تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,512 |
تعداد مشاهده مقاله | 124,129,343 |
تعداد دریافت فایل اصل مقاله | 97,236,304 |
کاربرد قارچ میکوریزا Glomus mosseae)) روی کاهش اثر شوری در گل حنای گینه نو | ||
به زراعی کشاورزی | ||
مقاله 2، دوره 18، شماره 2، شهریور 1395، صفحه 289-301 اصل مقاله (770.15 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2016.56618 | ||
نویسندگان | ||
لیلا محمدی1؛ سعید ریزی* 2؛ رحیم برزگر3 | ||
1دانشجوی کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد - ایران | ||
2استادیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد – ایران | ||
3استادیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد - ایران | ||
چکیده | ||
به منظور بررسی تأثیر قارچ میکوریزا (Glomus mosseae) تحت تنش شوری بر ویژگیهای فیزیولوژیکی و میزان جذب برخی عناصر غذایی در گل حنای گینه نو (Impatiens hawkeri)، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی، در محیط گلخانه در سه تکرار که هر تکرار شامل سه گلدان بود، در دانشگاه شهرکرد در سال 1393 اجرا گردید. تیمارهای آزمایشی شامل سه سطح قارچ میکوریزای همزیست (صفر، 8 و 16 درصد حجمی) و کلریدسدیم با سه سطح (صفر، 15 و 30 میلیمولار) بودند. بستر کشت شامل 50 درصد پیت ماس، 40 درصد پرلیت و 10 درصد پوسته برنج (به صورت حجمی) بود. در زمان انتقال نشاها، قارچ میکوریزا با بستر ترکیب شد و پس از استقرار نشاها تیمار شوری از طریق آب آبیاری اعمال شد. صفات مورد ارزیابی شامل میزان نیتروژن، فسفر، پتاسیم، سدیم، پرولین، وزن تازه و خشک ریشه و درصد کلونیسازی ریشه بود. تیمار میکوریزای 16 درصد بر نیتروژن (31/2 درصد) و فسفر (339/0 درصد) و اثر متقابل آن با شوری 30 میلیمولار بر میزان پرولین (754/0 میکرومول بر گرم وزن تر) و درصد کلونیسازی ریشه (35 درصد) تأثیر معنیداری داشته است. براساس نتایج ﺗﺤﻘﯿﻖ حاضر، اﺧﺘﻼف ﺑﯿﻦ گیاهان تیمار شده با ﻣﯿﮑﻮرﯾﺰا و سایر تیمارها در بسیاری از ﺻﻔﺎت ﻧﻤﺎﯾﺎن اﺳﺖ و به نظر میرسد که کاربرد ﻗﺎرچ ﻣﯿﮑﻮرﯾﺰا در بستر کاشت میتواند سبب افزایش ﺗﺤﻤﻞ در ﺑﺮاﺑﺮ ﺷﻮری از طریق تأثیر بر برخی ویژگیهای فیزیولوژیکی در گل حنای گینه نو شود. | ||
کلیدواژهها | ||
پرولین؛ فسفر؛ کلریدسدیم؛ نیتروژن؛ وزن تازه ریشه | ||
عنوان مقاله [English] | ||
Application of mycorrhizal fungi (Glomus mosseae) on reducing of salinity effect in New Guinea impatiens | ||
نویسندگان [English] | ||
Leila Mohammadi1؛ Saeed Rizi2؛ Rahim Barzegar3 | ||
1M.Sc. Student, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord - Iran | ||
2Assistant Professor, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord - Iran | ||
3Assistant Professor, Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord - Iran | ||
چکیده [English] | ||
To evaluate the effect of arbuscular mycorrhiza (Glomus mosseae) under salt stress on physiological and some nutrient absorption in New Guinea Impatiens (Impatiens hawkeri), an experiment established in complete random design with three replications (three pots for each replication) in greenhouse in Shahrekord University in 2014. Treatments were inoculation of substrate with three levels of arbuscular mycorrhiza (0, 8 and 16 percent, v/v) and sodium chloride (0, 15 and 30 Mm). The substrate medium was included 50 percecnt of peat moss, 40 percent of perlite and 10 percent of rice husk (v/v). The mycorrhizal inoculation done with transplanting and salt stress treatment was applied with irrigation water after stablishment of transplants. Some traits such as nitrogen, phosphorous, potassium, sodium and proline content, dry and fresh root weight and root colonization percentage were evaluated. The results showed that 16 percent of mycorrhiza treatment had significant effect on nitrogen (2.31 percent) and phosphorous (0.339 percent) and it’s interaction with 30 Mm of salt stress had significant effect on proline content (0.754 micromol/gfw) and root colonization (35 percent) percentage. Based on this research the difference between mycorrhiza treated plants and other treatments was significant and it seems that the application of mycorrhiza in medium, can increase salt tolerance in New Guinea Impatiens by effect on some physiological traits. | ||
کلیدواژهها [English] | ||
nitrogen, proline, Phosphorous, root fresh weight, Sodium Chloride | ||
مراجع | ||
1 . ابوطالبی ع، تفضلی ع، خلدبرین ب، کریمیان ن و امام ی (1386) ﺍﺛﺮ ﺷﻮﺭﻱ ﺑﺮ ﻏﻠﻈﺖ ﻋﻨﺎﺻﺮ ﭘﺮﻣﺼﺮﻑ ﺩﺭ ﺷﺎﺧﺴﺎﺭﻩ ﭘﻨﺞ ﮔﻮﻧﻪ ﻣﺮﻛﺒﺎﺕ. ﻋﻠﻮﻡ ﻛﺸﺎﻭﺭﺯﻱ ﺍﻳﺮﺍﻥ. 38(4): 673-665. 2 . اطمینان س، عالمزاده انصاری ن، محمودی سورستانی م و اسکندری ف (1392) ﺗأﺛﯿﺮ ﺳﻪ ﮔﻮﻧﻪ ﻗﺎرچGlomus mossea ،G. intraradiceوfasiculatum. G ﺑﺮ رﺷﺪ ﮐﺎﻫﻮی اﻫﻮازی ﺗﺤﺖ ﺗﻨﺶ ﺷﻮری (NaCl). مجموعه مقالات هشتمین کنگره علوم باغبانی. صص. 1412-1408. 3 . برین م، علی اصغرزاده ن و صمدی ع (1385) اثر شوری حاصل از کلریدسدیم و مخلوط املاح بر غلظت پرولین و برخی شاخصهای رشد گوجهفرنگی در همزیستی با قارچ میکوریزا آربسکولار. علوم کشاورزی ایران. 37(1): 147-139. 4 . تدین م و زارعی م (1393) بررسی اثر همزیستی قارچ میکوریزا گونه Glomus mosseae بر مقاومت به شوری سه اکوتیپ شاهدانه. فرایند و کارکرد گیاهی. 3(7): 114-105. 5 . توسلی ع و اصغرزاده ن ع (1388) اثر قارچهای میکوریزا آربوسکولار بر جذب عناصر غذایی و عملکرد پیاز در یک خاک شور در شرایط مزرعهای. دانش و آب و خاک. 19(1): 158-146. 6 . خلدبرین ب و اسلامزاده ط (1384) تغذیه معدنی گیاهان عالی. جلد دوم، انتشارات دانشگاه شیراز، شیراز. 902 ص. 7 . فلاحیان ف، عباسپور ح، فهیمی ح و خاورینژاد ر (1384) بررسی تأثیر قارچ اندومیکوریز بر تغذیه معدنی و رشد گیاه پسته (Pistaciavera L.) در شرایط شوری. پژوهش و سازندگی در زراعت و باغبانی. 67: 86-82. 8 . ملکوتی م ج (1378) کشاورزی پایدار و افزایش عملکرد با بهینهسازی مصرف کود در ایران. نشر آموزش کشاورزی. 460 ص. 9 . هانی ع (1381) بررسی اثر مشخصات مورفولوژیکی ریشه گیاه شبدر و سطوح فسفر بر شدت تمایل میکوریزایی گیاه، جذب فسفر و رشد گیاه کلنی شده با قارچ VAM. دانشگاه چمران اهواز. اهواز. پایاننامه کارشناسی ارشد. 10 . یوسفیراد م (1376) اثرات شوری بر محتوای نیتروژن گیاه در مراحل مختلف رشد گندم. دانشگاه تهران. تهران. پایاننامه کارشناسی ارشد. 11 . یوسفیراد م، نورمحمدی ق، اردکانی م، مجیدی هروان ا و میرهادی س ج (1388) تأثیر قارچ میکوریزا بر خصوصیات مورفولوژیکی و محتوای عناصر غذایی جو در سطوح مختلف شوری. دانش نوین کشاورزی. 16: 114-105.
12 . Abbaspour H, Fallahyan F and Fahimi H (2005) Effect of endomycorrhizal fungi and salt stress on nutrient acquisition and growth Pistacia vera L. Pakistan Journal of Biological Sciences. 8: 1006‐1010. 13 . Abdul-Wasea A, Asrar G, Abedel-Fattah M, Khalid ME and Abdul-salam EM (2014) The impact of arbuscular mycorrhizal fungi in improving growth, flower yield and tolerance of kalanchoe (Kalanchoe blossfeldiana poelin) plants grown in Nacl-Stress. Journal of Food, Agriculture and Environment. 12(1): 105-112. 14 . Alguacil MM, Hernandez JA, Caravaca F, Portillo B and Roldan A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum. 118: 562-570. 15 . Aliasgharzadeh N, Saleh Rastin N, Towfighi H and Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza. 11(3): 119-122. 16 . Al-Karaki GN and Clark RB (1998) Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition. 21(2): 263-276. 17 . Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10: 51-54. 18 . Al-karaki GN and Hammad R (2001) Mycorrhiza influence on fruit yield and mineral content of tomato grown under salt stress. Journal of Plant Nutrition. 24(8): 1311-1323. 19 . Al-Karaki GN, Hammad R and Rusar M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza. 11: 43-47. 20 . Asghari HR, Marschener P, Smith SE and Smith FA (2005) Growth response of Atriplex nummularia to inoculation with arbucular mycorrhizal fungi at different salinity levels. Plant and Soil. 273: 245-256. 21 . Asimi S, Gianinazzi-Pearson V and Gianinazzi S (1980). Influence of increasing soil phosphorus levels on interactions between vesicular- arbuscular mycorrhizae and Rhizobium in soybeans. Canadian Journal of Botany. 58(20): 2200-2205. 22 . Augue RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11: 3-42. 23 . Azcon-Aguilar C, Azcon R and Barea JM (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizer for Medicago sativa in normal cultivation. Nature. 279: 325-327. 24 . Balys G (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Endomycorrhiza (Eds Sanders, F. E., Moss, B. and Tinker, P. B.). Academic Press London. Pp. 373-389. 25 . Bates LS, Waldren RP and Teare ID (1973) Rapid determination of free proline for water stress studies. Plant and Soil. 39(1): 205-207. 26 . Beltrano J and Ronco MG (2008) Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology. 20(1): 29-37. 27 . Bai JF, Lin XG, Yin R, Zhang HY, Wang JH, Chen XM and Luo YM (2008) The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Applied Soil Ecology. 38(2): 137-145. 28 . Cachorro P, Oritiz A and Cerda A (1993) Growth, water relations and solute composition of Phaseolus vulgaris L. under saline conditions. Plant Science. 95(1): 23-29. 29 . Cantrell IC and Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil. 233: 269-281. 30 . Chinnusamy V, Jagendorf A and Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Science. 45: 437-448. 31 . Cliquet JB and Stewart GR (1993) Ammonia Assimilation in Zea mays L. Infected with a Vesicular-Arbuscular Mycorrhizal Fungus Glomus fasciculatum. Plant Physiology. 101(3): 865-871. 32 . Daeia G, Ardekania MR, Rejalic F, Teimurib S and Miransarid M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of Plant Physiology. 166(6): 617-625. 33 . Dodd IC and Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. Journal of Experimental Botany. 63(9): 3415-3428. 34 . Dole JM and Wilkins HF (2005) Floriculture: principles and species by prentice-Hall Inc, Simon and Schuster. A Viacom company. New Jersey. 1020p. 35 . Evelin H, Kapoor R and Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany. 104: 1263-1280. 36 . Feng G, Zhang FS, Li XL, Tian CY and Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhizal is related to higher accumulation of soluble sugars in root. Mycorrhiza. 12: 185-190. 37 . Garcia-Sanchez F, Jifon JL, Carrajal M and Syvertsen JP (2002) Gas exchange, chlorophyll and nutrient content in relation to Na+ and Cl accumulation in Sunburst mandarin grafted on differnent rootstocks. Plant Science. 162(5): 705-712. 38 . Garg N and Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). Journal of Plant Growth Regulators. 27: 115-124. 39 . Ghoulam C, Foursy A and Fares K (2002) Effect of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany. 47: 39‐50. 40 . Giri B, Kapoor R and Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils. 38: 170-175. 41 . Giri B and Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptica and Sesbania gradiflora under field condition: evidenced for reduced sodium and improved magnesium uptake. Mycorrhizal. 14: 307-312. 42 . Giri B, Kapoor R and Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microbial Ecology. 54: 753-760. 43 . Gupta ML, Prasad A, Ram M and Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasiculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresource Technology. 81: 77-79. 44 . Gupta N and Rutaray S (2005) Growth and development of AM fungi and maize under salt and acid stress. Acta Agricultural Scandinavia, Section B, Soil and Plant Science. 55: 151-157. 45 . Hartmond U, Schaesberg NV, Graham JH and Syversten JP (1987) Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings. Plant and Soil. 104: 37-43. 46 . He XH and Nara K (2007) Element biofortification: can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition. Trends in Plant Science. 12(8): 331-333. 47 . Jeffries P, Gianinazzi S, Perotto S, Turnau K and Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Boilogy and Fertility of Soil. 37: 1-16. 48 . Jindal V, Atwal A, Sekhon BS and Singh R (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiology and Biochemistry. 3: 475-481. 49 . Koltai H (2010) Mycorrhiza in floriculture difficulties and opportunities. Symbiosis. 52(2-3): 55-63. 50 . Levy Y, Dodd J and Krikun J (1983) Effect of irrigation water salinity and root- stock on the vertical distribution of vesicular-arbuscular mycorrhiza in citrus roots. New Phytologist. 95: 397-403. 51 . Leyva R, Sanchez-Rodriguez E, Rios J, Rubio-Wilhelmi M, Romero L, Ruiz JM and Blasco B (2011) Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science. 181: 195-202. 52 . Lohman ML (1927) Occurrence of mycorrhiza in Iowa forest plants. University of Iowa Studies in Natural History. 11: 33-58. 53 . Mamta JB, Ashish DP, Pranali MB and Pandey AN (2008) Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Ziziphus mauitiana (Rhamnaceae). Journal of Fruit and Ornamental Plant Research. 16: 383-401. 54 . Mohammad MJ, Hamad SR and Malkani HI (2003) Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. Journal of Arid Environments. 53: 409-417. 55 . Murkute AA, Sharma S and Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Horticultural Science. 33: 70-76. 56 . Navarro A, Elia A, Conversa G, Campi P and Mastrorilli M (2012) Potted mycorrhizal carnation plants and saline stress: Growth, qulity and nutritional plant responses. Scientia Horticulturae. 140: 131-139. 57 . Phillips JM and Hayman DS (1970) Improved procedures for clearing root and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55(1): 158-161. 58 . Qiang-Sheng W and Ying-Ning Z (2011) Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress. Science Asia. 35: 388-391. 59 . Rabie GH and Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotecnology. 4(3): 210-222. 60 . Rabie GH (2005) Influence of VA-mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza. 15: 225-230. 61 . Rao AV and Tak R (2002) Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM) fungi in India arid zones. Journal of Arid Environment. 51: 113-11. 62 . Rinaldelli E and Mancuso S (1996) Response of young mycorrhizal and non mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. 1. Short term electro physiological and long term vegetative salt effects. Advances in Horticultural Science. 10: 126-134. 63 . Ruiz- Lozano JM, Azcon R and Gomes M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum. 98(4): 767-772. 64 . Ruiz-Lozano JM and Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity. Mycorrhiza. 10: 137-143. 65 . Sharifi M, Ghorbanli M and Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. Journal of Plant Physiology. 164: 1144-1151. 66 . Singh SK, Sharma HC, Goswami AM, Datta SP and Singh SP (2000) In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia Plantarum. 43(2): 283-286. 67 . Smith SM, Smith FA and Jacobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiology. 133(1): 16-20. 68 . Smith SE and Read DJ (2008) Mycorrhizal Symbiosis. Academic Press and Elsevier London. 69 . Tarafdar JG and Marchner H (1994a) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhiza wheat supplied with inorganic and organic phosphorus. Soil Biology and Biochemistry. 26(3): 387-395. 70 . Tarafdar JC and Marschner H (1994b) Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants. Soil Science and Plant Nutrition. 40(4): 593-600. 71 . Tian CY, Feng G, Li XL and Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline on salinity tolerance of plants. Applied Soil Ecology. 26(3): 143-148. 72 . Vierheiling H, Garcia-Garrido JM, Wyss U and Piche Y (2000) Systemic supperession of mycorrhizal colonization of barley roots already colonized by AM Fungi. Soil Biology and Biochemistry. 32(5): 589-595. 73 . Wang W, Vinocur B, Shoseyov O and Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science. 9(5): 244-252. 74 . Wang C, Li X, Zhou J, Wang G and Dong Y (2008) Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Communiations in Soil Science and Plant Analysis. 39(3-4): 499-509. 75 . Yamato M, Ikeda S and Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza. 18: 241-249. 76 . Yano-Melo AM, Saggin OJ and Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture, Ecosystems and Environment. 95(1): 343-348. 77 . Zhang J, Jia W, Yang J and Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research. 97(1): 111-119. | ||
آمار تعداد مشاهده مقاله: 1,876 تعداد دریافت فایل اصل مقاله: 815 |