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ABSTRACT: In this research, a two-phase algorithm based on the artificial neural network 

(ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing 

the reliability of structures with implicit limit state functions. The proposed method 

involves the generation of datasets to be used specifically for training by Finite Element 

analysis, to establish an ANN model using a proven ANN model in the reliability 

assessment process as an analyzer for structures, and finally estimate the reliability index 

and failure probability by using the HS algorithm, without any requirements for the explicit 

form of limit state function. The proposed algorithm is investigated here, and its accuracy 

and efficiency are demonstrated by using several numerical examples. The results obtained 

show that the proposed algorithm gives an appropriate estimate for the assessment of 

reliability of structures. 

 

Keywords: Artificial Neural Network, Failure Probability, Harmony Search Algorithm, 

Implicit Limit State Function, Reliability Index. 

 

 

INTRODUCTION 

 

Generally, in the analysis of structural 

reliability, we need to define the functional 

relationship between strength (S) and load 

(L) parameters as follows: 

 

1 2 n
M S L g( X , X ,..., X )  

 
(1) 

 

where M: is the limit state function (LSF), 

and sometimes refers to the safety margin or 

the performance function. 

1
1 2

i n
X ( X ,..., X ,..., X ), i ( , , ..., n )  , denote 

n basic random variables, and g(.) : is the 

functional relation between them. In general, 

the function g(X)  takes a specific form, so 

that the failure of the structure is observed 

when M 0 , and to the contrary, the 

survival of the structure occurs when M 0 . 
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Therefore, the failure probability can be 

estimated by performing the following 

integration over the failure region: 

 

1 2 1 2

0

f x n n

g ( X )

P ... f ( x , x , ..., x )dx .dx ...dx



   
 

 (2) 

 

where 
x

f : denotes the joint probability 

density function (PDF) of the basic random 

variables 
1 2 n

X , X ,..., X . For most practical 

reliability problems, the structural responses 

have to be calculated by a numerical 

procedure such as Finite Element analysis. 

This takes the reliability analysis to another 

level of complexity, because the LSF g(X) is 

not available in the explicit closed form. In 

other words, the functional relationship 

between the basic design, variable X, and the 

LSF g(X) is not explicitly available. This 

situation arises, for instance, when a large-

scale engineering structure is analyzed using 

Finite Element software. Similarly, in 

vibration problems, when the governing 

field equations are nonlinear, and/or contain 

parametric excitation terms, the definition 

g(X)  can only be given implicitly. Several 

computational approaches could be pursued 

for the reliability analysis of structures with 

implicit LSF. These can be broadly divided 

into three categories based on their main 

approaches: (1) Monte Carlo simulation 

(MCS) including efficient sampling methods 

and variance reduction techniques; (2) 

response surface method; and (3) sensitivity-

based analysis.  

As long as the specific algorithm is 

available to compute the structural response, 

MCS can be used for problems with implicit 

LSF. The inherent disadvantage of MCS is 

the tremendous computational effort 

required for solving problems involving a 

low probability of failure, or for problems 

that require a considerable amount of 

computation in each sampling cycle 

(Stapelberg and Rudolph, 2009). To reduce 

the computational cost, different techniques 

for reduction of variance, such as importance 

sampling, by Harbiz (1986) and adaptive 

sampling by Bucher (1998) are presented.  

Within the response surface method, a 

first or second-order polynomial 

approximation of g(X) can be determined 

through Eq. (1) and a few selected 

simulations in the neighborhood of the most 

likely failure point; and Eq. (2) applies the 

regression analysis of these results or solve a 

set of linear equations (Allaix and Carbone, 

2011). Then, the obtained closed-form 

polynomial expression of the LSF is used to 

calculate the failure probability of structure. 

This approach will be called ‘polynomial-

based response surface method’ in order to 

distinguish it from the proposed method, 

which will be called later as ‘ANN-HSA’. 

The main limitation of the polynomial-based 

response surface is that when the number of 

random variables increases, the number of 

deterministic analyses increases 

substantially, thus making the method more 

time consuming and expensive (Cheng and 

Li, 2008). 

In the sensitivity-based approach, the 

sensitivity of the structural response to the 

input variables is computed and incorporated 

in the FORM/SORM algorithm (Zang et al., 

2015). Thus, the value of the performance 

function is calculated from deterministic 

analysis, and the gradient is computed using 

sensitivity analysis. However, the 

sensitivity-based reliability analysis 

approach is more elegant and more efficient 

(Castillo et al., 2008) than the simulation or 

response surface methods. Complexity, 

discontinuity and nonlinear behavior of the 

LSF may cause severe problems while using 

these approaches, however, a recent study by 

Lopez et al, deals with some of these 

drawbacks (Lopez et al., 2015).  
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As is clear, the reliability assessment of 

structures by means of the above mentioned 

methods needs to approximate the explicit 

form of LSF. Therefore, developing a new 

technique for assessing reliability without 

any need to approximate the explicit form of 

LSF is very efficient, and this will be 

indispensable. For this purpose, a new two-

phase technique based on meta-heuristic 

optimization algorithms and artificial neural 

network (ANN) is presented in this paper.  

One of the methods used in the reliability 

assessment is to convert the reliability 

problem to the constrained optimization 

problem, and solve it by optimization 

techniques (Liu and Armen, 1991). Among 

optimization techniques, stochastic 

optimization algorithms based on swarm 

intelligence may efficiently help to solve 

global optimization problems (Marti, 2008). 

Actually, the stochastic optimization 

methods provide a means of coping with 

inherent system noise, models or systems 

that are highly nonlinear and have, high 

dimensions, or otherwise inappropriate for 

classical deterministic methods of 

optimization. Meta-heuristic algorithms 

implement some form of stochastic 

optimization (Mucherino and Seref, 2009). 

Their application in the field of structural 

reliability not only presents the advantage of 

its feasibility of implementation, but also the 

possibility of being able to obtain the failure 

probability with good accuracy, without the 

need for evaluation of the derivatives of LSF 

(Elegbede, 2005). Many different 

optimization algorithms are also presented to 

solve reliability problems, such as genetic 

algorithm (GA) used by Cheng (2010), 

Huang (2015), Coelho (2009), evolutionary 

algorithm given by de Castro Rodrigues et 

al. (2016) and Ramirez (2008). 

Harmony Search Algorithm (HSA) is 

based on the swarm intelligence 

optimization algorithm, and has been 

recently developed, which is inspired by the 

phenomenon of a musician tuning his 

instrument (Geem, 2001). HSA does not 

require differential gradients, thus, it can 

consider discontinuous functions as well as 

continuous functions. It does not require an 

initial value setting for the variables and is 

free from divergence. Also the main 

advantage in using HSA is that it may 

overcome the drawback of GA’s building 

block theory which works well only if the 

relationship among variables in a 

chromosome is carefully considered. If 

neighbor variables in a chromosome have a 

weaker relationship than remote variables, 

then the building block theory may not work 

well because of crossover operation. 

However, HSA explicitly considers the 

relationship using an ensemble operation 

(Mun and Cho, 2012).  

The ANNs can also be used to derive a 

good approximation for the LSF or structural 

responses. The motivation for applying 

ANN in this research is to develop a 

methodology to improve the efficiency 

and/or accuracy of estimating reliability in 

comparison to the aforementioned methods. 

Shao and Murotsu (1997) developed a 

technique to use ANN when analyzing 

reliability. They used ANN to approximate 

an explicit form for LSF. Similarly, ANN is 

applied to approximate the LSF, and failure 

probability is then estimated by a general 

reliability method such as, FORM, SORM, 

and MCS (Deng et al., 2005). Cheng (2007) 

developed a method for analyzing reliability 

based on ANN and GA. The ANN model is 

used to approximate an explicit form for 

LSF, and GA is also used to determine 

probability of failure. All of the 

aforementioned research works also need to 

define the explicit form of LSF. The method 

proposed by the authors of this paper try to 

solve this problem and conquer it.  

In this study, a new two-phase algorithm 

based on the ANN and HSA (ANN-HSA) 

has been proposed to assess the reliability of 
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structures with the implicit LSF. Since the 

proposed method doesn’t need the explicit 

form of LSF, there is not any problem for 

explicitly estimation of LSF, and only care 

should be given to the cost of vector solution 

in search process. Therefore, we offer to 

utilize this new technique based on (ANN) 

to reduce the estimation cost of a structure in 

response to the input solution vectors in the 

process of optimization. 

 

FAILURE PROBABILITY 

ASSESSMENT 

 

In this section, the problem of reliability 

assessment is presented, and the reliability 

index is introduced for assessment of 

reliability of structures. 

One method in the reliability analysis is 

to convert the reliability assessment to the 

constrained optimization problem, and solve 

it by optimization techniques. In this 

approach, we are looking at the closest 

distance from LSF to the origin when all the 

variables are transformed from their physical 

space to an independent standard normal 

space. This close distance is known as the 

Hasofer-Lind reliability index 
HL

( )  which 

was defined by Hasofer and Lind (1974) for 

the first time. Hasofer-Lind reliability index 

is actually proposed for an independent 

normal that we shown here as the Π space in 

the Figure 1. Let U be any vector in this 

space, Λ the n-dimensional surface defined 

by the LSF g(X) in the physical variables 

space Ω, and Υ=T(Λ) its image in the 

standard Gaussian Π space. The Hasofer-

Lind reliability index 
HL

( )  is, therefore, 

estimated as 
HL

Min ( d ( O , P ))   , where O 

is the center or  origin of Π space, and P is 

the closest point on the surface Υ to this 

origin (Figure 1). This index enables us to 

have a first-order approximation (FORM) of 

the reliability by the relation
f

P ( )   , and 

it can be exact when the LSF is linear or 

nearly linear in Π space: 
f

P ( )   .  

There are three main transformation 

techniques which enable us to change the 

random vector X of variables from their 

physical or original space Ω to the random 

vector U of variables in the standard 

independent Gaussian or normal space Π. 

The first technique is the Rosemblatt 

transformation method. This technique is 

used when the PDF of all random variables 

X is known, and have some correlation with 

each other. The second transformation 

method is Nataf transformation. We can use 

this method when all or some PDFs of the 

random variables are unknown, but the 

correlation matrix of random variables is 

specified. The last transformation is plain 

linear transformation (Lebrun and Dutfoy, 

2009). This method is used when the random 

vector X is Gaussian without any correlation 

between its components, and the 

transformation T U ( X )  may be simply 

related by
i i i i

(U ( X ) / )   , where 
i



and 
i

 are the mean and standard deviation 

of the i
th

   random variable.  

To estimate the reliability index β, one 

has to solve an optimization problem that is: 

 

2

1

1
0

n

i

i

Minimize u

Subject to g (T ( u ))













 (3) 

 

where 
i

u , 1 2i ( , , ..., n ) are the design 

variables in the standard normal space. The 

problem in Eq. (3) has a constrained 

nonlinear optimization shape. Solving Eq. 

(3) is equivalent to solving the relaxed form 

obtained by the penalty method as:  

 

2 1

1

n

i

i

Minimize u ( g (T ( u )))




  (4) 
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Fig. 1. Hasofer-lind reliability index 

 

where ξ : is the penalty function, and λ: is 

the penalty coefficient (strictly positive). 

The solution *u of Eq. (3) or (4) is called the 

design point, and enables us to calculate the 

reliability index as the distance of the origin 

to the design point with, *u  .  

Selection of the penalty coefficient δ in 

Eq. (4) is crucial for the convergence of the 

search towards the solution of Eq. (3). In 

case of equality constraints as has been 

addressed in this research, the penalty 

coefficient will be located by an iterative 

process from a low value because the search 

space is a hyper-surface (Fiacco and 

McCormick, 1968). According to our 

investigation, an appropriate sequence for λ 

is i , in such a way that 1 4i i    and 

0 0 05.  . The value of λ will be considered 

suitable when the expression 
1

( g (T ( u )))


in 

Eq. (4) is small enough, namely, less than 
510 . Generally, for the penalty function ξ, 

we can use one of the two following 

functions: (1) a quadratic function 2x x ; 

(2) an exact penalty function x x . The 

first penalty function is the one used in this 

research. In case of any constraints in 

inequality, the penalty function is equal to 0 

when the constraint is satisfied and equal to 

ξ, otherwise. 

 

HARMONY SEARCH ALGORITHM 

 

Originally, the HSA which was first 

presented by Geem et al. (2001) drew 

inspiration from the process of a natural 

musical performance, when a musician 

searches for a better rendition of harmony, 

such as during a jazz improvisation. Jazz 

improvisation endeavors to find the optimum 

musically pleasing harmony (a perfect state) 

as determined by an aesthetic standard, just 

as the optimization process seeks to find a 

solution that is globally perfect, through an 

objective function. The pitch of each musical 

instrument determines the aesthetic quality, 

just as the objective function value is 

determined by the set of values assigned to 

each decision variable. The main steps of the 

HS algorithm are given in the following 

sections. 

 

Initializing Algorithm Parameters and 

Problems 

The optimization problem is defined as a 

minimized function f ( x ) subjected to 

1iL iUX X X ( i ,...,N ),     where iLX  and 

iUX are the lower and upper bounds for 

design variables. The algorithm parameters 

are also specified in this step. They are the 

Harmony Memory Size (HMS), Harmony 

Memory Considering Rate (HMCR); 

Bandwidth (bw); Pitch Adjusting Rate 

(PAR); and the number of improvisations, or 

stopping criterion. 

 

Initializing the Harmony Memory 

In this step, the Harmony Memory (HM) 

matrix is filled with as many randomly 

generated solution vectors as the HMS. 
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These random variables are generated from 

normal distribution in the ranges 

1 2iL iUX ,X ,( i , ,...,N )   as in the following 

Eq. (5): 

 
1 1 1 1
1 2 1

2 2 2 2
1 2 1

1 1 1 1
1 2 1

1 2 1

N N

N N

HMS HMS HMS HMS
N N

HMS HMS HMS HMS
N N

x x ... x x

x x ... x x

HM ... ... ... ... ...

x x ... x x

x x ... x x





   




 
 
 
 

  
 
 
 
 

 

 (5) 

 

Improving a New Harmony 

Generating a new harmony is called 

‘improvisation’ (Lee and Geem, 2001). A 

new harmony vector, 1 2
' ' ' '

Nx ( x ,x ,..., x ),  is 

usually generated based on three rules: (1) 

memory consideration, (2) pitch adjustment 

and (3) random selection. In the memory 

consideration, the value of the first decision 

variable 1
'( x ) for the new vector is chosen 

from any of the values in the specified HM 

range 1 1
' ' HMS( x ,x ) . Values of the other 

decision variables 2
' '

N( x ,..., x ) are chosen in 

the same manner. The HMCR, which varies 

between 0 and 1, is the rate of choosing one 

value from the historical values stored in the 

HM, while (1-HMCR) is the rate of 

randomly selecting one value from the 

possible range of values as shown in Eq. (6). 

 

 1 2

1

' HMS
i i i i

'
i

'
i i

x x , x ,..., x

with probability HMCR
x

x X

with probability ( HMCR )

 




 




 (6) 

 

Every component obtained by the 

memory consideration is examined to 

determine whether the pitch should be 

adjusted. This operation uses the PAR 

parameter, which is the rate of pitch 

adjustment, as shown in Eq. (7). 

1

'
i

Pitch adjusting decision for

Y es

with probability PAR
x

No

with probability ( PAR )







 

 (7) 

 

The value of (1-PAR) sets the rate of 

doing nothing. If the decision of pitch 

adjustment for '
ix  is yes, '

ix is replaced as 

shown in Eq. (8) 

 
' '
i ix x rand() bw    (8) 

 

where bw: is an arbitrary distance 

bandwidth, rand(): is a random number 

between 0 and 1. In step 3, HM 

consideration, pitch adjustment, or random 

selection is applied to each variable of the 

new harmony vector in turn. 

To improve the performance of the HS 

algorithm and eliminate the drawbacks that 

lie with fixed values of HMCR and PAR, 

Mahdavi et al. (2007) proposed an Improved 

Harmony Search (IHS) algorithm that uses 

the variables PAR and bw in an 

improvisation step. In fact, the IHS 

dynamically updates PAR and bw according 

to the following two Eqs. (9) and (10): 

 

max min
min

PAR PAR
PAR( n ) PAR n

NI


    (9) 

min

max
max

bw
ln

bw
bw ( k ) bw exp k

NI

  
  
  

  
 
 
 

 (10) 

 

 

where NI: is the maximum number of 

iterations, and k: is the current number of 

iterations; minPAR  and maxPAR : are the 

minimum adjusting rate and the maximum 

adjusting rate, respectively; minbw  and 

maxbw : are the minimum bw and the 

maximum bw, respectively. Results and 
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studies reveal that the IHS based on 

improved PAR and bw has better 

optimization performance than HS in most 

cases (Mahdavi et al., 2007). 

 

Updating HM 

If the new harmony vector, 

1 2
' ' ' '

Nx ( x ,x ,..., x ), is better than the worst 

harmony in the HM, judged in terms of the 

objective function value, the new harmony is 

included in the HM, and the existing worst 

harmony is excluded from the HM. 

 

Check the Stopping Criterion 

If the stopping criterion is satisfied, 

computation is terminated, otherwise, steps 3 

and 4 are repeated. In this research, the 

following stopping criteria have been used: 

 The average reliability index of the 

current harmony solution vectors does not 

show significant improvement over the 

former harmony solution vectors: 1k k    

and λ can set to 0.95; and 

 The first three different minimum 

reliability indexes of the current harmony 

solution vectors remain the same as those of 

the previous solution vectors of the HM 

matrix. 

 

ARTIFICIAL NEURAL NETWORK 

 

ANN is the numerical algorithm inspired in 

the functioning of biological neurons. This 

concept was introduced by McCulloch and 

Pitts (1943), who proposed a mathematical 

model to simulate neuron behavior. Use of 

ANN has become widespread in several 

fields of engineering, such as structural 

mechanics and structural reliability (Cheng, 

2010). Deng et al. (2005) presented an 

approach in which an ANN was used in the 

structural reliability analysis of problems 

with implicit LSFs. There are a number of 

ANN paradigms, a multilayer, feed-forward, 

back-propagation network, which is one of 

the well-known and most widely used 

among ANN techniques. Some basic 

concept of the proposed ANN method is 

briefly presented in the following sections. 

 

ANN Architecture and Training 

Algorithm 

The proposed ANN structure consists of 

three layers; an input layer, one hidden layer, 

and an output layer. Each layer has its 

corresponding neurons or nodes and weight 

connections. The number of neurons or 

nodes in the input and output layers is 

determined by the number of input and 

output parameters, respectively. However, 

the selection of an optimal number of 

neurons or nodes in the hidden layer is a 

difficult task and there is no general rule for 

selecting the number of neurons or nodes in 

a hidden layer. It depends on the complexity 

of the structures being modeled. In this 

paper, the optimal number of neurons or 

nodes in the hidden layer is determined by a 

trial-and-error process. Figure 2 shows a 

typical architecture of an ANN model, in 

which the left column is the input layer, the 

column on the right is the output layer, and 

the middle column is the hidden layer. Each 

neuron in the network operates by taking the 

sum of its weighted inputs and passing the 

result through a nonlinear activation function 

(transfer function). In this study, unless 

stated, a logistic transfer function,

f ( z ) tanh( z ) is used to transfer the values 

of the input layer nodes to the hidden layer 

nodes, whereas the linear transfer function 

f ( z ) z is adopted to transfer the values 

from the hidden layer to the output layer. 

The training phase of the proposed model is 

based on the back-propagation training 

algorithm. 
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Fig. 2. Typical architecture of an ANN model 

 

Data Preparation and Processing 
In this study, a set of input and output 

data is prepared for developing the ANN 

model. A subset of data is used for training, 

while the other one is used for testing the 

model. For simplicity purposes, sufficient 

numbers of data are randomly generated 

from the distributions of the variables to be 

used in developing a Finite Element analysis 

code to obtain the response of the structure. 

Thereafter, the trained ANN model is used 

in the process of reliability assessment to 

estimate the structural response. 

 

Evaluation of ANN Performance 

Once the ANN model is trained, the 

relationship between the LSF and the 

various designvariables is readily retrieved. 

The next step is to validate and evaluate the 

trained model. This can be done by using 

common error parameters such as the Mean 

Absolute Error (MAE) or Root-Mean-

Squared Error (RMSE). The two error 

functions can be expressed as shown in Eqs. 

(11) and (12): 

 

1 1

n m

ij ij

i j

( P T )

MAE
n.m

 






 

(11) 

2

1 1

n m

ij ij

i j

( P T )

RMSE
n.m

 






 

(12) 

 

where n: is the number of patterns in the 

validation data (i.e., the test data); m: is the 

number of components in the output vector; 

P: is the output vector from the ANN model 

(predicted structural response); and T: is the 

desired output vector from the deterministic 

Finite Element analysis (obtained structural 

response by FEM).  

 

THE PROPOSED ALGORITHM 
 

In the reliability assessment of complex 

structures, the LSF g( X ) may not be 

expressible explicitly in the basic design 

variables. When the above-mentioned HSA 

is applied to analyze the reliability of 

complex structures, the LSF needs to be 

evaluated implicitly through the 

sophisticated numerical methods, such as the 

Finite Element method. This process could 

be so computationally time consuming that 

makes it hard to use. To deal with this 

drawback in the reliability analysis, a new 

two-phase algorithm based on a combination 

of ANN and HSA is developed. In the 

proposed method, a trained ANN model is 



Civil Engineering Infrastructures Journal, 49(1): 1 – 20, June 2016 

 

9 
 

applied to approximate the structure 

response and incorporate in optimization 

process to define the reliability index with 

HSA. Once the ANN model is appropriately 

trained, we can directly apply the ANN 

model instead of a deterministic Finite 

Element analysis, (Figure 3). It requires 

hours of computation time to perform a large 

number of Finite Element analysis. By 

contrast, evaluation of a quadratic function 

requires only a fraction of a second, and the 

computing time is substantially reduced. The 

proposed algorithm in this research is called 

the ANN-HSA method. For some further 

clarifications on this, the implemented code 

of the proposed algorithm has been stated as 

follows. 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Flow chart of the proposed method 
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Step 1. Construction of database for ANN 

This step involves producing the needed 

datasets for training and testing datasets of 

ANN models. Each of these datasets 

includes input values (random variables) and 

output values (structural response). The 

input values are generated by uniform 

distribution when random variables Xi are 

mapped from physical space Ω to standard 

normal space Π by means of mentioned 

transformations. Output values can be 

obtained by use of a developed analytical 

model of structures in a Finite Element 

software, or utilizing infield measurement 

equipment such as strain or stress gauges 

(Moore et al., 2012). A vector’s initial 

number of ANN datasets can be considered 

from 10 to 20 times the number of input 

variables of the problem.  

 

Step 2. Establishment of an ANN model 

In this stage, an ANN model is trained 

with the database obtained from step 1.  The 

efficiency and precision of a trained ANN 

will be measured based on the common error 

values like MAE or RMSE. The most 

efficient ANN model in terms of structure 

(number of layer and neuron) and minimum 

error values will be chosen for predicting 

structural responses.  

 

Step 3. Initializing algorithm parameters 

The HS algorithm parameters are 

specified in this step. They are the HMS or 

the number of solution vectors in the HM, 

HMCR and PAR. 

 

Step 4. Determination of structural 

response by a trained ANN model 

In this step, structural responses are 

computed for each vector of the HM matrix. 

For this purpose, a trained ANN model is 

used, and the structural responses are 

computed to correspond with each input 

vector of HM. 

 

Step 5. Computing reliability index 

To compute the reliability index, Eq. (3) 

is applied to all the vectors of the HM matrix 

(solution vectors), and the fitness of these 

solutions is calculated. Thereafter, solutions 

will be sorted based on their objective fitness 

(minimization). The best solution is the one 

that has the minimum value among all the 

available solutions.   

 

Step 6. Checking stopping criterions 

In this step, two stopping criterions are 

checked. In the first criterion, if the average 

of the reliability index of the current 

Harmony solution vectors does not show 

significant improvement in comparison with 

the former Harmony solution vectors (β
k+1

> 

λβ
k
, λ sets to 0.95), the process will be 

terminated. In the second criterion, if the 

first three different minimum reliability 

indexes of the current Harmony solution 

vectors remain the same as those of the 

previous solution vector of the HM matrix, 

the algorithm will be terminated.  

 

Step 7. Improving new harmony, 

updating HM and repeating steps 4 to 6 

The new harmony vector 𝑥′ =
(𝑥1

′ , 𝑥2
′ , … , 𝑥3

′ ) is determined as follows: 

for 𝑒𝑎𝑐ℎ 𝑖 ∈ [1, 𝑁] do 

if 𝑟𝑎𝑛𝑑() ≤ 𝐻𝑀𝐶𝑅 then 

𝑥𝑖
′ = 𝑥𝑖

𝑗(𝑗 = 1,2, … , 𝐻𝑀𝑆)% memory 

consideration 

if 𝑟𝑎𝑛𝑑 ≤ 𝑃𝐴𝑅𝑖 then 

𝑥𝑖
′ = 𝑥𝑖

′ ± 𝑟 × 𝑏𝑤𝑖 % pitch adjustment 

if 𝑥𝑖
′ > 𝑥𝑖𝑈 

𝑥𝑖
′ = 𝑥𝑖𝑈 

elseif 𝑥𝑖
′ < 𝑥𝑖𝐿 

𝑥𝑖
′ = 𝑥𝑖𝐿 

end 

end 

else 

𝑥𝑖
′ = 𝑥𝑖𝐿 + 𝑟𝑎𝑛𝑑() × (𝑥𝑖𝑈 − 𝑥𝑖𝐿)% random 

selection 

end 
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end 

𝑥𝑖
′(𝑖 = 1,2, … , 𝑛) is the 𝑖th component of 

𝑥′, and 𝑥𝑖
𝑗
(𝑗 = 1,2, … , 𝐻𝑀𝑆) is the 𝑖th 

component of the 𝑗th candidate solution 

vector in HM. Both 𝑟 and 𝑟𝑎𝑛𝑑() are 

uniformly generated random numbers in the 

region of [0,1], and 𝑏𝑤 is an arbitrary 

distance bandwidth. If the fitness of the 

improvised harmony vector 𝑥′ =
(𝑥1

′ , 𝑥2
′ , … , 𝑥3

′ ) is better than that of the worst 

harmony, then replace the worst harmony in 

the HM with 𝑥′. Thereafter, steps 4 to 6 are 

repeated until stopping criteria are satisfied. 

The main advantage of this method can 

be compared to the reliability procedures of 

others such as MSC, response surface, or 

sensitivity-based analysis, and there is no 

need for an explicit form of the LSF and its 

derivation. In fact, the HSA just needs to 

evaluate the value of LSF per input random 

design variables (solution vector or 

Harmony vector) in an optimization process 

that can be obtained by a trained ANN 

model very quickly and easily. 

 

NUMERICAL EXAMPLES 
 

In order to demonstrate and validate the 

proposed algorithm, three examples are 

considered herein to check accuracy and 

efficiency. The results are also compared 

with other reliability methods. The 

parameters of the proposed algorithms are 

listed in Table 1. Note that some of these 

parameters are kept constant throughout the 

whole process of reliability analysis.  

 

Example 1: 2D frame structure 

This example is taken from Sondipon 

(2010). The structure is shown with element 

numbering, node numbering, and 

coordinates of the nodes in meters, as shown 

in Figure 4. It is assumed that the axial 

stiffness (EA) and the bending stiffness (EI) 

of each member have Gaussian random 

variables, so that there are, in total, six 

random variables, 6x R . Further, it is also 

assumed that the EA and EI of the different 

members are uncorrelated. 

 

0

0

0

i j

i j

i j

EA ,EA , i j ;

EI ,EI , i j ;

EA ,EI , i , j .





  

  

 

 (13) 

 

Table 2 shows the numerical values of the 

mechanical properties for different members. 

The vertical force applied in node 3 is 100 

KN and is deterministic. 

 
Table 1. Parameters of the proposed algorithm 

Parameters Name Example 1 Example 2 Example 3 

ANN Parameters 
Number of Training Dataset  

Number of Nodes in Hidden Layer 

750 1000 900 

6 10 12 

HSA Parameters 

HMS 4 8 6 

HMCR 0.9 0.9 0.85 

 0.35 0.35 0.35 

 0.99 0.99 0.99 

 

   

 0.01 0.01 0.01 

 

Table 2. Element properties of the random 2D frame 

Member Id 
EA(KN) EI(KNm2) 

Mean Standard Deviation (%) Mean Standard Deviation (%) 

1 1.0×109 3.0 2.0×104 10.0 

2 5.0×109 7.0 6.0×104 5.0 

3 3.0×109 10.0 4.0×104 9.0 

minPAR

maxPAR

minbw 410 410 410

maxbw
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Fig. 4. 2D frame geometry properties 

 

The failure condition is given by 

specifying a maximum allowable vertical 

displacement at node 3, say maxd . The LSF 

is 3maxg( x ) d v ( x ) ,  where the random 

variable 3v shows the vertical displacement 

at node 3. The structure is unsafe when 

0g( x )   that is, when 3 maxv d  . For 

numerical calculations, in this example, 

0 095maxd . m . Figure 5 shows the 

convergence process of reliability index. As 

is clear from the proposed algorithm, 

convergence with the solution occurred after 

nearly 700 iterations in comparison with the 

MCS method which has required about 10
6
 

computations for convergence.  The required 

time for convergence with the solution for 

this example is about 15.6 seconds. 

 

 
Fig. 5. Convergence process to reliability index for a 2D frame 
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Numerical results obtained according to 

the MC and FORM, and using the proposed 

method, are shown in Table 3. It is clear that 

the proposed algorithm produces satisfactory 

agreement with the usual FORM and the 

MCS, which is considered as the benchmark 

method.  

Table 4 summarizes the performance of 

the ANN model based on two parameters 

MAE and RMSE, both for the training and 

test data. It is clear that the ANN model 

gives a good precision for both MAE and 

RSME.   

 

Example 2: Multistory portal frame 

This example includes a linear portal 

frame with 12 stories and three bays as 

shown in Figure 6 based on Cheng (2007). 

Different cross-sectional areas iA and 

horizontal load P are considered here as 

independent random variables. Table 5 

shows the statistical characteristics of these 

random variables. The sectional moments of 

inertia are expressed with the formulation 
2

i i iI A where 

1 2 3 4 50 08333 0 26670 0 200. , . , .         . 

The Young’s modulus, E is deterministic 

with the value of 7 22 0 10. KN / m .  

The failure condition is stated by a 

maximum allowable horizontal displacement 

at node A, say maxd . Therefore, the LSF is 

given with max Ag( x ) d h ( x ) ,  where the 

random variable Ah is the horizontal 

displacement at node A. For numerical 

calculations, in this example, the maximum 

horizontal displacement at node A is taken 

as 0.096 m. Thus, the final LSF is expressed 

as in Eq. (14). 

 

1 2 3 4 5

1 2 3 4 50 096 A

g( A ,A ,A ,A ,A ,P )

. u ( A ,A ,A ,A ,A ,P )




 (14) 

 

Figure 7 shows how the results converge 

to the reliability index. As is clearly shown, 

the proposed algorithm converges to the 

solution after just about 3600 iterations in 

comparison with the MCS method, which 

has required about 10
4
 computations for 

convergence. The time for convergence with 

the solution for this example is about 27.3 

seconds. 

 
Table 3. Comparison of reliability index and failure probability 

Method Reliability Index Failure Probability 

MC Simulation 3.598 0.16×10
-3 

FORM (Adhikari, 2010) 3.590 0.165×10
-3 

Proposed Method 3.610 0.153×10
-3 

 
Table 4. Performance of ANN model 

Error Function 
Horizontal Displacement at Node 11 

Training Data Test Data 

RMSE 0.27×10-2 0.44×10-2 

MAE 0.036 0.087 

 
Table 5. Statistics of the random variables for Example 3 

Distribution Dimension Standard Deviation Mean Variable 

Lognormal 2m  0.025 0.25 1A  

Lognormal 2m  0.016 0.16 2A  

Lognormal 2m  0.036 0.36 3A  

Lognormal 2m  0.020 0.20 4A  

Lognormal 2m  0.015 0.15 5A  

Type I Largest KN 7.5 30.0 P 
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Fig. 6. Multistory liner portal frame 

 

 
Fig. 7. Convergence process to reliability index for liner portal frame 
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The numerical results obtained for this 

example are shown in Table 6. As is clear 

from this table, the proposed method gives 

good accuracy in comparison with the other 

methods mentioned. Table 7 summarizes the 

performance of the ANN model for MAE 

and RMSE, both for the training and test 

data. It is clear that the ANN model gives 

good approximation to the reliability result 

based on RMSE and MAE.   
 

Example 3: Seismic reliability assessment 

of steel frame structure 

This example has been taken from 

Achintya Haldar (2006) to check the 

performance of a proposed method for 

assessment of seismic reliability. This 

involves a two-story steel frame structure 

that consists of W27×84 for all beams and 

W14×426 for all columns. A36 steel is used. 

The frame is excited for 15 seconds by the 

actual acceleration time, and the history was 

recorded at Canoga Park during the 

Northridge earthquake of 1994 (Figure 8). 

The serviceability limit state is 

considered in this example. The statistical 

propriety of a random variable is listed in 

Table 8. 

 

Table 6. Comparison of reliability index and failure probability 

Method Reliability Index Failure Probability 

ANN-FORM (Cheng, 2007) 1.438 0.0751 

Proposed Method 1.440 0.07493 

 

Table 7. Performance of ANN model 

Error Function 
Horizontal Displacement at Node 11 

Training Data Test Data 

RMSE 0.15×10
-2

 0.56×10
-2

 

MAE 0.0046 0.0096 

 
Table 8. Statistical description of random variable (b: beam, c: column) 

Random Variable Mean Value 
Serviceability Limit State 

COV Distribution 
2E( KN / m )  1.9994×10

8 
0.06 Lognormal 

2bA ( m )  1.600×10
-2 

0.05 Lognormal 

4b
xI ( m )

 1.186×10
-3 

0.05 Lognormal 

b
xZ  3.998×10

-3 
Deterministic Deterministic 

2cA ( m )  8.065×10
-2 

0.05 Lognormal 

4c
xI ( m )  2.747×10

-3 
0.05 Lognormal 

2
yF ( KN / m )  2.4822×10

5 
Deterministic Deterministic 

ξ 0.05 0.15 Lognormal 

eg  1.00 0.20 Lognormal 
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(a) Two-story steel frame 

 

 
(b) Northridge earthquake (N-S) time history 

Fig. 8. Two-story steel frame excited by the Northridge earthquake 

 

For the serviceability limit state, the 

permissible lateral displacement at the top of 

the frame is assumed not to exceed h/400, 

where h is the height of the frame. Thus, 

allowable is 1.905 cm for this example, and the 

corresponding limit state is 1 905 bg( x ) . h 

, where bh , is the horizontal displacement 

of node b that will be approximated by 

ANN. Figure 9 shows the convergence 

process to the reliability index. As can be 

clearly seen, the proposed algorithm 

converges to the solution after nearly 2100 

iterations, in comparison with the MCS 

method which has required about 4105.0    

computations for convergence.  The time for 

convergence with the solution for this 

example is about 18.2 seconds. 
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Fig. 9. Convergence process to reliability index for liner portal frame 

 

The numerical results obtained using the 

proposed method for reliability index and 

failure probability are shown in Table 9. 

Table 10 summarizes the performance of 

the ANN model for MAE and RMSE, both 

for the training and test data. Results show 

that the proposed method shows a good 

estimation of the failure probability of 

structures.    
 

SENSITIVITY ANALYSIS OF 

PROPOSED ALGORITHM 

 

In this section, the effect of changing 

parameters in the proposed algorithm has 

been studied. This investigation is mainly 

based on parameters such as the number of 

training datasets; the number of nodes in the 

hidden layer; HMS; and the HM 

consideration rate. Different values are 

chosen for these parameters in order to 

determine their effect on the final results 

separately. The aim is to obtain some 

general guidelines in the use of the proposed 

algorithm. For simplicity, only Example 1 in 

the previous section is considered here. 

 

Sensitivity on the Number of Training 

Data Sets 

All the parameters of the proposed 

algorithm are given in Table 1 and kept 

constant here, except the number of training 

datasets on which a sensitivity analysis is 

performed. The results of failure probability 

are given in Table 11. 

 
Table 9. Comparison of reliability index and failure probability 

Method Reliability Index Failure Probability 

MCS 1.898 0.02884 

Response Surface (Haldar, 2006) 1.914 0.02779 

Proposed Method 1.912 0.02793 

Table 10. Performance of ANN model 

Error Function 
Horizontal Displacement at Node 11 

Training Data Test Data 

RMSE 0.23×10
-2

 0.67×10
-2

 

MAE 0.0052 0.0198 
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Table 11. Estimated value of fP  for different number of training datasets 

Number of Training Datasets fP  Error (%) 

250 0.000214 28.91 

500 0.000157 9.78 

750 0.000159 5.42 

1000 0.000159 3.89 

 

As is clearly seen from Table 11, 

changing the number of training datasets has 

a significant impact on the estimated failure 

probability. Using less than 500 training 

datasets results in a poor estimation value of 

fP  for the ANN-HSA method. Using a 

small number of training datasets causes 

numerous errors, but using a large number 

of training datasets results in little 

improvement in accuracy and efficiency of 

the ANN-HSA. 

 

Sensitivity on the Number of Nodes in a 

Hidden Layer 

 In this study, four different numbers of 

nodes in the hidden layer ranging from three 

to 12 are investigated, and the results are 

listed in Table 12. 

 From the results, it can be seen that 

changing the number of nodes in the hidden 

layer has an influential impact on the 

accuracy of the calculated values of fP . For 

the ANN-HSA estimation of fP , the best 

accuracy is associated with six nodes in the 

hidden layer in Example 1. 

 

 

 

 

Sensitivity on the HM Size 

To study the effect of HM size on the 

estimation of failure probability by the 

proposed method, different values for this 

parameter are taken ranging from four to 10. 

The results are shown in Table 13. 

According to Table 13, change of HMS 

has a minor effect on the failure probability, 

but CPU time is increased by increasing the 

number. Thus, for a problem on which 

computing time must be minimized, the 

population size may be chosen in the lower 

value. Therefore, the optimum value for this 

parameter at Example 1 is selected as 4. 

 

Sensitivity on the HM Consideration Rate 

In this section, the effect of the HM 

consideration rate value on the calculated 

probability of failure by the proposed 

method has been studied. For this purpose, 

the convergence of the proposed method as 

per different values ranging from 0.75 to 

0.95 with steps of 0.05 are estimated and 

presented in Table 14.  

The results show that changing of this 

parameter has some impact on the final 

failure probability; however, it could change 

it insignificantly. The optimum value of 0.9 

is selected for this parameter in Example 1. 

 
Table 12. Effect of the number of nodes on predicted  

Number of Nodes in Hidden Layer fP  Error (%) 

3 0.000183 10.24 

6 0.000157 5.42 

9 0.000152 8.43 

12 0.000147 11.44 
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Table 13. Effect of HMS on predicted fP  

Harmony Memory Size fP  Error (%) Time 

4 0.000157 5.42 15.8 

6 0.000157 5.42 16.6 

8 0.000156 6.02 17.4 

10 0.000157 5.42 24.2 

 
Table 14. Effect of HMS on predicted fP  

Harmony Memory Consideration Rate fP  Error (%) 

0.75 0.000154 7.22 

0.80 0.000154 7.22 

0.85 0.000155 6.62 

0.90 0.000157 5.42 

0.95 0.000156 6.02 

 

CONCLUSIONS 

 

In this paper, a new two-phase algorithm 

based on the ANN and HSA is proposed for 

estimation of reliability. The proposed 

method shows an efficient, accurate, and 

robust algorithm to solve the reliability 

problem with implicit response functions, 

and that does not have any requirement to 

approximation of explicit form for the LSF. 

The application of ANN to structural 

problems, while leading to satisfactory 

precision, enables to significantly speed up 

the computation of structural response. This 

feature is particularly relevant in reliability 

analysis, where a very substantial computing 

effort is normally required in order to 

accurately evaluate the probability of 

failure. With integration, the concepts of the 

ANN method, and the HSA, the number of 

deterministic response analyses is 

dramatically reduced, and there is no need 

for any explicit form of LSF for reliability 

assessment. On the other hand, sensitivity 

analysis on the parameters of the proposed 

method shows that the number of training 

datasets and the number of nodes in a 

hidden layer have significant impact on the 

convergence of the estimated failure 

probability. In all the examples considered 

in this research, the results are close to those 

obtained by conventional reliability 

assessment methods. From the research 

presented herein, it can be concluded that 

the application of ANN in conjunction with 

HSA seems promising, and appears to offer 

great potential for structural reliability 

problems. 
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