictitious displacement component (r, z), in
the polar coordinate system. In the MLPG
method, the trial function was chosen to be
the interpolation over a number of nodes
randomly distributed within the domain of
influence. For the spatial distribution of
function “u”, we applied the meshless
approximation over a number of nodes
randomly distributed within the domain of
influence, using the radial basis function
(RBF). Thus, components displacement
variable can be expressed as:

u,(r,z,t)=u,(F,t) :iRi (M)a,

=R" (FM)a, (t) vr,z eQ,

(28)
u, (r,z,t)=u, (7,t) :Zn:Ri (Ma,,
=RT (F)a, (t) Vr,lz:1e Q,

(29)
r=[(r-n) +(z _zi)z}%

(30)

where a. and a, are the coefficients for
the radial basis R; (F) that is:

(31)
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where the terms ¢ and g are constant
positive values. The number of radial basis
functions n was determined by the number
of nodes in the support domain. This form
of shape function has been widely used in
surface fitting and in constructing
approximate  solutions  for  partial
differential equations. The vector R has
the form:

R (M) =[Ry(7),R; (1), R, (7)]
(32)

which are the set of radial basis functions
centered around"r, ", and vectors a, and

a, : are defined as:

a (t)=1a,,a,.8,,...a_ |,
Ol dp gt

From the interpolation Egs. (28) and

(29) for the radial functions, the following
system of linear equation for the
coefficients “a,” and “a, ” were obtained
as:

Roa, (t)=U, (t), Rea, (t)=U, (t)  (34)
where
a7 () =[ut (O (), 07 (1) ], a5

a; (t

are respectively composed of the time
variable nodal values of displacements
“u, (t)” and “a, (t)” while R, : is the
matrix defined by nodal values of the
RBFs as:

Ri(F) Ry (F) - Ry (1)
Ri(G) Ry() R, () (36)
Ri(F) R (F) - Ry (F)
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To calculate the vector “a, (t)” and where ¢'(F): is the shape function

“a, (t)”, we can write from Eq. (34). associated with the node i. The nodal
shape functions are given by:

a, (t):RO_ u~r (t) » & (t):Ro_ LTz ((;7)) ¢T (F)=RT (YT)Ro_l (40)
By extending the Eg. (11), it can be

The approximated function can be
iy concluded that:

expressed in terms of the nodal values and

the shape function as:
6, =Dy(r)e, +D,(M)ey

u,(r,z,t)=R" (F)R,, (t)= +Dy5(r)e, » 64 =Dy(r)e,
n +Dy,(r)eg + Dys(r)e, (41)

' (r_)Jr (t ) - ;¢a (F)U? (t) 6,, =Ds(Ne, + D5 (e,

(38) +Dg(r)e,, . 1, =Dg(N)e,

u, (r.z t)=R" (F)R', (t)=
By substituting Eqgs. (38)and (41) in

@ (P, (£)= 20" (Pt (1) £q. (26):
(39)

Qq a=1 ar r a=1 a=1 62

n o a (¥ n "9 a (=
W z){DﬂmZ q;fr)uuf(s)nDZ;“’ZW(F)L(u?(s»wzg(r)Z ¢az(r)L<u:‘(s))}
+r8Wr(r,Z)Dss(r)[ia@‘(r_)l—(u? (S))_l_ia a(r_) L(U?(S)) }dQ

Tg; +Tg a1 r N = ~ 01
n a a (¥ n a a (¥ n
+nzoss<r>{z SETTEY @Z“)uu:(s»ﬂdn [, z>p<r,z)[szzw(r)uuf(s»]m
a=1 a=1 Qq a=1
- j rWr(r,z)L(tr)dF+JrWr(r,z)p(r,z)[sur(r,z,0)+u’r(r,z,0)]d1“
Ty Q

(42)
Similar to the above equation, by substituting Egs. (39)and (41) in Eq. (27):
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= I W, (r,z)L(t,)dT+ I W, (r,z)p(r.z)[su,(r,z,0)+0,(r,z,0)]dT

a=1 a=1
+ j W, {SZZW‘ u(s)) }dQ
Qq a
T Qq
By inverse  Laplace transform

approaches such as Week’s method, Post’s
formula or Talbot’s method time-
dependent values in previous equation can
be calculated. In the present analysis, the
time-dependent values of the transformed
quantities in the previous consideration
obtained by the Talbot method (Abate et
al., 2004). The Talbot method is based on
deformation of the Bromwich inversion
integral contour. A good review of the
above method is given in Davies (2002)
study. In fact, we recommend reading that
chapter because it provides a sense of
numerical calculation considerations in a
computing environment.

The formula for this method to
numerically calculate u; (t) can be written

as.

2 1 5,
u, (t)=§§ﬂ%e(yku, (S¢)). S, =

(44)

where n: is the number of samples and
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(43)
S, :2_n , O, :Zk_ﬂ
5 5
{cot(k—ﬂ)ﬂ} Ji=J=1 O<k<n
n
(45)
1
70 :Ee% Ve =
(K ke )V )]
1+i (—”j[l {cot( ”D J
n n o
—i cot(k—”J
L n —
O<k <n
(46)
NUMERICAL RESULTS AND
DISCUSSION
In this study, to verify the presented

method and results, a problem was solved
with geometry and boundary conditions
used by Moussavinezhad et al. (2013). The
comparison between results obtained from
the presented method with those reported
by Moussavinezhad et al. (2013) show
good agreement (Figure 3).
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Fig. 3. The comparison of obtained results from MLPG with those using Moussavinezhad et al. (2013) for
radial stress

The following boundary conditions and
parameter values were used to verify the
results.

o (1) =P (1) (47)
o, (1,,t)=0 (48)
So that,
[Pyt t <t,
JOR ()

R out

where “P, =4GPa/Sec” and
“t, =0.005Sec .
VCN :Vm =0 (50)
G=6=6=1 (51)

To show the accuracy and capability of
the MLPG method, a multilayered
composite cylinder with infinite length is
presented  with  ‘r, =0.25m’  and

‘r, =0.5m’, which are inner radius and
outer radius, respectively (Figure 4).

FGNRCN Mat

Fig. 4. Cylindrically layered structure with three layers
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Table 1 shows the geometry properties
of multilayered cylinder in which the inner
and outer layers are made of FGCNTSs with
four types of distributions as shown in
Figure 1. The middle layer is made of
isotropic material. The inner and outer
layers consist of polymethyl-methacrylate
(PMMA) as matrix, with CNT as fibers
aligned in the circumferential direction.
Properties of these two kinds of materials
are presented as:

For PMMA (Shen, 2011):

E™ =25GPa , p" =1150kg/m?® ,v™ =0.34.

x 107
3l
2.5¢
sl
150
i
0.5}
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c)
Fig. 5. Time history of radial stress and hoop stress for the middle point of cylinder thickness for various grading
patterns of V

For SWCNT (Shen, 2011):
EXN =5.6466TPa,ES" =7.0800TPa,G’

=1.9445TPa, p™ =1400kg /m® vS)' =0.175.
For middle layer:

E,, =70GPa, p, =2707kg/m?®,v, =0.3.
The time histories of hoop and radial

stresses of middle point on thickness of

cylindrically  layered  structure  are

illustrated in Figure 5, for various types of

V., distributions along the radial direction

with vV, =0.12 and v, =0.28.

5.04 5.06 5.08 5.1 5.12
Time (Sec) x10°

(b)

0.5

=
T

hoop Stress (pa)

&
w

151

5.04 5.06 5.08 5.1 5.12
Time (Sec) x10°
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Table 1. Geometry property of three layered cylinder

Positionof layer ~ Thickness(cm) r_.(cm) r_.(cm) Material type
inner layer 5 25 30 FGCNTstypel-4
middle layer 15 30 45 Iso
outer layer 5 45 50 FGCNTstypel-4

As shown in this figure, it can be
concluded that CNT distribution types have
little effect on the amplitude of radial stress
as compared to hoop stress. By comparing
stresses plotted in Figure 5, the following
results can be obtained: First, the variation
in CNTs type distributions along radial
direction has more effect on the time
history of hoop stress. Second, the
maximum hoop stress and the maximum

radial stress are achieved when CNT
x 10’
N
2.5
5l
157
§ 0.s5¢
g ol
&
-0.5
al
L5 |
2l
5.i2

5.04 5.06 5.08 51

Radial Stress (pa)

5.1

5.08
Time (Sec)

(c)

5.06

variation type is V . Third, the minimum
hoop stress and minimum radial stress were
achieved when CNT variation type is A .
Figures 6 and 7 depict the time history
of radial stress and hoop stress at middle
point on the thickness of multilayer
nanocomposite cylinder for various values
of vg, and four types of CNTs

distributions.

Radial Stress (pa)

5.08 5.1

(b)

5.06

Radial Stress (pa)

5.12
x10?

5.08 5.1
Time (Sec)

()

5.06

Fig. 6. Time history of radial stress at middle point of cylinder thickness for various values of V o

246



Civil Engineering Infrastructures Journal, 48(2): 235-250, December 2015

By comparing stresses plotted in these
figures, it is concluded that the variation in
V., reduces the magnitudes of hoop stress
and has little effect on radial stress. These
conclusions are further supported by
results plotted in Figures (6¢) and (7c),
where stresses are plotted for A grading
pattern with varying V., . These results
imply that increasing V., leads to
decreased hoop stresses as would be

expected since the CNT is aligned in
circumferential direction.

hoop Stress (pa)

5.04 5.06 5.08 5.1 5.12
Time (Sec) %107

(a)

hoop Stress (pa)

5.04 5.06 5.08 5.1 5.12
Time (Sec) x10°
(c)
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hoop Stress (pa)

hoop Stress (pa)

From these figures, it is understood that
A grading pattern has more effect on
reduction of hoop stress and V grading
pattern has little effect on reduction of
hoop stress with various values of V. As
an example, the layered cylinder with inner
and outer layer made of A CNT grading
pattern and isotropic middle layer with
varying Vg, is analyzed here. Comparison
of the radial stress and hoop stress at
different point of layered cylinder is shown
in Figure 8.

5.04 5.06 5.08 5.1 5.12
Time (Sec) x10°

5.04 5.06 5.08 5.1 5.12
Time (Sec) x10°

()

Fig. 7. Time history of hoop stress at middle point of cylinder thickness for various values of V &
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5.02 5.04 5.06 5.08 5.1 5.12 5.14
Time (Sec) x102
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x107
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O
= = = middle point of outer layer

middle point of middle layer

hoop Stress (pa)
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hoop Stress (pa)

5.15 5.2 5.25 5.3 5.35

Time (Sec)

(c):V¢g =0.12

5.05 5.1

x10°

3

middle point of inner layer

=——6— middle point of middle layer
middle point of outer layer

5.06 5.08 5.1
Time (Sec) 3

5.02 5.04

(b):Vg, =028

m— middle point of inner layer
—©— middle point of middle layer
= = = middle point of outer layer

5.15 52 5.25 53

Time (Sec)

(d):vg =0.28

5.05 5.1

Fig. 8. Time history of radial stress and hoop stress for middle point on thickness of each layer

From these figures, the following
properties of time history of radial stress
and hoop stress were observed:

First, by varying the point of stress from
the inner to the outer area of the layered
cylinder, both time history variation
stresses decreased. Second, the hoop stress
Is the most sensitive to the V., variation.

Third, the minimum radial stress occurs
when r=r, =50cm. The effect on the
hoop stress plotted in Figures (8c) and (8d)
is more involved, with increasing radius.
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Fourth, the radial distance r has a vital
effect on the amplitude of stresses. When
r changes from 0.25 to 0.5, amplitude of
radial stress and hoop stress decreases.
Fifth, time history of hoop stress is more
sensitive to variation of r with respect to
the time history of radial stress.

CONCLUSIONS

In this article, a multilayer functionally
graded nanocomposite cylinder reinforced
by carbon nanotubes under shock loadings
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was analyzed, using the MLPG method.
To study the dynamic behaviors of stress
filled, meshless local integral equations
(LIEs), the MLPG method was applied in
displacement domain and Laplace-
transform method was employed in the
time domain. To simulate the variation of
mechanical properties, a micro-mechanical
model was used for the problem. The
effects of the kind of distribution and
volume fraction of CNTs, on the stress
wave propagation of CLSRCN are
presented in this study. The main results
obtained can be expressed as follows:

e The time histories of stresses were
studied in detail for some points, on
thickness of CLSRCN cylinder and various
volume fraction values.

e By increasing the value of V., the

values of hoop stresses decreased.
e There is no significant effect of variation
in the value of V, on amplitude of radial

stresses.

e The A and X types of grading patterns
are more effective on dynamic behaviors
of hoop stresses compared to other grading
pattern types.

e It is possible to track the wave fronts in
stress field for various types of CNTs
distributions, using the presented meshless
method.

e The presented method can be developed
for 2D and 3D elastic wave propagation in
CLSRCN with various transient boundary
conditions.
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