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Abstract
Fractional calculus has been used to model the physical and engineering processes

that have found to be best described by fractional differential equations. For that reason,
we need a reliable and efficient technique for the solution of fractional differential
equations. The aim of this paper is to present an analytical approximation solution for
linear and nonlinear multi-order fractional differential equations (FDEs). The fractional
derivatives are described in the Caputo sense. In this work, the Reconstruction of
Variational Iteration Method (RVIM) technique has been successfully used to solve two
types of multi-order fractional differential equations, linear and nonlinear. For this
purpose, we convert FDE in to a counterpart system and then using proposed method to
solve the result system. Advantage of the RVIM, is simplicity of the computations and
convergent successive approximations without any restrictive assumptions. Illustrative
examples are included to demonstrate the validity and applicability of the presented
technique.
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Introduction
It is known that many phenomena in several branches

of science can be described very successfully by models
using mathematical tools from fractional calculus.
Methods of solutions of problems for fractional
differential equations have been studied extensively by
many researchers (see, e.g., [1–3] and the references
given therein). The analytic results on the existence and
uniqueness of solutions to the FDEs have been
investigated by many authors; among them, [4]. In

general, most of FDEs do not have exact analytic
solutions, so approximation and numerical techniques
must be used. Finding accurate and efficient methods
for solving FDEs has become an active research
undertaking. Therefore several methods for the
approximate solutions to classical differential equations
are extended to solve differential equations of fractional
order numerically. These methods include: Adomian
decomposition method [5], homotopy perturbation
method [6], homotopy analysis method [7], variational
iteration method [8], generalized differential transform
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method [9], finite difference method [10], operational
matrix of B-spline functions [11], operational matrix of
Legendre polynomials [12,13], operational matrix of
Chebyshev polynomials [14], Legendre collocation
method [15], pseudo-spectral method [16,25], Legendre
multi wavelet collocation method [17] and other
methods [18,19]. The variational iteration method
(VIM) was first introduced by He in 1999 [20,26,27]. In
this method, the solution is approximated at first
iteration by using the initial conditions. A correction
functional is established by the general Lagrange
multiplier which can be identified optimally via the
variational theory. Although a number of useful
attempts have been made to solve fractional equations
via the VIM, the problem has not yet been completely
resolved, i. e. , most of the previous work avoid the term
of fractional derivative, handle them as restricted
variation and they cannot identify the fractional
Lagrange multipliers explicitly in the correction
function. Hesameddini and Latifizadeh proposed a new
alternative approach based on variational iteration
formulations and Laplace transform. This method used
for solving ordinary differential equation [21] and
fractional differential equation [22].

In this work, we extend the reconstruction of
variational iteration method to solve multi-order
fractional differential equations. Indeed, the method is
based on converting a given problem into a system of
FDEs and then solving the resultant system by using the
reconstruction of variational iteration method. The aim
of this work is to present an alternative approach based
on RVIM to find the solution of linear and nonlinear
system of fractional differential equations. The
efficiency and accuracy of RVIM is demonstrated
through several test examples. The paper has been
organized as follows. In Section 2, we introduce some
mathematical preliminaries of the fractional calculus
theory. In Section 3 we describe how to convert a multi-
order FDE into a system of FDE. Section 4 is devoted to
applying the RVIM method for solving multi-order
linear and nonlinear FDEs. Some numerical
experiments are presented in Section 5. Finally, we
conclude the paper with some remarks.

Preliminaries
In this section, we present some notations, definitions

and preliminary facts of the fractional calculus theory
which will be used further in this work.

Definition 1. Let C[a, b]denotes the space of all
continuous functions defined on [a, b] andC [a, b]denotes a class of all real valued functions
defined on [a, b] which have continuous -th order

derivative.

Definition 2. Let ∈ [ , ] and ≥ 0, then the
expression ( ) = 1Γ( ) ( − ) ( ) ,

is called the Riemman-Liouville integral of order .

Definition 3. The fractional derivative of f(x) in the
Caputo sense is defined as;

∗ ( )
= ⎩⎨
⎧ ( )( ) = 1Γ( − ) ( − ) ( )( ) , − 1 < < ,( ), = , for ∈ ∈ C [a, b].
Note that( ) = ( ),,≥ 0, (1)= Γ( + 1)Γ( + + 1) ,> 0, > −1, > 0. (2)
Definition 4. Given a function ( ) defined for

all ≥ 0, the Laplace transformof ( ) is the function( )defined as follows:( ) = { ( ; )} = ∫ ( ) ,

for all values of for which the improper integral
converges.

Definition 5. A function is said to be of
exponential order as → +∞, if there exist nonnegative
Constants , and such that:| ( )| ≤≥ . (3)

Definition 6. A function ( ) is said to be piecewise
continuous on the bounded interval ≤ ≤ provided
that [ , ] can be subdivided into finitely many abutting
subintervals in such way that:

1. is continuous in the interior of each of these
subintervals: and

2. ( ) has a finite limit as approaches each
endpoint of each subinterval from the interior.

Theorem 1. (Existence of the Laplace transforms) If
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a function f is piecewise continuous for ≥ 0 and is of
exponential order as → +∞ then its Laplace transform
F(s) exists. More precisely, if is piecewise continuous
and satisfies the condition (3), then ( ) exists for all> .

Definition 7. Let functions ( ) and ( ) be defined
for ≥ 0, then the convolution of them is denoted by( ∗ )( ), and is defined as the following integral;( ∗ )( ) = ( ) ( − ) .

In other words, if { ( )} = ( ), { ( )} = ( ),
then {( ∗ )( )} = ( ) ( ). Or equivalently,∫ ( ) ( − ) = ( ) ( ). Therefore, the
inverse Laplace transform will be defined as;{ ( ) ( )} = ∫ ( ) ( − ) .

Definition 8. The Laplace transform of the Caputo
fractional derivative ∗ ( ) is given by:{ ∗ ( ); } = ( ) − ( ) ( )(0 ),

where ( ) = { ( ); }, − 1 ≤ < .

Converting a multi-order FDE into a system of FDE
Consider the multi-order FDE:∗ ( ) = , ( ), ∗ ( ), … , ∗ ( ) , ( )(0)= , = 0,1, … , , (4)
where < ≤ + 1, 0 < < < ⋯ ≤ <

and ∗ denotes Caputo fractional derivative of order .
Daftardar-Gejji et al. [5] convert this equation to a
system of FDE, as follows:

Set = and define∗ = . Now we consider two cases:
Case (i) If − 1 ≤ < ≤ , then define,∗ = .
Case(ii) For − 1 ≤ < ≤ . If = − 1,

then define ∗ = , and if − 1 < < ≤
, then define ∗ = .
Continuing similarly, the initial value problem (4),

will be converted in to a system of FDE.

Application of Reconstruction of Variational Iteration
Method (RVIM) for a System of FDE

As described in section 3, we can present the multi-
order Eq. (4), as a system of fractional differential
equations as follows:

∗ ( ) = ( ) ,= 1, 2, … , − 1,∗ ( )= ( , , , … , ), (5)( ) = 0 ≤ ≤ , < ≤ + 1,1 ≤ ≤ .
Eq. (5), can be rewritten in the following form:∗ ( ) = ( , , , … , ),= 1, … , , (6)
where s are linear/nonlinearۥ

functionsof , , , … , and ∗ is the fractional
derivative of order in the sense of Caputo, subjected
to the initial conditions:( ) = < ≤ + 1,1 ≤ ≤ . (7)

Therefore, the approximate solution can be obtained
as follows:( ) = lim→ ( ),= 1,… , (8)

where indicates the -th approximation of

and is (0) + ˊ (0) + …+ ( )( )! , where( )(0), = 0,1, … , are substituted by the initial
condition of the main problem.

Taking Laplace transform of both sides of Eq. (6), in
the usual way and using the homogenous initial
conditions (i. e. artificial initial conditions equal to
zero), the result can be obtained asfollows:{ ( )}= { ( , , , … , )}. (9)

Now by applying the inverse Laplace transform to
both sides of Eq. (9), and using the convolution
theorem, the following relation can be resulted:

( ) = ( − )Γ( ) ( , ( ), ( ), … , ( )) .
Therefore,( )= ( )+ ( − )Γ( ) ( , ( ), ( ), . , ( )) ,= 1, … , . (10)
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After identifying the initial approximation of , the
remaining approximations ( ) , > 0 can be
obtained, so that each term is determined by the
previous term and the approximation of iteration
formula will be entirely evaluated. Consequently, the
solution may be written as:( ) = lim→ ( ), = 1,… .

Results
To illustrate the effectiveness of the proposed

method, we consider various types of multi-order FDEs.
At first, we transform multi-order FDE to a system of
FDE and then the resultant system will be solved by
using RVIM.

Example 1. As a first example, we consider the
following initial value problem in the case of the
inhomogeneous Bagley–Torvik equation [23]

∗ ( ) + ∗ . ( ) + ( ) = 1 + ,(0) = 1, ˊ(0) = 1 ,∈ [0,1]. (11)
In order to apply the present method, at first we

convert this equation into the following system of FDE:∗ . ( ) = ( ),∗ . ( )= − ( ) − ( ) + 1+ , (12)
Subjectedto the initial conditions:(0) = 1 , ˊ(0) = 1 ,(0)= 0. (13)
Applying the Laplace transform to Eq. (12), the

result is as follows:{ ( )} = 1. { ( )},{ ( )}= 1. {− ( ) − ( ) + 1+ }. (14)
Making use of the inverse Laplace transform to both

sides of Eq. (14), result in:( ) = 1Γ(1.5) ( − ) . [ ( )] ,

( )= 1Γ(0.5) ( − ) . [− ( ) − ( ) + 1+ ] . (15)
Therefore, approximate solution of Eq. (12), can be

readily obtained as:( ) = ( ) + 1Γ(1.5) ( − ) . [ ( )] ,( ) = ( ) + 1Γ(0.5) ( − ) . [− ( )− ( ) + 1+ ] , (16)
where ( ) = 1 + , ( ) = 0 .
According to (16), at first iteration, the following set

of relationsis resulted:( ) = 1 + , ( ) = 0 .
Therefore, the solution is ( ) = ( ) = 1 + . This

is coinciding with its exact solution given in [24]. In
comparison with the procedure in [24] to solve this
example, one can see the importance of our numerical
scheme insolving multi-order fractional differential
equations.

Example 2. Consider the following initial value
problem,

∗ ( ) + ∗ . ( ) + ( ) = ,(0) = ˊ(0) = 0 , ˊˊ(0)= 2. (17)
If we choose ( ) = and ∗ . = , then Eq.

(17), will be converted to the following system of
nonlinear FDE:

∗ . ( ) = ( ),∗ . ( )= − ( )− ( ( )) , (18)
subjected to the initial conditions:(0) = ˊ(0) = 0 , ˊˊ(0) = 2 , (0)= 0. (19)
Applying the Laplace transform to Eq. (18), the

result is as follows:
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{ ( )}= 1. {− ( )},{ ( )}= 1. { − ( )− ( ( )) }. (20)
Benefiting the inverse Laplace transform to both

sides of Eq. (20), one obtains:( ) = 1Γ(2.5) ( − ) . [− ( )] ,( )= 1Γ(0.5) ( − ) . [ − ( )− ( ( )) ] . (21)
Therefore, approximate solution of Eq. (21), can be

readily obtained as:( ) = ( ) + 1Γ(2.5) ( − ) . [− ( )] ,( )= ( )+ 1Γ(0.5) ( − ) . [ − ( )− ( )) ] , (22)
where ( ) = , ( ) = 0 and indicates the

-th approximation of for = 1,2 .
By using the definition of Riemman-Liouville

integral of order , we can rewrite Eq. (22), in the
following form:( )= ( ) + . (− ( )),( )= ( )+ . ( − ( )− ( )) ). (23)

According to Eq. (23),at first iteration we have:( ) = , ( ) = 0 .
Therefore, our solution is ( ) = ( ) = . This is

coinciding with the exact solution of this equation.
In comparison with the Adomian decomposition

method [7], our method gives the exact solution faster
than that mentioned method and it is one of the
advantages of this current work.

Example 3. Lastly we consider the following
nonlinear FDE with the exact solution ( ) = :

∗ ( ) + ˊˊ( ) + ( ) = 1 + 4√ + 2, (0)= ˊ(0)= 0, [0,1]. (24)
If we choose ( ) = and ∗ = , then Eq.

(24), can be converted to the following system of
nonlinear FDE:

∗ ( ) = ( ),∗ . ( )= − ( ) − ( ( ))+ 1+ 4√ , (25)
subjected to the initial conditions:(0) = ˊ(0) = 0 ,(0)= 0. (26)
Applying the Laplace transform to Eq. (25), the

result is as follows:{ ( )} = 1. { ( )},{ ( )}= 1. − ( ) − ( ( ))+ 1+ 4√ . (27)
Benefiting the inverse Laplace transform to both

sides of Eq. (27), one obtains:( ) = 1Γ(1.5) ( − ) . [ ( )] ,( )= 1Γ(0.5) ( − ) . − ( ) − ( ( ))+ 1 + 4√ . (28)
Therefore, the approximate solution of Eq. (25), can

be readily obtained as:( ) = ( ) + 1Γ(1.5) ( − ) . [ ( )] ,( ) = ( ) +
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+ 1Γ(0.5) ( − ) . − ( )− ( ( ))+ 1 + 4√ , (29)
where ( ) = 0 , ( ) = 0 and indicates the

-th approximation of for = 1,2 .
According to the definition of Riemman-Liouville

integral of order , Eq. (29), can be rewrite in the
following form:( )= ( )+ . ( ( )),

( )= ( )+ . − ( ) − ( ( ))+ 1 + 4√ . (30)
According to Eq. (30), after some simplification and

substitution, the following sets of equations are resulted:( ) = 0,( ) = 1 + 4√ Γ(5)Γ(5.5) . + 2Γ(1.5) . ,( ) = + 1 + √ ,

( ) = − 1 + 4√ Γ(5)Γ(5.5) Γ(9)Γ(9.5) . + Γ(5)Γ(5.5) .
+ 2Γ(1.5) . ,( ) = + − 1 + √ ( )( . ) ,( ) = 2Γ(1.5) . + ( 115 1 + 4√− Γ(5)Γ(5.5)) Γ(9)Γ(9.5) .
+ 1 + 4√ ( Γ(5)Γ(9)Γ(5.5)Γ(9.5)− 1900 1 + 4√ ) Γ(13)Γ(13.5),( ) = − 0.002682208 + 0.002708415 ,⋮

Therefore, the approximate solution after four

Figure 1. Comparison between theexact solutionand
approximate solution (by RVIM method) for Example (3).

Figure 2. Comparison between the absolute error arises from RVIM and Ref. [24] with various choices of N for Example (3).
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iterations is ( ) = ( ) = − 0.002682208 +0.002708415 . Atabakzadeh et al. [24] applied the
chebyshev operational matrix method for solving this
FDE. Numerical results with comparison to Ref. [24]
are given in Table 1 and Fig. 2. on the interval [0,1].
The accuracy of our results with respect to the results
given in Ref. [24] is obvious.

Fig. 1.shows the approximate solution of Eq. (24).
One can see that our approximate solution is in a good
agreement with its exact solution.

In spite of the method using in [24], that for large N
need a large computation process and this may create a
computational error, our method is very effective to use
and give very good approximate solution.

Conclusion
In this article, we have discussed an analytical

approximation method to solve some classes of FDE.
Our method is based on converting a given problem into
a system of FDE and then solving the resultant systems
by a technique so-called reconstruction of variational
iteration method (RVIM). This work emphasized to our
belief that the method is a reliable technique to handle
linear and nonlinear systems of fractional differential
equations. The obtained results are compared to the
exact solution and also with the solution that were
obtained by other numerical methods in literature. It is
worth mentioning that in a few iterations, we can obtain
good results. Moreover, the method presented rapidly
convergent successive approximations without any
restrictive assumptions or transformation which may
change the physical behavior of the problem. Evidently,
the RVIM reduced the size of calculation and also the
iteration was direct and straightforward. The proposed
technique is easy to implement, efficient and yields
accurate results. Generally, the proposed method is
promising and applicable to board classes of linear and
nonlinear systems in the theory of fractional calculus.
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