تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,516,750 |
تعداد دریافت فایل اصل مقاله | 98,777,677 |
Climate change scenarios generated by using GCM outputs and statistical downscaling in an arid region | ||
Desert | ||
مقاله 2، دوره 20، شماره 2، مهر 2015، صفحه 101-115 اصل مقاله (598.95 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2015.56474 | ||
نویسندگان | ||
Zhaofei Liu1؛ Zongxue Xu* 2 | ||
1Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China | ||
2Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Water Sciences, Beijing Normal University, Beijing 100875, China | ||
چکیده | ||
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down– Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin, which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5, and GFDL21) predictor sets and three special report on emission scenarios (SRES) (SRES A1B, SRES A2, and SRES B1). Local climate change scenarios generated from statistical downscaling models was also compared with that projected by raw GCMs outputs. The results showed that the magnitude of changes for annual precipitation projected by raw GCMs outputs was greater than that generated by using statistical downscaling model. The difference between changes of annual maximum air temperature projected by statistical downscaling model and raw GCMs outputs was not as significant as that for annual precipitation. In total, the magnitude of these increasing trends projected by both statistical downscaling models and raw GCMs outputs was the greatest under SRES A2 scenario and the smallest under B1 scenario, with A1B scenario in–between. Generally, the magnitude of these increasing trends in the period of 2081 to 2100 was greater than that in the period of 2046 to 2065. The magnitude of standard deviation changes for daily precipitation projected by raw GCMs outputs was greater than that generated by statistical downscaling model under most of combined scenarios in both periods. | ||
کلیدواژهها | ||
climate change؛ Statistical Downscaling؛ Non-homogeneous hidden Markov؛ Probability density function؛ Tarim River | ||
مراجع | ||
Bates, B.C., S.P. Charles, J.P. Hughes, 1998. Stochastic downscaling of numerical climate model simulations. Eviron. Modell. Softw. 13, 325–331. Brier, G.W., 1950. Verification of forecasts expressed in terms of probability. Mon. Wea. Rev. 78, 1–3. Busuioc, A., D. Chen, C. Hellström, 2001. Performance of statistical downscaling models in GCM validation and regional climate change estimates, Application for Swedish precipitation. Int. J. Climatol. 21, 557–578. Charles, S.P., B.C. Bates, J.P. Hughes, 1999. A spatiotemporal model for downscaling precipitation occurrence and amounts. J. Geophys. Res. 104(D24), 31657–31669. Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez, J. Räisänen, A. Rinke, A. Sarr, P. Whetton, 2007. Regional Climate Projections. In: Climate Change 2007, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Cubasch, U., H. von Storch, J.Waszkewitz, E. Zorita, 1996. Estimates of climate change in Southern Europe derived from dynamical climate model output. Climate Res. 7, 129–149. Dai, X.G., Li, W.H., Ma, Z.G., P.Wang, 2007. Water–vapor source shift of Xinjiang region during the recent twenty years. Prog. Nat. Sci. 17(5), 569–575. Diaz–Nieto, J., R.L.Wilby, 2005. A comparison of statistical downscaling and climate change factor methods, impacts on low flows in the river Thames, United Kingdom. Climatic Change 69, 245–268. Dibike, Y.B., P. Coulibaly, 2005. Hydrologic impact of climate change in the Saguenay watershed, comparison of downscaling methods and hydrologic models. J. Hydrol. 307, 145–163. Dibike, Y.B., P. Coulibaly, 2006. Temporal neural networks for downscaling climate variability and extremes. Neural Networks 19, 135–144. Forney, G.D. Jr., 1978. The Viterbi algorithm. P. IEEE 61, 268–278. Gachon, P., Y. Dibike, 2007. Temperature change signals in northern Canada, convergence of statistical downscaling results using two driving GCMs. Int. J. Climatol. 27, 1623–1641. Giorgi, F., Coauthors, 2001. Regional climate information Evaluation and projections. In: Climate Change 2001, The Scientific Basis. J. T. Houghton et al. (Eds.), Cambridge University Press, 583–638. Harvey, L.D.D., T.M.L. Wigley, 2003. Charactering and comparing control–run variability of eight coupled AOGCMs and of observations Part 1: temperature. Climate dyn. 21, 619–646. Huges, J.P., P. Guttopp, 1994. Incorporating spatial dependence and atmospheric data in a model of precipitation. J. Appl. Meteorol. 33(12), 1503–1515. Hughes, J.P., P. Guttorp, S.P. Charles, 1999. A non– homogeneous hidden Markov model for precipitation occurrence. Appl. Stat.-J. Roy. St. C. 48(1), 15–30. IPCC, 2007, Summary for Policymakers. In: Climate Change 2007, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. QIn: M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp 18. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. GandIn: M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah,W. Ebisuzaki,W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, D. Joseph, 1996. The NCEP/NCAR 40–Year Reanalysis Project. B. Am. Meteorol. Soc. 77(3), 437–471. Karl, T.R., W.C. Wang, M.E. Schlesinger, R.W. Knight, D. Portman, 1990. A method of relating general circulation model simulated climate to observed local climate. Part I, Seasonal statistics. J. Climate 3, 1053– 1079. Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, V. Kanamitsu, M. Kousky, H. van den Dool, R. Jenne, M. Fiorino, 2001. The NCEP/NCAR 50–year reanalysis. B. Am. Meteorol. Soc. 82, 247–267. Liu, Z.F., Z.X. Xu, S.P. Charles, G.B. Fu, L. Liu, 2010. Evaluation of two statistical downscaling models for daily precipitation over an arid basin in China. Int. J. Climatol. (in press) McAvaney, B., C. Covey, S. Joussaume, V. Kattsov, A. Kitoh, W. Ogana, A. Pitman, A. Weaver, R. Wood, Z.C. Zhao, 2001. Climate change 2001, the scientific basis, chap. 8, model evaluation. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change IPCC. University Press, Cambridge Mu, Q.Z., C.S. Jackson, P.L. Stoffa, 2004. A multivariate empirical–orthogonal–function–based measure of climate model performance. J. geophys. Res. 109, D15101. Murphy, J.M., 1999. An evaluation of statistical and dynamical techniques for downscaling local climate. J. Climate 12, 2256–2284. Perkins, S.E., A.J. Pitman, N.J. Holbrook, J. Mcaneney, 2007. Evaluation of the AR4 climate models’ simulated daily maximum air temperature, minimum air temperature, and precipitation over Australia using probability density functions. J. Climate 20, 4356–4376. Prudhomme, C., H. Davies, 2009. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1, baseline climate. Climate Change 93, 177–195. DOI, 10.1007/s10584–008–9464–3. Qian, W.H.,A. Qin, 2008. Precipitation division and climate shift in China from 1960 to 2000. Theor. Appl. Climatol. 93, 1–17. Robertson, A.W., S. Kershner, P. Smyth, 2004. Downscaling of Daily Rainfall Occurrence over Northeast Brazil Using a Hidden Markov Model. J. Climate 17, 4407– 4424. Schubert, S., A.H. Sellers, 1997. A statistical model to downscale local daily temperature extremes from synoptic–scale atmospheric circulation patterns in the Australian region. Clim. Dynam. 13, 223–234. Schubert, S., 1998. Downscaling local extreme temperature changes in south–eastern Australia from the CSIRO Mark2 GCM. Int. J. Climatol. 18, 1419–1438. Timbal, B., A. Dufour, B. McAvaney, 2003. An estimate of future climate change for western France using a statistical downscaling technique. Clim. Dynam. 20, 807–823. DOI 10.1007/s00382–002–0298–9. Wetterhall, F., A. Bárdossy, D.L. Chen, S. HalldIn: C.Y. Xu, 2006. Daily precipitation–downscaling techniques in three Chinese regions. Water Resour. Res. 42, W11423. DOI,10.1029/2005WR004573. Wilby, R.L., S.P. Charles, E. Zorita, B. Timbal, P. Whetton, L.O. Mearns, 2004. Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change (IPCC), prepared on behalf of Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA). <http,//ipccddc.cru.uea.ac.uk/guidelines/StatDown_ Guide.pdf>. Wilby, R.L., O.J. Tomlinson, C.W. Dawson, 2003. Multi– site simulation of precipitation by conditional resampling. Climate Res. 23, 183–194. Wilby, R.L., P.G.Whitehead, A.J.Wade, D. Butterfield, R.J. Davis, G. Watts, 2006. Integrated modelling of climate change impacts on water resources and quality in a lowland catchment_River Kennet, UK. J. Hydrol. 330, 204–220. Wilby, R.L., T.M.L. Wigley, 2000. Precipitation predictors for downscaling, Observed and general circulation model relationships. Int. J. Climatol. 20, 641–661. Wilby, R.L., T.M.L. Wigley, 1997. Downscaling general circulation model output, A review of methods and limitations. Prog. Phys. Geog. 214, 530–548. Wilby, R.L., C.W. Dawson, E.M. Barrow, 2002. SDSM—A decision support tool for the assessment of regional climate change impacts. Eviron. Modell. Softw. 17, 147– 159. Wilby, R.L., L.E. Hay, W.J.Jr. Gutowski, R.W. Arritt, E.S. Takle, Z. Pan, G.H. Leavesley, M.P. Clark, 2000. Hydrological Responses to Dynamically and Statistically Downscaled Climate Model Output. Geophys. Res. Lett. 27, 1199–1202. Wilks, D.S., R.L. Wilby, 1999. The weather generation game, a review of stochastic weather models. Prog. Phys. Geog. 23, 329–357. Wise, E.K., 2009. Climate–based sensitivity of air quality to climate change scenarios for the southwestern United States. Int. J. Climatol. 29, 87–97. Wood, A.W., L.R. Leung, V. Sridhar, D.P. Lettenmaier, 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62, 189–216. Xu, Z.X., Z.F. Liu, G.B. Fu, Y.N. Chen, 2010. Hydro- Climate Trends of the Tarim River Basin for the Last 50 Years. J. Arid Environ. 74, 256–267. | ||
آمار تعداد مشاهده مقاله: 1,944 تعداد دریافت فایل اصل مقاله: 1,526 |