تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,114,806 |
تعداد دریافت فایل اصل مقاله | 97,218,697 |
Estimating Suspended Sediment by Artificial Neural Network (ANN), Decision Trees (DT) and Sediment Rating Curve (SRC) Models (Case study: Lorestan Province, Iran) | ||
Civil Engineering Infrastructures Journal | ||
مقاله 12، دوره 48، شماره 2، اسفند 2015، صفحه 373-380 اصل مقاله (678.18 K) | ||
نوع مقاله: Technical Notes | ||
شناسه دیجیتال (DOI): 10.7508/ceij.2015.02.011 | ||
نویسندگان | ||
Fatemeh Barzegari* 1؛ Mohsen Yousefi2؛ Ali Talebi3 | ||
1Instructor of Agricultural Department, Payam Noor University, Iran. | ||
2M.Sc., Faculty of Natural Resources, Yazd University, Iran | ||
3Associate Professor, Faculty of Natural Resources, Yazd University, Iran. | ||
چکیده | ||
The aim of this study was to estimate suspended sediment by the ANN model, DT with CART algorithm and different types of SRC, in ten stations from the Lorestan Province of Iran. The results showed that the accuracy of ANN with Levenberg-Marquardt back propagation algorithm is more than the two other models, especially in high discharges. Comparison of different intervals in models showed that running models with monthly data, resulted in smaller error and better estimated results. Moreover, results showed that using Minimum Variance Unbiased Estimator (MVUE) bias correction factor modified the SRC results, especially in monthly time steps in almost all stations. Hence, it can be said that if because of advantages such as simplicity, SRC models are preferred, it is better that MSRC (modified sediment rating curve) is used in monthly period. | ||
کلیدواژهها | ||
Artificial Neural Network؛ CART algorithm؛ Decision Tree؛ Levenberg-Marquardt algorithm؛ Sediment Rating Curve | ||
مراجع | ||
Abrahart, R.J. and White, S.M. (2001). “Modeling sediment transfer in Malawi: Comparing back propagation neural network solutions against a multiple linear regression benchmark using small data set”, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26 (1), 19-24. Asselman, N.E.M. (2000). “Fitting and interpretation of sediment rating curves”, Journal of Hydrology, 234(4), 228-248. Cigizoglu, H.K. (2002). “Suspended sediment estimation for rivers using Artificial Neural Networks and sediment rating curves”. Turkish Journal of Engineering and Environmental Sciences, 26(1), 27-36. Fenn, C., Gurnell, A. and Beecroft, I. (1985). “An evaluation of the use of suspended sediment rating curves for the prediction of suspended sediment concentration in a pro glacial stream”. Geografiska Annalar Series A: Physical Geography, 67(1-2), 71-82. Heng ,S., and Suetsugi, T. (2013a).”Using artificial neural network to estimate sediment load in ungauged catchments of the Tonle Sap River Basin, Cambodia”, Journal of Water Resources Protection, 5(2), 111-123. Heng , S., and Suetsugi, T. (2013b). “Investigation on applicability of data-driven models in ungauged catchments: sediment yield prediction”, Earth Resources, 1(2), 37-47. Isik, S. (2013). “Regional rating curve models of suspended sediment transport for Turkey”, Earth Science Informatics, 6(2), 87-98. Jain, S.K. (2001). “Development of integrated sediment rating curves using ANNs”, Journal of Hydraulic Engineering, 127(1), 30-37. Kisi, O. (2005). “Suspended sediment estimation using neuro-fuzzy and neural network approaches”, Hydrological Sciences Journal–des Sciences Hydrologiques, 50(4), August. Kumar, S.A., Ojha, C., Goyal, M., Singh, R. and Swamee, P. (2011). “Modeling of suspended sediment concentration at Kasol in India using ANN, Fuzzy Logic, and Decision Tree algorithms”, Journal of Hydrologic Engineering, 17(3), 394–404. Melesse, A.M., Ahmad, S., McClain, M.E., Wang, X. and Lim, Y.H. (2011). “Suspended sediment load prediction of river systems: An artificial neural network approach”, Agricultural Water Management Journal, 98(5), 855-866. Melesse, A.M., Ahmad, S., McClain, M.E., Wang, X. and Lim, Y.H. (2011). “Suspended sediment load prediction of river systems: An artificial neural network approach”, Agricultural Water Management Journal, 98(5), 855-866. Morris, G.L. and Fan, J. (1998). “Reservoir sedimentation handbook”, Electronic Version 1.04, 1st ed., McGraw-Hill, New York, ISBN-10: 007043302X, pp. 805. Mosaedi, A., Mohammadi Ostadkelayeh, A., Najafinejad, A. and Yaghmaiee, F. (2006). “Optimization of the relations between flow discharge and suspended sediment discharge in selected hydrometric stations of Gorganroud River”, Iranian Journal of Natural Resources, 59(2), 332-341, (In Persian). Nagy, H.M., Watanabe, K.and Hirano, M. (2002). “Prediction of sediment load concentration in rivers using artificial neural network model”, Journal of Hydraulic Engineering, 128(6), 588-595. Nourani, V., Kalantari, O. and Baghanam, A. (2012). “Two semi-distributed ANN-based models for estimation of suspended sediment load.” Journalof Hydrologic Engineering, 17(12), 1368-1380. Rajaee, T., Mirbagheri, S.A. and Zounemat Kermani, M. (2009). “Daily suspended sediment concentration simulation using ANN and neura-fuzzy models”, Science of the Total Environment, 407, 4916-4927. Rezapour, O.M., Shui, L.T. and Ahmad, D.B. (2010). “Review of Artificial Neural Network model for suspended sediment estimation”, Australian Journal of Basic and Applied Sciences, 4(8), 3347-3353. Syvitski, J.P.M., Morehead, M.D., Bahr, D.B. and Mulder, T. (2000). “Estimating fluvial sediment transport: The rating parameters”, Water Resources Research Journal, 36(9), 2747-2760. Walling, D.E. and Fang, D. (2003). “Recent trends in the suspended sediment loads of the world’s rivers”, Global Planetary Change, 39(1), 111-126. Walling, D.E. (1974). “Suspended sediment and solute yields from a small catchment prior to urbanization”, In: Gregory, K.J., Walling, D.E. (eds.), Fluvial Processes in Instrumented Watersheds, Institute of British Geographers, Special Publication, 6, 169-192. Wang, H., Yang, Z., Wang, Y., Saito, Y. and Liu, J.P. (2007). “Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the1860s”, Hydrology Journal, 349(3), 318-332. Wolfs, V. and Willems, P. (2014). “Development of discharge-stage curves affected by hysteresis using time varying models, model trees and neural networks”, Environmental Modeling and Software, 55, 107-119. | ||
آمار تعداد مشاهده مقاله: 2,627 تعداد دریافت فایل اصل مقاله: 2,572 |