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Abstract 

To prospect mineral deposits at regional scale, recognition and classification of hydrothermal 

alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral 

bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. 

A practical way to handle the Hughes problem is preparing a lot of training samples until the size of 

the training set is adequate and comparable with the number of the spectral bands. In order to gather 

adequate ground truth instances as training samples, a time-consuming and costly ground survey 

operation is needed. In this situation that preparing enough field samples is not an easy task, using an 

appropriate classifier which can properly work with a limited training dataset is highly desirable. 

Among the supervised classification methods, the Support Vector Machine is known as a promising 

classifier that can produce acceptable results even with limited training data. Here, this capability is 

evaluated when the SVM is used to classify the alteration zones of Darrehzar district. For this purpose, 

only 12 sampled instances from the study area are utilized to classify Hyperion hyperspectral data with 

165 useable spectral bands. Results demonstrate that if parameters of the SVM, namely C and σ, are 

accurately adjusted, the SVM can be successfully used to identify alteration zones when field data 

samples are not available enough.  

Keywords: classification, cross-validation, hughes phenomenon, hydrothermal alteration, 

hyperspectral, SVM.  
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1. Introduction 

Classification is defined as a process which 

converts data into meaningful information [26]. 

Supervised classification, a powerful type of 

classification is based on a set of labeled data 

which are named training samples. The training 

samples enable supervised classification 

methods to understand classification rules by 

means of several features as explanatory 

variables. The features are all sorts of 

information about unknown patterns that 

should be gathered in order to train classifiers. 

Nowadays, large-sized datasets with tens, 

hundreds, or thousands of features are easily 

available because of the improvements in data 

acquisition technology, the low costs of data 

storage, and the development of database 

technology. On the other hand, with high 

dimensional datasets, the size of the search 

space increases and the generalization capacity 

of classification decreases [14]. 

The supervised classification is commonly 

used for the analysis of remote sensing data. 

The remote sensing data with valuable 

information about the composing materials of 

the earth surface, allows characterization, 

identification, and classification of the surface 

objects. With the recent developments of sensor 

technology, hyperspectral sensors have been 

produced that can acquire remote sensing 

images in hundreds of spectral channels. 

Hyperspectral sensors collect a vast amount of 

spectral information about land surface objects 

in numerous narrow and continuous spectral 

bands. In comparison with multispectral 

sensors which collect spectral information in a 

few wide non-contiguous bands, hyperspectral 

sensors expand the capabilities of the 

multispectral kind by preparing more 

information about the spectral signature of land 

cover classes [7]. Although the high spectral 

resolution nature of hyperspectral images is an 

important advantage, their analysis is more 

difficult than multispectral ones. The curse of 

dimensionality, high spectral redundancy, 

noise, and nonlinear relations between spectral 

channels and corresponding materials are 

common problems of hyperspectral data 

analysis [30, 10, 5]. Because of these reasons, 

the classification of hyperspectral data is a very 

challenging problem. The efficiency of 

classification may be compromised when the 

appropriate methods for multispectral images 

classification are utilized for hyperspectral data 

[5]. Therefore, to consider the special 

characteristics of the hyperspectral data, 

specific classification and segmentation 

methods should be utilized [33]. 

It should be noted that the curse of 

dimensionality is an important problem of the 

hyperspectral data classification. This problem 

arises from the spectral domain where each pixel 

of the hyperspectral images is represented by a 

vector of electromagnetic wavelengths measured 

by sensors which are named spectral bands. The 

size of the vector is equal to the number of 

spectral bands [7]. As mentioned previously, 

several hundreds of spectral bands are typically 

available for hyperspectral images in 

comparison to up to ten bands of the 

multispectral images [10]. Although the large 

number of spectral bands in hyperspectral data 

can increase the accuracy rate of classification, 

the absence of adequate training samples can 

degrade its performance. This problem results 

from insufficient training samples compared to 

the size of the feature space (or spectral band 

space). In other words, because of the high 

dimensionality of the feature space, the training 

data in this space look sparse and empty [33]. 

The degraded accuracy in consequence of the 

curse of dimensionality is known as an ill-posed 

problem and named the Hughes phenomenon 

[38, 33, 30, 1, 10]. Hughes theoretically 

demonstrated the relations between the number 

of the training samples, dimension of feature 

space, and classification accuracy [23]. Figure 1 

represents the Hughes phenomenon where the 

average accuracy of classification has been 

shown as a function of the feature space 

dimension or measurement complexity. In 

addition, the parameter (m) of each curve shows 

the number of the available training samples. 

According to Figure 1, high values of 

average accuracy can be obtained by a large 

number of training samples. However, the 

increase of complexity does not increase 

accuracy forever. There is a point in the 

complexity axis related to a maximum accuracy 

after which accuracy decreases. This 

degradation results from an incorrect estimation 

of the statistical parameters of each class, 

because with a constant number of training 

samples, increasing the feature space dimension 

increases the complexity. As a result, more 

errors occur in the estimated class parameters. 
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For example, Maximum Likelihood Classifier 

(MLC), a widely used traditional parametric 

method, requires a specific number of training 

pixels (at least, m= number of features + 1) to 

have a reliable estimation of class parameters 

[38]. Undoubtedly, in some fields, preparing 

training samples with the mentioned size for a 

high dimensional dataset classification is a very 

difficult task. Consequently, obtaining enough 

training samples is a main challenge in the 

supervised classification of hyperspectral data 

[7]. However, in most applications like mineral 

deposit prospecting, due to the lack of access to 

the prospected area and the expensive and time-

consuming process of ground-truth data 

gathering especially in remote study regions 

[11, 7, 38, 30, 26, 24], the number of collected 

instances as training samples is not sufficient 

for a proper learning of classifier. As a result, 

undesirable occurrences like the Hughes 

phenomenon, over-fitting, and poor 

generalization are expected [7].   

 

Fig. 1. The mean recognition accuracy versus measurement complexity with finite training samples (Modified from [23]) 

A promising choice for hyperspectral data 

classification that covers the mentioned 

problem is using supervised kernel-based 

methods [7, 38, 30, 26, 6]. The kernel-based 

classifiers solve a linear problem after mapping 

data from the original input space to a higher 

dimension feature space. Among the most 

widely used kernel-based methods for 

hyperspectral data classification, the Support 

Vector Machine (SVM) has outperformed 

results with respect to other ones. The SVM as 

a popular classifier has been extensively 

applied for classification of the hyperspectral 

images by widespread scientific fields [5, 3, 33, 

28, 40]. Due to its intrinsic characteristics, the 

SVM has a high capability to classify problems 

which have limited numbers of training 

samples [7, 5]. Unlike traditional parametric 

methods which are based on the statistical 

parameters estimation of data, the SVM utilizes 

structural risk minimization without having any 

prior knowledge or assumption about data 

probability distribution [30, 26]. 

Similar to different sciences, remote sensing 

data are also utilized by extensive fields of 

geological sciences, such as environmental 

geology and mineral and hydrocarbon 

exploration. Mineral mapping as an important 

step of ore mineral prospecting has been 

successfully performed by this technology. 

Hydrothermal alteration mineral mapping via 

remote sensing has been widely and 

successfully used for the exploration of various 

hydrothermal deposits [2, 16, 17, 18, 35, 36]. 

The high spectral resolution of hyperspectral 

data has greatly promoted the potential of 

hyperspectral remote sensing for mineral 

mapping and geological exploration [37], and 

in the last two decades, it has been an important 

tool for studying the minerals and rocks of the 

earth surface [41]. Hyperspectral sensors have 

also been utilized for obtaining accurate 

information about the hydrothermal alteration 

mineral assemblages [21, 13, 17].  

Using satellite imagery to classify surface 

features is very popular [5]. Because of low 
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spatial covering, limited availability, and 

relatively cost of the data acquisition process of 

airborne hyperspectral data, using space-borne 

data is inevitable [20]. By launching EO-1 in 

November 2000, the hyperspectral remote 

sensing from space became possible via the 

Hyperion sensor. The Hyperion with a single 

telescope and two spectrometers in VNIR and 

SWIR is composed of 242 spectral bands at 10 

nm and 30 m spectral and spatial resolution, 

respectively. Although the Hyperion suffers 

from more noise compared to the airborne 

kinds [20], it has found various applications in 

consequence of providing useful data [7]. The 

high availability of the Hyperion data in 

comparison with the airborne data has provided 

unique opportunities to derive benefits from its 

valuable data. Many previous studies by 

various researchers have emphasized the 

importance of the Hyperion for hydrothermal 

alteration mineral mapping [22, 13, 4, 17]. 

Despite the feasibility of the SVM in 

hyperspectral image classification, less attention 

is paid to utilizing the SVM in Geosciences, 

especially for rock type and mineral mapping. 

Few publications are available for using the 

SVM in mineral classification [29, 38, 37]. 

Although these researchers have applied the 

SVM, they do not perform the sensitivity 

analysis of the SVM with respect to the Hughes 

problem. Therefore, the main aim of the present 

study is to evaluate whether the small amount of 

training samples affect the performance of the 

SVM. In order to reach this aim, the SVM was 

utilized for classification alteration zones when 

its training step was done by only 12 training 

instances sampled from the study area. 

Darrehzar copper porphyry type deposit and its 

adjacent regions were selected as the study area 

of this research, as well.   

The remaining sections of the paper have 

been organized as follows: Geological and 

geographical characteristics of the study area 

are introduced in section 2. Detailed 

descriptions about the utilized materials, 

including available datasets (the Hyperion 

scene and field samples) and methods (the 

SVM and error estimators) are stated in section 

3. The results are reported in section 4 and 

finally, the conclusion is stated in section 5. 

2. Study area 

The study area is located in the Iranian 

Uromiyeh-Dokhtar magmatic belt. This belt in 

Iran has been formed by diagonal stretching 

and the subduction of the Arabian plate 

beneath central Iran. It contains extensive 

porphyry copper type mineralization, 

including important mines like Sarcheshmeh, 

Sungon, and Meydouk [39]. The Darrehzar 

porphyry copper mine, which is the study area 

of this paper, is located in the southern part of 

the mentioned magmatic belt and 8 km to the 

southeast of Sarcheshmeh (Fig. 2a, b). 

The Darrehzar porphyry copper deposit has 

almost 67 Mt estimated ore mineral reserve 

with an average grade of 0.37% [27]. Eocene 

volcano-sedimentary rocks, composed of 

volcaniclastics, andesite, trachyandesite, and 

sedimentary rocks, have hosted mineralized 

Oligocene-Miocene diorite and granodiorite 

formations (Fig. 2c) that have both been 

extensively altered by hydrothermal fluids into 

potassic, phyllic, propylitic, and argillic 

products. In addition, in consequence of 

supergene processes and the leaching of 

sulfides, large amounts of reddish or yellowish 

color oxidation products were produced [12]. 

The alteration zones are relatively oval shaped 

with the length of about 2.2 km and the width 

of 0.7–1 km, whereas the extensive phyllic 

and propylitic zones as well as the less 

extensive argillic zone are seen in the area 

[34]. However, no potassic alteration is seen at 

the surface [12]. 

3. Material and Methods  

3.1. Hyperion dataset 

The remote sensing data acquired by the 

hyperspectral Hyperion sensor on 26 July 

2004 is the main dataset of this research. The 

study area was located in the southern part of 

the available scene of the Hyperion, 

highlighted in Figure 3. The level 1R of the 

Hyperion was applied to identify the 

hydrothermal alteration zones of this area. Due 

to the zero values of 44 bands of the level 1R 

data and also spectral overlapping between 

VNIR and SWIR spectral bands, only 196 

bands of primary 242 bands of Hyperion are 

usable. These 196 bands include 50 bands 

from band 8 to 57 in VNIR (covering spectral 

range of 426.82–925.41 nm) plus 146 bands 

from band 79 to 224 in SWIR (covering 

spectral range of 932.64–2395.5 nm). 
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Fig. 2. (a) Location of the study area in Iran, (b) Geological map of the study area at a small scale, (Modified from 

[17]), (c) Geological map of the study area at a large scale (Modified from [34]) 

 

Fig. 3. Location of the study area on the Hyperion scene 
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Before the utilization of the Hyperion, it is 

essential to implement some pre-processing 

steps on the dataset, because the noisy nature 

of the Hyperion should be considered by 

correction of abnormal pixels, striping, and 

smile. In what follows, the main pre-

processing algorithms implemented on the 

dataset have been briefly explained.  

First, non-calibrated plus overlay bands 

were eliminated. Then, the de-striping 

algorithm was applied to reduce the stripe, 

especially in the first 12 VNIR and many 

SWIR bands. Although the de-striping 

algorithm decreases noise effects, some bands 

still comprise excessive noises, including the 

abnormal pixels with negative digital numbers 

(DN) and pixels with constant and 

intermediate DN values. In order to identify 

the remaining abnormal pixels and stripes, the 

visual manner was used, because it is a 

possible and an easy task. 

To eliminate atmospheric effects, 

FLAASH algorithm (The Fast Line-of-sight 

Atmospheric Analysis of Spectral Hyper-

cubes) was utilized. Finally, after the 

elimination of water vapor relevant to 

absorption bands (i.e. bands 121–130 and 

165–180), 165 remaining bands were applied 

as the main dataset, according to Table 1. 

Table 1. List of the 165 bands of the Hyperion as the 

useable dataset after pre-processing 

Array Bands Wavelength (nm) 

VNIR 

8–57 

79–93 

95–98 

100-115 

426–925 

932–1073 

1094–1124 

1144–1295 

SWIR 

117–120 

131–164 

181–189 

191–202 

204–224 

1316–1346 

1457–1790 

1961–2042 

2062–2173 

2193–2395 

 

3.2. Field samples as training dataset 

Supervised classification methods need 

training samples to learn the discriminative 

rules of patterns properly. In this research, the 

training dataset was selected from samples 

which were gathered at the study area. To 

evaluate the robustness of the SVM regarding 

the small size of the training set, the collection 

of a small number of the field samples has 

been attempted. Therefore, 12 rock samples of 

the alteration zones were collected and 

spectrally measured by Analytical Spectral 

Devices (ASD) FieldSpc
3
 at the Department of 

Ecology, Institute of Science and High 

Technology and Environmental Science, 

Graduate University of Advanced Technology, 

Kerman, Iran. The output of the ASD was 

analyzed by an automated mineral 

identification program, namely PIMA View, 

to see the semi-quantitative abundance of 

some alteration minerals. The alteration type 

of each sample was determined by expert 

opinion and the PIMA View results. Phyllic 

and weak phyllic zones were discriminated by 

the abundance value of muscovite and illite, 

the two indicator minerals of the phyllic 

alteration zone. Therefore, among the seven 

non-propylitic samples, four samples are 

assigned to the class phyllic and three samples 

to the class weak phyllic. As can be seen in 

Figure 4 which displays the Hyperion image 

spectrums of these seven samples, most of the 

phyllic samples show higher reflectance in 

comparison with the weak phyllic samples. 

The spatial, spectral, visual, and descriptive 

specifications of the 12 samples are 

summarized in Table 2 and Figures 5-7. 

 

Fig. 4. Hyperion image spectrums of the seven field 

samples of the phyllic zone. Red: 4 phyllic 

samples, Blue: 3 weak phyllic samples 
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Table 2. The spatial, spectral, visual, and descriptive specifications of the 12 field samples 

No. 

Specifications 

Spatial Spectral Visual 

Descriptive 

Alteration type 
PIMA View output 

Muscovite & Illite 

1 
393937 E 

3306057 N 
Fig. 6a Fig. 7 (1) Phyllic >60 % 

2 
393958 E  

3306323 N 
Fig. 6a Fig. 7 (2) Phyllic >60 % 

3 
394156 E  

3306442 N 
Fig. 6a Fig. 7 (3) Phyllic >60 % 

4 
394418 E  

3306339 N 
Fig. 6a Fig. 7 (4) Phyllic >60 % 

5 
393625 E 

3305920 N 
Fig. 6b Fig. 7 (5) Weak phyllic < 30 % 

6 
393881 E  

3305702 N 
Fig. 6b Fig. 7 (6) Weak phyllic <30 % 

7 
394656 E  

3306319 N 
Fig. 6b Fig. 7 (7) Weak phyllic < 30 % 

8 
393880 E  

3305612 N 
Fig. 6c Fig. 7 (8) Propylitic - 

9 
394743 E  

3305965 N 
Fig. 6c Fig. 7 (9) Propylitic - 

10 
394769 E  

3306805 N 
Fig. 6c Fig. 7 (10) Propylitic - 

11 
394048 E  

3306921 N 
Fig. 6c Fig. 7 (11) Propylitic - 

12 
393106 E  

3307977 N 
Fig. 6c Fig. 7 (12) Propylitic - 

 

 
Fig. 5. Spatial location of the 12 field samples, regarding the column "spatial" of Table 2 
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Fig. 6. Field spectrums of the 12 field samples obtained by ASD. (a) 4 phyllic samples, (b) 3 weak phyllic samples, and 

(c) 5 propylitic samples 
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Fig. 7. Visual characteristics of the 12 field samples 

3.3. Support vector machine (SVM) 
Support Vector Machine (SVM) [8], a 

supervised non-parametric statistical learning-

based classification technique [26], has been 

widely used for the classification of 

hyperspectral data recently [31]. Classification 

by the SVM is based on structural risk 

minimization, whereas an optimal hyperplane 

maximizes distance between the margins of 

two classes by the application of a small 

number of training samples, called Support 

Vectors (SV). The SVM is not greatly affected 

by limited training samples, because the SV 

samples are merely used for the classification 

process [8]. Although in its simplest mode, the 

SVM is a linear binary classifier (Fig. 8), it 

can be extended to more than two classes by 

splitting the problem into a series of binary 

class separations, then one of the two widely 

applied techniques for multiclass 

classification, namely One-Against-One 

(OAO) and One-Against-All (OAA) [7] can 

be used. Practically, data points of different 

classes usually overlap with one another and 

linear SVM cannot classify these situations 

accurately [26]. This problem is solved by the 

soft margin SVM and the kernel-based SVM 

in order to represent more complex shapes 

than linear hyperplanes [7]. Basics of the 

SVM formulations are reviewed as follows: 

For a given training set  

  i  iS X ,  Y |  i 1, ,n      where X and Y are a 

training sample set and its associated labels 

respectively, and n is the number of available 
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samples. While the data in the feature space 

are linearly separable, the standard linear 

binary SVM can classify the data by means of 

the hyperplane  f X  W.X b 0    and 

maximum geometric margin 
2

2

W

. Therefore, 

the objective of the SVM is solving the 

following quadratic optimization problem with 

proper inequality constraints: 

 

Fig. 8. Binary SVM in the simplest mode 
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Due to the indirect effect of inequality 

constraints on the main optimization problem, 

by introducing the Lagrange multipliers (α), 
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The dual optimization problem is solved 

with respect to (α) by considering the 

following KKT conditions. 
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The above equations are well known as the 

hard margin SVM, where the members of the 

two classes are completely linear separated. In 

the non-separable cases, the generalization 

capacity of the SVM can be increased by 

introducing slack variables (ξ) and the 

associated penalization parameter (C). As a 

result, the soft margin SVM with soft 

constraint equations is defined thus: 

 

2

1

1
min   C  ξ

2

  . 1 ξ             1, ,

 ξ 0

n

i

i

i i i

i

y b i n



 
 

 

  










 







W

W X
 (4) 

The dual mode optimization problems of 

(2) and (4) are solved with some quadratic 

optimization techniques and  are calculated 

and then W and b can be obtained. Finally, the 

class label for any given sample is predicted 

by: 

     .f x sgn b W X  (5) 

The SVM utilizes just SV samples with 

nonzero Lagrange multipliers (α) to define the 

separation hyperplane, and the remaining 

samples of the training dataset do not 

contribute to the training process. For this 

reason, the SVM is known as a robust method 

for the classification of limited datasets. 

The above relations are able to classify 

linear separable datasets. When the input 

dataset in the feature space cannot be linearly 

separated, a nonlinear mapping function, 

namely the kernel function, is used to project 

data into a higher dimension feature space 

(e.g., a Hilbert space H) (Fig. 9). It is proved 

that the nonlinear data in the new space are 

separable linearly [7]. 
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Fig. 9. Nonlinear transformation of the input space to construct separating hyperplane in another high dimension 

space (Hilbert space) by the nonlinear mapping function, ϕ (b) [6] 

3.4. Error estimation methods 

In order to assess the performance and 

reliability of a designed classifier, its actual 

error should be measured. Practically, it is not 

possible to measure the exact value of the 

actual error, because the underlying feature-

label distribution of real problems is unknown. 

Therefore, an approximate value of the actual 

error is estimated by error estimation methods 

and the available dataset [42]. Usually, the 

available dataset is divided into training and 

test sets, where the former is utilized to train 

the classifier and adjust its parameters and the 

latter is applied to validate it [9]. The size of 

the dataset is an effective factor for selecting a 

consistent error estimation method among 

available error estimators. Clearly speaking, 

when a large amount of data is available, a 

certain amount of it is reserved for testing and 

the remainder is utilized for training, without 

any overlapping between training and test sets. 

The Holdout method is a kind of error 

estimator which implements the above 

procedure on the large-sized data sets. On the 

other hand, in some real-world fields, there are 

no adequate numbers of data samples to allow 

some of them to be kept back for testing. This 

problem poses significant challenges in the 

application of the Holdout error estimator and 

requests other estimation methods for small-

sized datasets, such as re-substitution, k-fold 

cross-validation, Leave-One-Out cross-

validation, etc. [42].  

In the re-substitution method, the whole 

sample set is used for designing and again for 

testing the classifier. Since the train and test 

sets are exactly the same, the results of the re-

substitution method are optimistically biased 

[15]. The dataset used by the k-fold cross-

validation should be split into nearly k equal 

size subsets. At the k-iterations, one of the 

subsets is selected as the test set and the rest k-

1 form the training set. The classifier trained 

by the training set is used to estimate the error 

on the test set. Finally, an average of the k 

obtained errors is considered as the error of 

the classifier. The Leave-One-Out cross-

validation is a complete kind of the k-fold 

cross-validation in which k equals the size of 

the dataset [25]. 

4. Results and Discussion 

The SVM-based classification of the alteration 

zones was done in 4 steps according to the 

flowchart of Figure 10. Before starting the 

first step of the flowchart, a few points need to 

be explained: 

Number of alteration classes: Based on 

the alteration type column of Table 2, three 

different types of alteration were supposed, 

including Phyllic, weak Phyllic, and 

Propylitic. 

Normalized data: To prevent biased 

results, classification should be done by the 

normalized dataset.  

Multi-class SVM: Because the SVM in the 

initial form is a binary classification method, 

the One-Against-One (OAO) procedure was 

used to combine binary results and perform 

multi-classification. 

Kernel function: Due to the outperformed 

results compared with other kernel functions, 

Radial Basis Function (RBF) was used as the 

kernel trick for the implementation of 

nonlinear SVM [19, 32]. 
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Fig. 10. Flowchart of the SVM-based classification 

process 

Considering the above points, the details of 

the 4 steps of classification flowchart are 

explained: 

Step 1. In the first step, it is necessary to 

adjust the parameters of the SVM, namely C and 

σ. It should be noted that incorrect estimation of 

these parameters can negatively affect the final 

results of classification. To set the mentioned 

parameters, the Leave-One-Out cross-validation 

technique, appropriate for limited datasets, was 

utilized. The cross-validation was implemented 

by varied values of σ (i.e. 0.001, 0.005, 0.01, 

0.05, 0.1, 0.5, and 1) and C (100 to 2000 by an 

interval step of 100), and the mean accuracy of 

classification by each pair value of σ and C was 

calculated. The obtained results of cross-

validation have been shown in Table 3, where 

the corresponding values of maximum accuracy 

are the optimum values. As can be seen, the 

maximum value of accuracy (76.92%) has been 

obtained by σ≥ 0.5 and a wide range of C.  

Table 3. Results of Leave-One-Out cross-validation to 

obtain the best values of SVM parameters 

σ C Mean accuracy (%) 

≤ 0.001 100-2000 23.08 

0.005 100-2000 46.15 

0.01 100-2000 46.15 

0.05 100-2000 53.85 

0.1 

100 69.23 

200 61.54 

300-2000 53.85 

≥ 0.5 100-2000 76.92 
 

Step 2. The optimum values of C and σ in 

the previous step were utilized to train the SVM. 

Because of the extensive range of C as well as its 

low effect on the classification result, only two 

values in the beginning and the end of the range 

were selected. Therefore, the classification 

process will be done by two pairs of σ and C, 

including (0.5, 100), (0.5, 2000). 

Step 3. It is obvious that by the 

implementation of the Leave-One-Out cross-

validation at step 1, the validation has been 

previously done and the average accuracy 

equal to 76.92% has been obtained. Now, 

another validation technique, namely re-

substitution, is applied which is appropriate 

for the error estimation of the small-sized 

datasets. According to 4, the results of 

validation have been presented by means of 

overall accuracy, average accuracy, and the 

kappa value. 

Step 4. The SVM trained by the optimum 

parameters of step 2 was used to map the 

alteration zones of the study area (Fig. 11). To 

observe the effect of using incorrect parameters 

on the classification result, alteration maps 

resulted from non-optimum σ were displayed in 

Figure 12, as well. It can be seen that the 

various values of σ have produced alteration 

maps with different accuracies. For example, 

most of the area of the alteration map resulted 

from σ= 0.001 has been covered by the 

propylitic zone inaccurately (Figs. 12, 6). 

According to 3, the lowest accuracy 

(23.08%) was obtained by Leave-One-Out 

cross-validation for σ= 0.001. 

Table 4. The obtained accuracy of the SVM by the optimum values of C and σ using the re-substitution error 

estimator and 12 field samples 

SVM parameters Accuracy 

σ C Overall accuracy (%) Average accuracy (%) Kappa value 

0.5 100-2000 83.33 80.56 0.7624 
 

Table 

Table 
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Fig. 11. Final classified alteration maps resulted from the SVM by (a) σ= 0.5, C= 100 and (b) σ= 0.5, C= 2000 

 

Fig. 12. Final classified alteration maps resulted from the SVM by varied values of σ. The incorrect values of σ have 

produced inaccurate maps 
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5. Summary and Conclusions 

The supervised classification techniques need 

ground truth data to be trained in the training 

phase of classification. Due to the large 

number of spectral bands of hyperspectral 

data, it is necessary to prepare a lot of samples 

as training set for hyperspectral classification. 

A confident way of gathering a reliable 

training set is ground survey in the study area. 

This task needs a relatively long time for 

sampling and a high cost for analysis. 

Sampling can be more problematic, especially 

in prospecting areas with low accessibility 

which means adequate training samples are 

not usually prepared. Therefore, a 

classification method which is consistent with 

small-sized datasets is highly required. The 

important and discriminative advantage of the 

SVM is its high ability to classify problems in 

which ground truth data are not available 

enough for the training step of classification. 

To evaluate this capability, a low number of 

the rock samples, namely 12, sampled from 

the study area were utilized to train the SVM. 

An accurate estimation of SVM parameters 

can increase the generalization and reliability 

of classification results. If these parameters are 

not correctly adjusted, it can strongly affect 

the accuracy rate of classification. Therefore, 

to set most optimum values of C and σ, the 

Leave-One-Out cross-validation method was 

applied. Finally, the SVM trained by the 

obtained parameters and the 12 available field 

samples was utilized to map the alteration 

zones of the study area. The acceptable results 

of classification confirm that the SVM is the 

best choice that can be used by fields in which 

adequate ground truth data collection is 

difficult because of various reasons, such as 

the lack of availability of remotely sensed 

areas and the time-consuming and costly 

nature of the data gathering task. 
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