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Abstract: Magnetorheological (MR) dampers have the advantage of being tuned by low 
voltages. This has attracted many researchers to develop semi-active control of structures in 
theory and practice. Most of the control strategies first obtain the desired forces of dampers 
without taking their dynamics into consideration and then determine the input voltages 
according to those forces. As a result, these strategies may face situations where the desired 
forces cannot be produced by the dampers. In this article, by integrating the equations of the 
dynamics of MR dampers and the structural motion, and solving them in one set, a more 
concise semi-active optimal control strategy is presented, so as to bypass the aforementioned 
drawback. Next, a strong database that can be utilized to form a controller for more realistic 
implementations is produced. As an illustrative example, the optimal voltages of the dampers 
of a six-storey shear building are obtained under the scaled El-Centro earthquake and used to 
train a set of integrated analysis-adaptive neuro-fuzzy inference systems (ANFISs) as a 
controller. Results show that the overall performance of the proposed strategy is higher than 
most of the other conventional methods. 
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INTRODUCTION

 

 

Protection of structures in terms of 

structural integrity and service ability 

against various lateral loads such as 

earthquake and strong winds is now 

moving from heavy reliance on the 

inelastic deformation of the structure to 

dissipation of energy, by means of energy-

dissipative equipment. This requires the 

development of various structural passive, 

active, semi-active, and hybrid control 

devices for the mitigation of undesired 

responses against dynamic loads. 

                                                 
 Corresponding author Email: hamid@modares.ac.ir 

The magnetorheological (MR) damper, 

which is one of the most effective, high-

capacity, semi-active control devices, 

inputs no energy into the structure and is 

adaptable over a wide range of loading 

conditions. This property makes it strongly 

suitable for structural control, in practice. 

They are not only more energy-efficient 

than active devices, but also more effective 

in absorbing seismic energy than passive 

ones. 

Dyke et al. (1997) presented a 

comparative study on semi-active control 

strategies for the MR damper. Zhang et al. 

(1999) used a linear quadratic Gaussian/loop 

transfer recovery (LQG/LTR) active control 

strategy, based on acceleration feedback in 
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conjunction with an MR damper, to reduce 

the responses of a tall structure excited by 

wind. Bani-Hani et al. (1999a, b) developed 

and designed three active controllers: Two 

neuro-controllers, one with a single sensor 

feedback and the other with three sensor 

feedbacks, and one optimal controller with 

acceleration feedback. Xu et al. (2000) 

proposed two optimal displacement control 

strategies, for the semi-active control of the 

seismic response of frame structures, using 

MR and electrorheological (ER) dampers. 

The early employment of fuzzy logic in 

control of a nonlinear structure may be 

traced back to Casciati et al. (1996). Schurter 

et al. (2001), discussed the motivations of 

using a fuzzy logic controller and the 

guidelines to design an ANFIS. Many 

researchers have utilized fuzzy logic as a 

controller whose rule base and parameters of 

membership function are determined by a 

classic or heuristic optimization algorithm, 

such as, the gradient descent method or 

genetic algorithm, respectively. Chase et al. 

(2004) developed a quadratic output 

regulator that minimizes the total structural 

energy and tested this regulator on a real, 

non-linear, semi-active structural control 

case study. K-Karamodin et al. (2010) 

employed a semi-active neuro-predictive 

controller for a nonlinear benchmark 

building. In the study by Shirazi et al. 

(2012), two types of controllers were 

considered. First, an H∞ inverse control, 

based on the mixed-sensitivity design; and 

second, a dynamic output-feedback linear 

parameter-varying (LPV controller). There 

are some other references that may also be 

referred to as studies on control by fuzzy 

logic and/or neural networks (Yao, et al., 

2013; Ghaffarzadeh, 2013; Kim, 2014; Yan 

et al., 2006; Xu et al., 2008; Faruque et al., 

2009; and Das et al., 2011). 

The strategies applied in the semi-active 

control of structures can be divided into 

two categories, according to whether they 

directly consider the dynamics of the 

controller device or not. In this article, a 

semi-active optimal control strategy that 

explicitly integrates the dynamics of MR 

dampers and the structural linear equation 

of motion is presented. In this control 

strategy, first, an optimization problem is 

established, in which a multi-objective 

functional integrates several structural 

quantities of interest, and the Bouc-Wen 

model of the MR dampers and the linear 

equation of motion of the structure under 

earthquake excitation comprise its 

constraints. An algorithm based on the 

“Steepest Descent” concept is used to find 

the optimal time histories of voltages that 

minimize the objective functional of the 

problem for the specified earthquakes. As 

an illustrative example, a six-storey shear 

building, presented in Jansen et al. (2000), 

is used, and the optimal voltages of its 

dampers are obtained under the scaled El-

Centro earthquake. Next, using the optimal 

solutions, a set of integrated ANFISs is 

trained as a controller. Finally, the 

proposed strategy is compared to several 

conventional control methods as well as 

passive-on and passive-off. 

 

MATERIALS AND METHODS 

 

Magnetorheological Model 

To accurately predict the behavior of 

the control system, the control devices 

should be modeled adequately. A simple 

mechanical model shown in Figure 1 was 

developed to precisely predict the behavior 

of the MR damper over a wide range of 

inputs. While there are some sophisticated 

models for behavior of MR dampers, (e.g., 

see Liem et al., 2015), the MR damper 

model used in this study is the prototype 

one modeled by Dyke et al. (1996). 

The governing equations that predict 

the force of the MR dampers are as 

follows: 

 

damper 0 xf c z 
 

(1a) 

1N N
z x z z x z Ax 


   

 
(1b) 
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Fig. 1. Mechanical model of the MR damper 

 

where fdamper: is the force generated by the 

damper, x : is the relative velocity between 

the ends of the damper, and z: is the 

evolutionary variable that accounts for the 

history dependence of the response. The 

model parameters that depend on the real 

voltage u are defined by the following 

equations: 

 

(1c) ,0 0 a 0b a bc c c u u     
 

 

where u: is obtained as the output of the 

first order filter. 

 

(1d) ( )u u V    

 

where V: is the voltage applied to the 

damper. The dynamics involved in the MR 

fluid reaching rheological equilibrium are 

accounted for through a first order filter, Eq. 

(1d). In Eqs. (1b) to (1d) the parameters 

, , , , , , ,0 a 0b 0 a 0bN A c c    and   depend 

on the characteristics of the damper. 

 

Equation of Motion 

Assume a shear building that has MR 

dampers installed to prevent damage from 

severe earthquake effects. The general 

equation of motion of the main structural 

system is defined in Eq. (2): 

 

+ +S S S S gv K v C v M v M 1  (2) 

where Ms, Ks, and Cs: represent the n×n 

seismic mass, structural stiffness, and 

inherent structural damping matrices, 

respectively; , andv v v : are the floor 

displacement, velocity and acceleration 

vectors, respectively; 
gv : is the ground 

acceleration, 1: is an n×1 unit vector of 

seismic load distribution, and n: is the 

number of storeys. The damping matrix 

can be constructed as defined in Eq. (3) 

(Clough et al., 2003): 

 

(3) 
1

2n
Ti i

S S i i ST
i i S i

 



 
  

 
C M φ φ M
φ M φ

 

 

where 2,i i   and 
iφ : are the damping 

coefficient, eigen value, and eigen vector 

relating to the i
th

 mode shape, respectively. 

To analyze the structure equipped with 

MR dampers, in the conventional methods, 

fd, the vector of the MR dampers’ forces in 

Eq. (4a) given below is found by the 

solution of an optimization problem; then 

the voltages corresponding to fd are found 

through a control law corresponding to 

various algorithms, such as, the Lyapunov 

Stability Theory, Decentralized Bang-Bang 

Control, Clipped-Optimal Control, Modulated 

Homogeneous Friction, and so on. However, 

in this article, and the proposed algorithm 

the equations of dynamic behavior of the 

MR dampers (Eqs. (4b) to (4d)) are added 
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to the linear equation of motion of the 

structure and then solved simultaneously. 

As a result, the voltages corresponding to 

the fd are obtained directly in a more 

realistic manner, as follows; 

 

(4a) S S S d S gv    K v C v M v Df M 1  

(4b) 
( ) ( )

, ~

dj 0 aj 0 bj j j aj bj j j

d

f c c u x u z

j 1 n

    


 

(4c) 
1j jN N

j j j j j j j j j jz x z z x z A x 


   
 

(4d) ( )j j j ju u V  
 

 

where D: is the n×nd matrix of location 

and the number of the dampers, nd: is the 

number of storeys that have MR 

damper(s), and , , , , anddj j j j jf x z u V : are 

j
th 

component of the vectors 

, , , , anddf x z u V , respectively. The relative 

velocity  can be related to the floor 

velocity of the main structure by the 

following equation. 

 
T

dx D Ev  (5) 

 

where Dd: is the n×nd matrix of only the 

location of dampers and matrix E: is 

defined as: 

,

, 1

,

1 , 1 ~

1 , 2 ~

0 , , 1 ~ , , 1

i i

i i

i j

E i n

E i n

E i j n j i i



  


   


   

E  

where Ei,j: represents the component 

located in the i
th 

row and j
th 

column of 

matrix E. 

 

Objective Function 

To evaluate the control strategy, the 

following criteria, which are based on the 

responses of buildings, are used. All the 

criteria in Eqs. (6a) to (6c), except J7 that is 

presented here for the numerical analyses, 

have been proposed by Ohtori et al. 

(2004). 

 

(6a) 

,

,

,

,

( )
max

,
( )

max

max ( )
,

max ( )

max ( )

max ( )

c

i

t i
i

1 u

i

t i
i

c

ai
t i

2 u

ai
t i

c

i ai
t

i

3

u

i ai
t

i

d t

h
J

d t

h

v t
J

v t

m v t

J

m v t










 

(6b) 

( )
max

,
( )

max

max ( )
,

max ( )

( )

( )

c

i

i
i

4 u

i

i
i

c

ai
i

5 u

ai
i

c

i ai

i

6

u

i ai

i

d t

h
J

d t

h

v t
J

v t

m v t

J

m v t










 

(6c) 

,

,

,

max ( )
,

max ( )

max ( )

c

i
t i

7 u

i
t i

di
t i

8

T

v t
J

v t

f t
J

W





 
 

where d and ||.||: are defined as: 

 
2

0

1
( ) ( ) , . . d

ft

f

t t t
t

  d Ev

 

where d: is the vector of relative 

displacement of the storeys, hi: is the 

height of the i
th 

storey; and mi and 

ai i gv v v  : are the mass and absolute 

acceleration of the i
th 

floor, respectively. 

WT: is the total weight of the structure, tf : 

is a sufficiently large time to allow for the 

response of the structure to attenuate. The 
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superscripts c and u: denote controlled and 

uncontrolled responses, respectively. To 

optimally control the structure under 

excitations, it is necessary to define an 

objective function. Here, an objective 

function composed of normalized effects 

of the time-averaged drifts of the floors, 

absolute accelerations of floors, base shear, 

and input voltages is suggested as follows: 

 

 
0

d
f

b

t

T T T T

v a v a a V aJ t      v Q v v Q v v Q v V RV  

 (7) 

 

where 

2

,

, 2 2

1

1, , 1 2

1

, ,

1
,

( )
* * max

1 1
( ) ,

1 ~

1
( ) ( ) ,

1 ~ 1

( ) ( ) 0,

2

v v
u

i

f
t i

i

v i i

i i

v i i v i iv
i

v i j i v i i j

d t
n t

h

Q
h h

i n

Q Q
h

i n

Q Q

j n i



 



 

 
 
 
 
 


 





    

  


 
   

Q Q

Q

 

 
2

,

1
,

* * max ( )
v v

u

f ai
t i

v n

n t v t

 



Q Q

Q I

 
2

1

,

1
,

* max ( )

( ) * ,

, 1 ~

b b

b

V V
n

u

f i ai
t

i

V i j i j

t m v t

Q m m

i j n



 
 
 
 







Q Q

 
where , ,

bv v V
  Q Q Q : are the normalized 

matrices for time-averaged drifts, absolute 

accelerations, and base shear, respectively. 

In: is the identity matrix of dimension n, 

and R: is the normalized weighting matrix, 

which shows the importance of dampers in 

comparison with each other. The 

Lagrangian function for the optimization 

problem consisting of the objective 

function of Eq. (7) and constraints of Eqs. 

(4a) to (4d) can be constructed as follows: 

 

( )

( )

(( )

( ) )

( ( ))

(

)

b

d

d

j

d

j

T T

v a v V a

T

T

1 S S S a

nn
ij 0 aj 0 bj j j

1 i

i 1 j 1 aj bj j j
a

n

2 j j j j j

j 1

N 1
n

3 j j j j j j

N
j 1

j j j j j

D c c u x

u zJ

u u V

z x z z

x z A x


 

 

 



 







     





    
   
 





  


  





 





v Q v v Q Q v

V RV

λ K v C v M v

d

( ( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), )d

f

f

t

0

t

1 2 30

t

F t t t t t

t t t t t t
















  







v v v V u

z λ λ λ

 

 (8) 

 

where , , and1 2 3λ λ λ : represent the 

Lagrange multipliers and 

, , , andS S
   M C K D : are the normalized 

matrices of the system as defined in the 

following: 

 

 

,

1
,

max

S S S

S S S

I

I S g
t i

F

F v

    



M C K D

M C K D

M 1

 

 

Optimal Control Method 

In this study, the optimal control 

method proposed by Kirk (1970) is slightly 

modified and then employed to minimize 

the objective function defined in Eq. (8). 

For the following objective function and 

constraints 

 

0

( ( ), )

( ( ), ( ), ( ), )) d
f

f f

t

J h t t

g t t t t t

 



x

x x u
 (9a) 

( ) ( ( ), ( ), )t t t tx a x u  (9b) 
 

The augmented objective functional is
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(10)  
0

( ( ), ) ( ( ), )
( ( ), ( ), ( ), ) ( ) ( ) ( ( ), ( ), ) ( ) d

f Tt

T

a

h t t h t t
J g t t t t t t t t t t t

t

    
          


x x
x x u x p a x u x

x
 

 

where x(t): is the system state vector, u(t): 

is the system input vector, h(.): is a 

function of final time and final state, and 

a(.) and g(.): are functions of time, system 

state, and input; tf: is the final time, and 

p(t): is the vector of the Lagrange 

multipliers. It is more convenient to use 

the Hamiltonian function defined in Eq. 

(11). 

 

(11) 

 

( ( ), ( ), ( ), ( ), )

( ( ), ( ), ( ), )

( ) ( ( ), ( ), )T

H t t t t t

g t t t t

t t t t





x x u p

x x u

p a x u

 

 

The necessary conditions to find the 

solution that minimizes Eq. (10) are: 

 

(12a) ( )
( )

H
t

t





x
p

 

(12b) 
d

( )
( ) d ( )

H H
t

t t t

 
  

 
p

x x  

(12c) 0
( )

H

t



u  

 

The boundary conditions for the above 

differential equations can be obtained from 

Eq. (13). 

 

( ( ), )

( ( ), ( ), ( ), ( ), )
δ ( )

( )

( ( ), ( ), ( ),

δ 0( ( ), )
( ), )

T

f f

f f f f f
f

f

f f f

ff f
f f

h t t

H t t t t t
t

t

H t t t

th t t
t t

t

 
 

 
 
 
 
 
  

 
  
 

 

x

x

x x u p
x

x

p

x x u

x
p

 

 (13) 

 

where δ ( )ftx and δ ft : are the variations 

of final state and final time, respectively. If 

( )ftx and/or 
ft  are specified, then δ ( )ftx

 
and/or δ ft will be zero; otherwise, to 

satisfy Eq. (13) for the trivial 

values,δ ( )ftx and δ ft , their multipliers 

should be equal to zero. 

According to Eqs. (12a) to (12c), the 

following nonlinear ordinary differential 

equations that are derived from Eq. (8) 

should be simultaneously solved. 

 

(14a) 
2 2

δ
0 ( ) 0 , 1~

δ

a
j j j j d

J F
u u V j n


      

λ λ


 

(14b)  0 0

1 1

δ
0 diag[ : ] diag[ : ] 0

δ

a
S S S a b a b S g

J F
v


              


K v C v M v D c c u x α α u z M 1

λ λ

 

(14c) 
1

3 3

δ
0 0 , 1~

δ

j jN N
a

j j j j j j j j j j d

J F
z x z z x z A x j n


       

λ λ
 

 
(14d) 

     

   

2

2

0 1 0 0 1 1

: 1 :

3 3

δ d d
0

δ d d

diag[ : ] diag[ : ]

diag[ : ( : sign( ) : sign( )) : : ] diag[( : sign( ) : sign( ) ) : ]

2 2(

a

T T T T

S d b S d a b S

T T

d d

v

J F F F

t t



  
    

  

         

    

 

N N

v v v v

K E D c u D λ C E D c c u D λ M λ

E D N γ x β z z z λ E D γ x z β z A λ

Q v )( ) 0
bv V g

   Q Q v 1 v
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(14e) 
   : 1

1 3 3

δ d
0

δ d

diag[ : ] diag[ : ( : sign( ) : sign( )) : : ] 0

a

T

a b

J F F

t


 
   

 

    
N

z z z

α α u D λ N γ x β z z x λ λ

 

(14f) 2

δ
0 2 diag[ ] 0

δ

aJ F
    


RV η λ

V V  

(14g)  0 1 2 2

δ d
0 diag[ : : ] diag[ ] 0

δ d

Ta
b b

J F F

t

 
       

 
c x α z D λ η λ λ

u u u  
 

where δ δ ( )aJ tX : is the variation of Ja 

with respect to vector X(t), X:Y, and X
:Y

, 

which show the point-wise product and 

point-wise power, respectively, diag[.] : is 

the diagonal matrix operator, and sign (.): 

is the sign function as below 
:

,

( : ) = , ( ) =

,
, diag[ ] ,

0 ,

1 , 0

sign( ) 0 , 0

1 , 0

i

i i i i

iY

i i j

X Y

X i j
X

i j

x

x x

x


 



 


 
 

Y
X Y X

X  

To determine the functions that 

minimize the objective function or solve 

Eqs. (14a) to (14g), a steepest descent 

algorithm is proposed. The following step 

by step algorithm describes the solution 

procedure: 

1. Assume initial functions for the vector 

of real voltages u
k
(t), k=0. 

2. For u
k
(t) to remain in its bounds, that is, 

( )k

L UV t V u , replace u
k
(t) with 

B(u
k
(t); VL,VU) as defined in the following 

,

( ; , ) ,

,

L L

L U L U

U U

V V

B V V V V

V V




  
 

u

u u u

u
 

3. Calculate V
k
(t) from Eq. (14a) 

4. Solve the differential Eqs. (14b) and 

(14c) with initial conditions 

   0 0 0k k v v  and z
k
(0)=0 to obtain 

v
k
(t) and z

k
(t). 

5. Solve the differential Eq. (14d) and Eq. 

(14e) with the terminal condition λ3
k
(tf)=0, 

in addition to the following terminal 

conditions, to obtain λ1
k
(t) and λ3

k
(t). 

1

1( ) 2 ( )( ( )

( ))

bf S v V f

g f

t t

v t

     λ M Q Q v

1
 

1

1

0 0 1

( )

2( )( ( ) ( ))

(

diag[ : ( )] ) ( )

b

f

v V f g f

T

S S d

T

a b f f

t

t v t

t t





     
 

   
 

 

λ

Q Q v 1

M C E D

c c u D λ

 

6. Calculate λ2
k
(t) from Eq. (14f). 

7. Calculate 
d

d

k

k F F

t

  
  

  
g

u u
from Eq. 

(14g). 

8. If the following stopping criterion, in 

which  : is a desired convergence 

parameter, is satisfied, then the V
k
(t): is 

the optimal voltage. 
1k kJ J    

Otherwise, search for α
k
(t) in the 

following equation that minimizes J
k+1

. 

 1( ) ( ) ( ) ; ,k k k k

L Ut B t t V V  u u g  
α

k
(t), is varied by a scalar parameter β in 

the following equation during an internal 

loop. 
, 1 , , ,( ) ( ) ( )k l k l k l k T k lt t   g g    

9. Replace k by k+1 and return to step 2. 

 

The Proposed Control Strategy 

To control the structure subjected to 

earthquake excitations, fast and accurate 

control commands should be given to the 

dampers. By including the equations of the 

dynamics of the MR dampers in the control 

strategy, the optimal voltages will 

theoretically be the most accurate commands 

that can be obtained for each given 

earthquake record. In addition, as fuzzy 
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inference systems and neural networks are 

fast and universal tools of approximation, 

the obtained optimal data can be used to 

train offline a set of ANFISs as an online 

controller. The controller can rapidly issue 

online nearly optimal voltage commands to 

the dampers during earthquakes. The 

accuracy of the outputs of the controller 

mainly depends on the number of inputs and 

the theoretical dependency of the outputs to 

the inputs. 

In this study, a set of ANFISs have been 

trained, by absolute accelerations of floors, 

as the inputs, and optimal voltages, as the 

outputs. For any set of inputs, at any time 

step, there is a corresponding optimal 

voltage. Therefore, thousands of pairs of 

data (inputs and outputs) are obtained for 

training of the ANFISs for any given 

earthquake record. Because of the multi 

input/single output architecture of the 

ANFIS, individual ANFISs are trained 

separately for the damper(s) of each storey. 

Then all the ANFISs are integrated into a 

set of ANFISs that work in parallel. 

 

RESULTS AND DISCUSSION 

 

To demonstrate the effectiveness of the 

proposed semi-active control strategy, 

numerical simulations are carried out for a 

six-storey shear building example, with 

specifications applied in the study by 

Jansen et al. (2000). The building model 

has six 30-centimeter-height storeys each 

with 29.7 kNm
-1

 lateral stiffness and 22.7 

kg seismic mass, and is equipped with two 

dampers in the first storey and two other 

dampers in the second storey. The capacity 

of each damper is 1.8% of the total mass of 

the building when applying the maximum 

voltage of 5 V. Also, the other parameters 

of the dampers are: c0a=0.0064 N scm
-1

, 

c0b=0.0052 Nscm
-1

. V
-1

, αa=8.66 Ncm
-1

, 

αb=8.66 Ncm
-1

V
-1

, β=300 cm
-2

, γ=300cm
-2

, 

A=120, N=2, and η=80 s
-1

. The inherent 

damping matrix is constructed by using 

0.5% damping for all modes. The ground 

excitations adopted in this study are Kobe, 

El-Centro, Northridge, and Chi-Chi as 

shown in Figure 2. 

The optimal time histories of voltages 

and the corresponding structural responses 

of the building under the first 20 seconds 

of the El-Centro acceleration, whose 

amplitude is scaled to 50% of its original 

record, are found by the aforementioned 

step by step algorithm. The convergence 

parameter is assumed to be ε =0.005 and 

the matrix R is experimentally set to 
610 *

dn


I  so that the voltages are implicitly 

prevented from a long stay at their 

maximum level. After getting optimal data, 

the absolute accelerations of the fifth and 

sixth floors are used, to train the ANFISs, 

by using the fuzzy logic toolbox of 

MATLAB. In the architecture of ANFISs, 

the Sugeno fuzzy with nine generalized 

bell-shaped membership functions 

(gbellmfs) are employed for each input. 

Finally, the building that is equipped with 

dampers and the integrated controller is 

numerically simulated under the first 20 

seconds of the El-Centro record that is 

scaled to 10% of its original amplitude. 

Obtaining the optimal voltages and 

training the two ANFISs take about 5 

minutes and 10 seconds, respectively, on a 

personal computer with Intel 2.83GHz 

CPU. The required time for ANFISs to 

simultaneously command the dampers is 

approximately 0.17 milliseconds. If the 

input data and base acceleration are 

measured and sent to the controllers every 

20 milliseconds, the remaining time for the 

dampers to respond will be more than 99% 

of this interval, which is enough to neglect 

the time delay of the semi-active control 

system. The time histories of the 

commanded voltages produced by ANFISs 

and the corresponding forces of dampers 

are shown in Figure 3. It can be seen from 

the voltages in Figure 3 that the controllers 

have been successful in reducing the peak 

structural responses, while holding the 

voltages at a low level, that is, the required 

instantaneous power is increased only 
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when necessary. Furthermore, the time 

histories of the forces produced by 

dampers show that the controllers have 

been moderately successful in preventing 

the ground seismic energy to be transferred 

to the upper unequipped storeys. The 

maximum forces for the first and the 

second dampers are 15.9 and 18.1 

Newtons, respectively. 

 

 
Fig. 2. Acceleration time histories of (a) Kobe, (b) El-Centro, (c) Northridge, and (d) Chi-Chi earthquakes 

 

 
Fig. 3. Time histories of the commanded voltages to dampers of (a) storey 1 and (b) storey 2 and their generated 

forces for (c) storey 1 and (d) storey 2 during the scaled El-Centro excitation 
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Figure 4 shows the ANFIS controlled and 

uncontrolled peak responses on all floors of 

the building. It can be seen from this figure 

that most of uncontrolled responses except 

those for a few of the top floors are due to 

the first mode shape of the building. The few 

top floors, additionally, are slightly affected 

by the other mode shapes as well as the first 

mode shape. The controller has attenuated 

peak displacements and peak relative inter-

storey drifts in all storeys. It has also kept the 

peak absolute accelerations in an acceptable 

order in all floors. By the integrated ANFIS 

controller, the maximum values of 

displacements, relative inter-storey drifts, 

and absolute accelerations are reduced from 

13.1 mm, 1.00%, and 1.471 m s
-2 

to 7.8 mm, 

0.64%, and 1.059 ms
-2

, respectively. Also, 

the value of J4 and J5, 0.497, and 0.696, 

shows the ability of ANFIS to control the 

averaged relative inter-storey drifts and 

averaged absolute accelerations, as well as, 

the mentioned maximum values. 

In the study of the rigid failure of 

buildings, it is important to assess the two 

important criteria, J3 and J6. According to 

these criteria, the building has had 15.5 

and 46.6% reduction in the peak and 

averaged base shear, respectively. This 

suggests that the building can experience 

larger amplitudes than the scaled El-Centro 

by approximately 18.3% in the intense 

phase of the earthquake and by 87.3% in 

the other intervals. Although uncontrolled 

peak and averaged responses do not 

necessarily lead to structural failure, they 

can be considered as limits for the purpose 

of safer designs. 

Table 1 compares the proposed control 

strategy with an integrated fuzzy logic and 

genetic algorithm (GAF) controller proposed 

by Yan et al. (2006) and some other 

conventional methods (presented in Jansen 

et al., 2000) in which the dynamics of the 

dampers are not considered explicitly. 

 

Table 1. Structural response criteria resulted from various control strategies 

Control Strategy J1 J2 J7 J8 

Proposed Semi-Active Optimal Strategy 0.646 0.720 0.597 0.0136 

GAF 0.630 0.780 0.551 0.0149 

Lyapunov Controller A 0.788 0.756 0.686 0.0178 

Lyapunov Controller B 0.548 1.39 0.326 0.0178 

Decentralized Bang-Bang 0.791 1.00 0.449 0.0178 

Maximum Energy Dissipation 0.620 1.06 0.548 0.0121 

Clipped-Optimal  A 0.640 0.636 0.631 0.01095 

Clipped-Optimal  B 0.547 1.25 0.405 0.0178 

Modulated Homogeneous Friction 0.559 1.06 0.421 0.0178 

Passive-Off 0.801 0.904 0.862 0.00292 

Passive-On 0.696 1.41 0.506 0.0178 
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Fig. 4. Peak ANFIS controlled (solid line) and uncontrolled (dashed line) (a) relative inter-storey drift, (b) 

displacement, and (c) absolute acceleration of all floors during the scaled El-Centro excitation 

 

Table 1 shows that the proposed strategy 

has been able to better control the J2 

(absolute acceleration) criterion compared to 

other control strategies. Noting that the 

control of absolute acceleration is relatively 

more difficult than the control of 

displacement and drift, it is interesting that 

the proposed control algorithm has been able 

to considerably reduce the maximum relative 

drift and displacement as well. To explain 

the lesser success of the control algorithm 

compared to some of other control strategies, 

it must be emphasized that when 

acceleration is the aim of the control 

strategy, the displacement is not controlled 

sufficiently and vice versa. The maximum 

required damper force is 1.36% of the total 

mass. This is relatively less than the forces 

used in other control strategies, that is, the 

proposed algorithm has been able to reduce 

the absolute acceleration, while using less 

energy. The proposed strategy has almost the 

same performance as GAF and Clipped-

Optimal A on J1, J2, and J7, but by using less 

energy. 

To show the effectiveness of trained 

ANFISs in control of other non-trained 

earthquakes, it has also been applied for 

Kobe, Northridge, and Chi-Chi excitations, 

and as the result of other control strategies 

were not available, they are compared to 

Passive-on and Passive-off situations. For 

a meaningful comparison, all earthquakes 

were scaled to the same PGA as 10% of 

the El-Centro, 0.3422 ms
-2

. The results are 

presented in Figure 5. 

Figure 5 shows that the proposed 

strategy provides better control, on an 

average, on j1, j2, j3 and j7 compared to 

passive-off and passive-on. Moreover, the 

maximums in J1, J2, J3, and J7 are reduced 

by 32, 50.9, 66.9, and 20.4%, which are 

better than that of passive-on, respectively. 

Among all earthquakes, the proposed 

strategy has better performance in j1 and j3. 

Among all earthquakes, except for the 

Northridge earthquake, it has a better 

control on J2. For displacement control, j7, 

the proposed strategy shows a better 

performance for all earthquakes, except for 

El-Centro. 
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Fig. 5. Results of control by passive-on, ANFIS and passive-off in terms of (a) J1, (b) J2, (c) J3, and (d) J7 under 

four earthquakes and their average and maximum 

 

CONCLUSION 

 

In this article a new formulation for optimal 

control of buildings with MR dampers has 

been proposed and implemented. The new 

formulation explicitly integrates the 

equations of the dynamics of MR dampers 

with the necessary conditions of optimal 

control and solves them together. This gives 

more realistic results than the other 

conventional algorithms that use a separate 

control law. The outcomes of this 

formulation are the accurate optimal 

voltages that are used for training of 

integrated ANFISs with only absolute 

acceleration inputs. In this study, a new 

objective function was also introduced, 

which includes time-averaged relative inter-

storey drifts, absolute accelerations, base 

shear, and input voltages. Outcomes of 

control of a building with the proposed 

method, under a scaled El-Centro excitation, 

show that it results in better performance 

compared to the conventional methods. 

Also, while the proposed strategy considers 

the time-averaged J4, J5, and J6 criteria for 

optimality, its effectiveness is comparable to 

the GAF and Clipped-Optimal methodsthat 

consider the J1, J2, and J7 criteria. The 

proposed strategy reduces the maximum and 

averaged base shear during the scaled El-

Centro earthquake by 15.5 and 46.6%, 

respectively. 

To examine the efficiency of the strategy 

in control of other earthquakes, the 

algorithm was applied to the Kobe, 

Northridge, and Chi-Chi ground excitations, 

all of which are scaled to the same PGA as 

the scaled El-Centro. The strategy generally 

presents better control on J1, J2, J3, and J7 

among the above-mentioned earthquakes 

than on the passive-on and passive-off. The 

proposed strategy can effectively reduce 

displacements, relative inter-storey drifts, 

absolute accelerations, and the base shear, 

to a safe level of serviceability, using less 

force and energy compared to the 

conventional control strategies. 
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