
Civil Engineering Infrastructures Journal, 49(1): 71 – 96, June 2016 

Print ISSN: 2322-2093; Online ISSN: 2423-6691 

DOI: 10.7508/ceij.2016.01.006 

 

 

* Corresponding author E-mail: rahimian@ut.ac.ir 
 

   71 

 

Three-Dimensional Interfacial Green’s Function for Exponentially 

Graded Transversely Isotropic Bi-Materials 
 

Akbari, F.
1
, Khojasteh, A.

2  
and Rahimian, M.

3* 

 
1 

M.Sc., School of Civil Engineering, College of Engineering, University of Tehran, 
Tehran, Iran.  

2 
Assistant Professor, School of Engineering Science, College of Engineering, University of 

Tehran, Tehran, Iran.  
3 

Professor, School of Civil Engineering, College of Engineering, University of Tehran, 

Tehran, Iran.  

 

 
Received: 22 Feb. 2015;      Revised: 25 Oct. 2015;           Accepted: 28 Oct. 2015 

ABSTRACT: By virtue of a complete set of two displacement potentials, an analytical 

derivation of the elastostatic Green’s functions of an exponentially graded transversely 

isotropic bi-material full-space was presented. Three-dimensional point-load Green’s 

functions for stresses and displacements were given in line-integral representations. The 

formulation included a complete set of transformed stress-potential and displacement-

potential relations, with the utilization of Fourier series and Hankel transform. As 

illustrations, the present Green’s functions were analytically degenerated into special cases, 

such as exponentially graded half-space and homogeneous full-space bi-material Green’s 

functions. Owing to the complicated integrand functions, the integrals were evaluated 

numerically, and in computing the integrals numerically, a robust and effective 

methodology was laid out which provided the necessary account of the presence of 

singularities of integration. Some typical numerical examples were also illustrated to 

demonstrate the general features of the exponentially graded bi-material Green’s functions 

which will be recognized by the effect of degree of variation of material properties. 

 

Keywords: Bi-Material, Displacement Potential, Exponentially Graded, Functionally 

Graded Material, Green’s Function, Transversely Isotropic. 

 

 

INTRODUCTION 

 

The continuous variation of the mechanical 

characteristics of functionally graded 

composite materials have broad application 

in industrial engineering, including thermal 

barriers, abradable seals, wear-resistant and 

oxidation resistant coatings, due to better 

residual stress distribution, thermal 

properties and greater fracture toughness. 

Also, functionally graded materials (FGMs) 

which possess the desired variation of 

material properties in spatial directions are 

widely used in different applications, such as 

aerospace and automobile industries 

(Eskandari and Shodja, 2010). For an 

inclusive review of the recent developments 

in the theory and application of FGMs, and 
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the subjects of further research, one might 

refer to Birman and Byrd (2007). In addition 

to the manufactured functionally graded 

composite materials, the more deep 

understanding of the deposited soil and rock 

formations have attracted researchers to the 

area of analysis of stress transfer in this type 

of materials, and the effective utilization of 

their advantages. As many natural soils 

deposited through a period of time exhibit 

the anisotropic and inhomogeneous 

characteristics, a more precise modeling of 

soil medium with such behavior would be of 

considerable interest in foundation 

engineering and geomechanics, etc. 

However, among the different kinds of 

inhomogeneity, the exponential variation of 

the elasticity tensor is widely used for FGMs 

in the engineering literature and is evident in 

the list of references provided by Martin et 

al. (2002). 

It was recognized that the performance of 

these materials was closely related to the 

effects occurring at the interface between 

their different components. Issues, such as 

interfacial fracture and crack problems, in 

functionally graded bi-material systems, are 

at the forefront of many investigations 

(Lambros and Rosakis, 1995). A powerful 

approach for the analysis of the foregoing 

FGMs and mechanics problems is the 

integral equations or boundary element 

methods. Central to their success is the 

availability of suitable Green’s functions. 

For a detailed review of studies in the 

field of inhomogeneous isotropic and 

anisotropic solutions, one might refer to 

Wang et al. (2003) who also presented the 

Green’s functions for the point load acting in 

an exponentially graded transversely 

isotropic half-space. Later, the fundamental 

solutions of an exponentially graded 

transversely half-space subjected to uniform 

and non-uniform vertical patch loads were 

derived, respectively (Wang et al., 2006, 

2009). Martin et al. (2002) presented a 

Green’s function of three-dimensional 

exponentially graded elastic isotropic solids. 

Pan and Yang (2003) derived three-

dimensional static interfacial Green’s 

functions in anisotropic bi-materials. Chan et 

al. (2004) presented a general analytical 

technique for obtaining the Green’s function 

for two-dimensional exponentially graded 

elastic isotropic solids. Kashatalyan and 

Rushchitsky (2009) presented two 

displacement potential functions in three-

dimensional elasticity of a transversely 

isotropic inhomogeneous media with the 

assumption of a constant Poisson ratio and 

functionally graded Young and shear 

moduli. Eskandari-Ghadi et al. (2009a), by 

virtue of Hu–Nowacki–Lekhnitskii 

potentials, presented the elastostatic Green’s 

functions for an arbitrary internal load in a 

transversely isotropic bi-material full-space. 

Eskandari-Ghadi et al. (2009b) and 

Eskandari-Ghadi et al. (2008) presented 

elastodynamic solution for a tri-material 

transversely isotropic full-space and a 

coating-subgrade under surface loads, 

respectively. Sallah et al. (2010) obtained 

the Green’s function for the three-

dimensional exponentially graded elasticity. 
Eskandari and Shodja (2010) derived an 

exponentially graded transversely isotropic 

half-space Green’s functions under static 

different loads acting in an arbitrary depth of 

the medium. Eskandari-Ghadi and Amiri-

Hezaveh (2014) presented the wave 

propagations in an exponentially graded 

transversely isotropic half-space with the aid 

of Fourier series and Hankel transform. 

Khojasteh et al. (2008a, 2013), with the aid 

of displacement potential functions and 

Hankel transform, derived three-dimensional 

Green’s functions in transversely isotropic 

bi-material and tri-material full-space, 

respectively. Selvadurai and Katebi (2013) 

studied the axisymmetric response of an 

incompressible elastic half-space with the 

exponential variation of the linear elastic 
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shear modulus along with the depth. Noijen 

et al. (2012) presented a semi-analytic 

method for crack kinking analysis at 

isotropic bi-material interfaces. Kalantari et 

al. (2015) presented a theoretical 

formulation for the determination of the 

dynamic interaction of a horizontally loaded 

inextensible circular membrane embedded at 

the interface of a transversely isotropic bi-

material full-space. Zhao et al. (2015) 

studied the Green’s functions and extended 

displacement discontinuity method for 

interfacial cracks in three-dimensional 

transversely isotropic magneto-electro-

elastic bi-materials. Li et al. (2015) 

presented axisymmetric problems of a 

penny-shaped crack at the interface of a bi-

material under shear and compression. 

This paper presents the Green’s function 

of an exponentially graded transversely 

isotropic bi-material by utilizing the method 

presented by Khojasteh et al. (2013) together 

with the new displacement potential 

functions presented by Eskandari-Ghadi and 

Amiri-Hezaveh (2014). An arbitrary point 

load is assumed to be applied at the interface 

between two half-spaces. The formulation 

includes a complete set of transformed 

stress-potential and displacement-potential 

relations, together with the application of 

Fourier series and Hankel transform. The 

potential methods applied in this paper are 

the same with the pervious works 

(Eskandari-Ghadi, 2005, 2007; Khojasteh et 

al., 2008a,b, 2006; Ardeshir-Behrestaghi and 

Eskandari-Ghadi, 2009). The complete set of 

point-load Green’s functions of 

displacements and stresses are given in 

terms of real-plane line-integral 

representations. The elastic constants of 

materials are assumed to vary exponentially 

along the axis of symmetry of the solid. The 

Green’s functions are confirmed to be in 

exact agreement with the previous 

degenerate homogeneous transversely 

isotopic solutions by Khojasteh et al. 

(2008a) and the result by Eskandari and 

Shodja (2010) for a heterogeneous half-

space. Also, the accuracy of the numerical 

result is confirmed by the comparison with 

the solution by Selvadurai and Katebi (2013) 

for the case of an incompressible 

heterogeneous isotropic solid. The effect of 

the material inhomogeneity is elucidated by 

several numerical displays. With the aid of 

the Green’s functions presented herein, 

treatments by boundary-integral-equation 

formulations for the analysis of interfacial 

inclusions and cracks in bi-material FGMs 

can be facilitated, which  can also be useful 

in a number of foundation–soil interaction 

and earthquake engineering problems. 

 

GOVERNING EQUATIONS IN 

DISPLACEMENT POTENTIALS 

 

The governing equilibrium equations for a 

vertically heterogeneous transversely 

isotropic elastic solid which its material 

properties vary exponentially along the axis 

of symmetry of the solid, in terms of 

displacements and in the absence of the body 

forces can be expressed as (Wang et al., 

2003). 
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 (1) 

 

in a cylindrical coordinate system  zr ,, , 

where z-axis is the axis of symmetry of the 

solid; ru , u  and zu : are the displacement 

components in the r ,   and z  directions, 

respectively; ijC : are elasticity constants of 

the solid corresponding to the depth 0z  

with the relation   2121166 CCC  ; and 

 : is the exponential factor characterizing 

the degree of the material gradient in the z -

direction. Here, it is assumed that the elastic 

constants of the medium vary exponentially 

in the z -direction as: 
 

z
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in medium І, and 
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in medium ІІ, where 

ijC  and 

 
ijC : indicate 

the z -independent elastic constants 

corresponding to the depth, with 0z . It is 

obvious that 0  corresponds to the 

homogeneous transversely isotropic bi-

materials. In order to solve the coupled 

partial differential Eq. (1) a set of complete 

potential functions F  and   introduced by 

Eskandari-Ghadi and Amiri-Hezaveh (2014) 

is used. These two potential functions are 

related to the displacement components, ru , 

u , and zu  as: 
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The substitution of Eq. (4) into Eq. (1) 

result in two separate partial differential 

equations (PDEs) which are the governing 

equations for the potential function F  and 

 : 
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Here 20 1 s  and 1s  and 2s : are the 

roots of the following equation, which in 

view of the positive-definiteness of the strain 

energy, are not zero or pure imaginary 

numbers (Lekhnitskii, 1963). 

By virtue of Fourier expansion, with 

respect to the angular coordinate  , one may 

express (Sneddon, 1951) Eq. (12) with 

similar expressions for the displacement and 

stress components. 
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  order Hankel 
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z)ƒ(r,  with respect to the radial coordinate 
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ordinary differential equations for F  and   

can be obtained (Eqs. (14-16)). 
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The general solution of Eqs. (14) and (15) 

can be written as: 
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It is worth mentioning at this point that in 

view of the positive-definiteness of the strain 
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energy, 1s  and 2s  are neither zero nor pure 

imaginary numbers (Lekhnitskii, 1963). The 

values of 1 , 2 , and 3  are selected such 

that Re  )( j . Under these choices, the 

z
e 1 , 

z
e 2  and 

z
e 3  terms become 

inadmissible and are thus omitted in Eqs. 

(17) and (18), while mm FA ,...,  are constants 

of integration to be determined from 

boundary conditions. 

By means of Eq. (4) and the identities 

involving Hankel transforms, the 

transformed displacement-potential relations 

may be compactly expressed as: 
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With the aid of Eqs. (17), (18), (20) and 

(22), the imposition of the loading, 

interfacial and regularity conditions 

associated with a bi-material FGM is greatly 

facilitated, as will be illustrated in the 

ensuing sections. 

 

STATEMENT OF THE PROBLEM 

 

Consider the physical domain of interest to 

be composed of two dissimilar transversely 

isotropic half-spaces with exponential 

variation of elastic moduli along its axis of 

symmetry and fully bonded across the plane 

0z . Figure 1 depicts a cylindrical 

coordinate system ),,( zr   in such a way 

that z -axis is normal to the horizontal 

interface of the domain, therefore it serves as 

the common axis of symmetry of both 

media. Let the upper half-space ( 0z ) be 

occupied by medium І and the lower half-

space ( 0z ) be occupied by medium ІІ. 

The elasticity constants of the upper half-

space (referred to as medium І) will be 

denoted as )(zCij


 and those of the lower 

half-space (referred to as medium ІІ) as 

)(zCij
 

. Hereafter, the superscripts І and ІІ 

denotes the quantities in media І and ІІ, 

respectively. An arbitrary interfacial traction 

is assumed to be distributed on a finite 

region 0  which is located at the interface 

of the domain. The action of this arbitrary 

distributed source can be represented as a set 

of prescribed stress discontinuities across the 

interface (Khojasteh et al., 2008a), i.e.  

 

 

 
 

 

 

 

 
Fig. 1. Functionally graded transversely isotropic bi-

material full-space under arbitrary interfacial load 
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(23) 

 

where ),( rP , ),( rQ  and ),( rR : are the 

specified interfacial traction distributions in 

radial, angular, and axial directions, 

respectively. In consistency with the 

regularity condition at infinity, the general 

solutions (17) and (18) for F  and   can be 

rearranged as Eqs. (24) and (25), in medium 

І, and Eqs. (26) and (27), in medium IІ. 
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where 
mA ,…,  

mC : are the integration 

constants to be determined using the 

boundary conditions. For the general 

exponentially graded bi-material full-space 

problem of interest, an exact solution 

therefore requires the determination of six 

coefficients. With the aid of Eqs. (21) and 

(22), interfacial traction conditions (Eq. 

(23)), together with the continuity of 

displacements across the interface provide 

six equations required for the solution of the 

six unknown coefficients 
mA ,…,  

mC . 

Substituting the result into Eq. (21) gives the 

transformed Fourier components of the 

displacement field in the form of Eq. (28). 
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Analogously, Eq. (22) yields the 

transformed Fourier components of the 

stress field as: 
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In the aforementioned equations, 
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here, 
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(31) 

 

In expressions (28-31), ijC : are the 

piecewise constant elastic moduli which are 

given by Eq. (32). 

 














 



0,

0,

zC

zC

C

ij

ij

ij  (32) 

in addition, il  and ik : are functions defined 

as: 
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Also, 
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Upon setting 0    , )(S  leads 

exactly to the same result obtained in 

Khojasteh et al. (2008a) for the 

homogeneous transversely isotropic bi-

materials in the static condition. 

On substituting the inverted Fourier 

components of the displacements and 

stresses into the corresponding angular 

Eigen function expansion, the desired formal 

solution to the general exponentially graded 

bi-material problem under consideration can 

be obtained. 

 

POINT-LOAD GREEN’S FUNCTION 

 

In the previous sections, the general solution 

has been formulated for an arbitrary source 

distributed on the plane 0z . In order to 

obtain the point-load Green’s functions, 

which are useful for the integral 

formulations of boundary value problems, 

one may define the distributed traction 

source may be defined as (Khojasteh et al., 

2008a): 
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in the horizontal and vertical directions, 

respectively. Where  : is the one-

dimensional Dirac delta function, he : is the 

unit horizontal vector in the 0   direction 

given by (Figure 2). 
 

 
Fig. 2. Vertical and horizontal point-load 

configurations 
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re , e , and ze : are the unit vector in the 

radial, angular, and vertical directions, 

respectively; and hF  and vF : are the point-

load magnitudes. By virtue of the angular 

expansions of the stress discontinuities 

across the plane 0z  and the orthogonality 

of the angular Eigen functions   m
ime  , 

the expression of Eq. (37) can be found for 

point-load in Eq. (35). 
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Subsequently, the transformed loading 

coefficients mX , mY  and mZ  can be 

expressed as (Khojaste et al., 2008b): 
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Upon inverting the transformed Eqs. (28) 

and (29) and using Eq. (38), the 

displacement and stress point-load Green’s 

functions may be written as: 
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In the aforementioned expressions, the 

symbols “ 
iû ” and “ 

ik̂ ” ),,,( zrki   

denote, respectively, the displacement and 

stress Green’s functions, with the superscript 

“ ⃰ ” denoting the direction of the point-load 

upon appropriate specifications of hF , vF , 

and 0  in Eq. (35). 

 

SPECIAL CASES 

 

In this section, the examination of two 

degenerate cases is of relevance: (i) when 

the exponential variation of the material 

properties for both of half-spaces is zero, i.e. 

0    , and (ii) when the modulus of 

the upper medium 0z  is zero, such 

degenerate forms of the general formulation 

correspond to the homogeneous bi-materials 

and the exponentially graded half-space 

solutions, respectively. 

 

Homogeneous Transversely Isotropic Bi-

Materials 

Upon setting 0    , the 

corresponding solutions corresponds exactly 

to that of Khojasteh et al. (2008a) for the 

homogeneous transversely isotropic bi-

materials in the static condition. 

 

Exponentially Graded Half-Space 

Adopting 0
ijC , 0 , ijij CC   , 

and    , degenerates the Kernel 

functions (28) to the following expressions 

for the exponentially graded half-space 

problem. 
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 (40) 

 

where 

 

2112)(  I  (41) 

 

The substitution of the Kernel functions 

(40) into Eqs. (38) and (39) yields the static 

point-load Green’s functions for 

exponentially graded half-space. In this case, 

vertical displacements arising from vertical 

point-load are exactly the same as the results 

given in Eskandari and Shodja (2010). 

 

NUMERICAL EVALUATION 

 

In the previous section, the point-load 

Green’s functions were expressed in terms 

of one-dimensional semi-infinite integrals. 

As the integrations generally cannot be 

carried out in exact closed-forms (Apsel and 

Luco, 1983; Pak and Guzina, 2002; 

Rajapakse and Wang, 1993; Rahimian et al., 

2007; Khojasteh et al., 2011), a numerical 

quadrature technique is usually adopted in 

such evaluations. In order to accurately 

evaluate integrals accurately, it of 

importance to pay attention to the oscillatory 

nature of the integrands because of the 

presence of Bessel functions. In the present 

work, an adaptive quadrature rule 

demonstrated in Rahimian et al. (2007) has 

been incorporated and successfully used. 

Several numerical examples were carried out 
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to compare the present solution with existing 

numerical solutions, with satisfactory 

results. 

In the first step for the numerical 

verification, the vertical displacement 

Green’s functions were determined in the 

static case for the homogeneous bi-materials 

and compared with the static result given in 

Khojasteh et al. (2008a) and shown in Figure 

3. Properties of materials have been given in 

Table 2. From the results it was observed 

that the solutions were identical. In addition, 

Figure 4 represents the numerical solution 

for the case of vertical displacement due to 

the vertical point-load at the surface for the 

exponentially graded half-space, with the 

inhomogeneity factor 5.0  and the 

solutions are shown to correspond with the 

solution in Eskandari and Shodja (2010), 

whose material properties are 3.4111 C , 

7.1412 C , 1.1013 C , 2.3633 C , 0.1044 C . 

For the case of isotropic solution, the 

vertical displacement of an incompressible 

isotropic solid along the z -axis and along 

the r -axis at the interface with the initial 

shear modulus 33.30 G  are depicted in 

Figures 5 and 6 and corresponded with the 

results obtained by Selvadurai and Katebi 

(2013), with both results having excellent 

agreement. The material constants for an 

isotropic medium can be reduced to 

 23311 CC ,  1312 CC , 

 6644 CC , where   and   are the 

Lame’s constants of the isotropic solid.  

 

 
Fig. 3. Displacement Green’s function 

z
zû  along z -axis obtained in this study compared with result reported by 

Khojaste et al. (2008) for static case 00   and 0  
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Fig. 4. Displacement Green’s function 
z
zû  along z -axis obtained in this study compared with result reported by 

Eskandari and Shodja (2010) for 5.0  

 

 

Fig. 5. Displacement Green’s function zu  along z -axis obtained in this study compared with result reported by 

Selvadurai and Katebi (2013) for  static case due to uniform vertical surface load 
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Fig. 6. Displacement Green’s function zu  at the surface along r -axis obtained in this study compared with result 

reported by Selvadurai and Katebi (2013) for static case due to uniform vertical surface load 

 

To illustrate the results obtained in the 

previous sections, some typical point-load 

Green’s functions are presented in Figures 7 

to 12 for two exponentially graded 

transversely isotropic materials, with a total 

of three characteristic cases. The values of 

the engineering elastic constants for the 

considered transversely isotropic materials 

are given in Table 1, where hE  and vE  are 

the Young’s moduli with respect to 

directions lying in the plane of isotropy and 

perpendicular to it; h and hv  are Poisson 

ratios which characterize the effect of the 

horizontal strain on its orthogonal 

counterpart and the vertical strain (i.e., the 

z -direction strain), respectively; vh  is the 

Poisson ratio which characterizes the effect 

of the vertical strain on horizontal strains; 

and 2f  is the shear modulus for the planes 

normal to the plane of isotropy (Khojasteh et 

al., 2008c). Upon converting to the elasticity 

moduli 
ijC  and choosing 100

2

vE  Gpa, the 

pertinent elastic constants 
ijC  can be stated 

as those given in Table 2. 
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Fig. 7. Displacement Green’s function 
z
zû  along z -axis ( 1.0 ) 

 

Fig. 8. Displacement Green’s function 
z
zû  along z -axis ( 25.0 ) 
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Fig. 9. Displacement Green’s function 
z
zû  along z -axis ( 5.0 ) 

 

 

Fig. 10. Displacement Green’s function 
r
rû  along z -axis ( 1.0 ) 
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Fig. 11. Displacement Green’s function 
r
rû  along z -axis ( 25.0 ) 

 

 

Fig. 12. Displacement Green’s function 
r
rû  along z -axis ( 5.0 ) 



Civil Engineering Infrastructures Journal, 49(1): 71 – 96, June 2016 

 

89 
 

Table 1. Engineering constants of transversely isotropic materials 

Material No. 
v

h

E

E
 

vE

f
 

h  hv  vh  

2

1

v

v

E

E
 

Material 1 1.5 0.9 0.25 0.3 0.2 0.25 

Material 2 3.0 1.0 0.1 0.9 0.3 - 

 
Table 2. Elastic constants of transversely isotropic materials 

Material No. 11C  (Gpa) 
12C  (Gpa) 

13C  (Gpa) 
33C  (Gpa) 

44C  (Gpa) 

Material 1 44.8 14.8 11.9 29.8 11.3 

Material 2 553 280 250 250 50 

 

The three cases considered here are: 

Case 1. Exponentially graded bi-material 

with material 1 in medium І and material 2 

in medium ІІ (stiffer lower half-space). 

Case 2. Exponentially graded bi-material 

with material 2 in medium І and medium ІІ 

(two equal half-space). 

Case 3. Exponentially graded bi-material 

with material 2 in medium ІІ and 

0,  ijC  in medium І (no upper half-

space). 

The source point is taken to be the origin 

with coordinates (0,0,0). It is of necessity to 

point out that all numerical results presented 

here are dimensionless, where L  represents 

the unit of length. Figures 7 to 9 depict the 

displacement Green’s function z
zû  due to the 

unit point-load in the z -direction for 

50.0,25.0,1.0 . Also, the displacement 

Green’s function r
rû  due to the unit point-

load in the r -direction are delineated in 

Figures 10 to 12 for 50.0,25.0,1.0 . 

Furthermore, in order to provide further 

insight into the problem, the distributions of 
z
zû  at the interface and along the r -axis are 

shown in Figures 13 to 15 for 

50.0,25.0,1.0 . As expected, in case 2 

when a stiffer bi-material  than in the other 

two cases (see Table 2), results in lowest 

values of displacement Green’s functions. 

 

 

Fig. 13. Displacement Green’s function 
z
zû  at the interface along r -axis ( 1.0 ) 
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Fig. 14. Displacement Green’s function 
z
zû  at the interface along r -axis ( 25.0 ) 

 

 

Fig. 15. Displacement Green’s function 
z
zû  at the interface along r -axis ( 5.0 ) 

 

The displacement Green’s functions are 

singular at the interface 0z  and tend to 

zero with increasing depth. Figures 16 to 19 

display the effect of inhomogeneity. As 

observed, the higher   factor reduced the 

displacement Green’s functions due to 

higher stiffness of the medium. 
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Fig. 16. Displacement Green’s function 
z
zû  along z -axis (Case 1) 

 

 

Fig. 17. Displacement Green’s function 
z
zû  along z -axis (Case 2) 
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Fig. 18. Displacement Green’s function 
r
rû  along z -axis (Case 1) 

 

Fig. 19. Displacement Green’s function 
r
rû  along z -axis (Case 2) 
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The distribution of the stress Green’s 

functions z
zz̂  due to the unit point-load in 

the z -direction are shown in Figures 20 to 

22 for 50.0,25.0,1.0 . Similar to the 

displacement Green’s functions, the stress 

Green’s functions are singular at the 

interface 0z . It is noteworthy here that in 

the determination of z
zz̂ , the elastic constant 

33C  is the dominant component, with a value 

for the lower half-space (medium II) which 

is about seven times larger than that for the 

upper one (medium I) in the bi-material case 

1 (Table 2). For this reason, for a given   in 

case 1, the value of z
zz̂  for the lower half-

space is generally higher than that for the 

upper one. The effect of this neighboring 

medium on the stress distribution in either 

half-space is most pronounced near the 

material interface. Similar to the 

displacement Green’s functions, the stress 

Green’s functions tend to zero with 

increasing depth and intensifies with 

increasing  . The reason for this increase is 

existence of the factor ze  in the stress 

Green’s functions. In consistency with the 

symmetry of the problem, all Green’s 

functions for the full-space configuration 

(case 2) are symmetric with respect to the 

plane 0z . 

 

 

Fig. 20. Stress Green’s function 
z
z̂  along z -axis ( 1.0 ) 
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Fig. 21. Stress Green’s function 
z
z̂  along z -axis ( 25.0 ) 

 

 

Fig. 22. Stress Green’s function 
z
z̂  along z -axis ( 5.0 ) 
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CONCLUSIONS 

 

The three-dimensional static Green’s 

functions of an exponentially graded 

transversely isotropic bi-material elastic full-

space due to the point-load are derived by 

means of integral transforms and the method 

of displacement potential. They are 

expressed in the form of explicit line-

integral representations which are essential 

for the efficient boundary element 

formulations of the related elastoestatic 

problems and are used in developing better 

evaluation of composites and anisotropic 

media. It is shown that the present 

exponentially graded transversely isotropic 

bi-material Green’s functions can be 

analytically and numerically degenerated to 

the special cases such as the static solution 

for exponentially graded half-space and the 

homogeneous full-space bi-material media. 

Numerical examples have also been 

presented to elucidate the influence of the 

degree of inhomogeneity of the material. 
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