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Abstract
Normality is a common assumption for many quality control charts. One

should expect misleading results once this assumption is violated. In order to
avoid this pitfall, we need to evaluate this assumption prior to the use of control
charts which require normality assumption. However, in certain cases either this
assumption is overlooked or it is hard to check. Robust control charts and
bootstrap control charts are two remedial measures that we could use to overcome
this issue. In this paper, a new bootstrap algorithm is proposed to construct
Hotelling’s T2 control chart. The performance of proposed chart is evaluated
through a simulation study. Our results are compared to the traditional Hotelling’s
T2 control chart results and the bootstrap results reported by Phaladiganon et al.
[13] using in-control and out-of-control average run lengths denoted by ARL0 and
ARL1, respectively. The latter case is obtained when the process mean is subject
to sustained shifts. Numerical results indicate that the proposed algorithm
performs better than the above mentioned methods. The new bootstrap algorithm
is also applied to a real data set.

Keywords: Bootstrap; Hotelling’s T2; Multivariate control charts; Average run length; Monte
Carlo simulation.
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Introduction
One of the major goals of quality control charts is to

detect any variation or disturbances in the process as
early as possible before many nonconforming products
reach the final stage of production. Hence, control
charts are widely used in statistical process control
activities. In almost all products, quality depends on
several quantitative characteristics which need to be
controlled or monitored simultaneously. It is well

known that when univariate control charts are used, the
correlation structure between quality characteristics is
ignored and under such condition one should expect
misleading results. Multivariate control charts are used
to monitor several quality characteristics
simultaneously. In multivariate case, it is difficult to
check the normality assumption-prior to the use of
parametric multivariate control charts. Under such
condition, nonparametric control charts which have
lower power in comparison to parametric methods are
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suggested.
However, a bootstrap method seems to be desirable

because it does not require the normality assumption.
Bajgier [1] introduced a univariate control chart whose
control limits were estimated using a bootstrap method.
Seppala et al. [18] proposed a subgroup bootstrap chart
which uses the residuals, i.e. the difference between the
mean of a subgroup obtained by bootstrap and each
observation in the subgroup. In another study, Liu and
Tang [10] suggested a bootstrap control chart that can
monitor both independent and dependent observations.
Moving block bootstrap was used to monitor the mean
of dependent processes. Jones and Woodall [8]
compared the performance of bootstrap control charts
introduced by Bajgier [1], Seppala et al. [18], and Liu
and Tang [10] in non-Normal situations. Polansky [15]
used bootstrap method to estimate a discrete
distribution, a density estimation method to obtain a
continuous distribution, and established control limits.
Lio and Park [9] proposed a bootstrap control chart
based on Birnbaum-Saunders distribution. Chatterjee
and Qiu [3] developed a class of nonparametric
cumulative sum (CUSUM) control charts and used
bootstrap to find their control limits. Park [12] proposed
median control charts whose control limits were
established by estimating the variance of the sample
median via bootstrap method. Phaladiganon et al. [13]
proposed T2 multivariate control chart based on
bootstrap. Noorossana and Ayoubi [11] proposed profile
monitoring using nonparametric bootstrap T2 control
chart. Phaladiganon et al. [14] developed the principal
component analysis of control charts for multivariate
non-Normal distributions. They used bootstrap method
to establish control limits. Psarakis et al. [16]
investigated the impact of parameter estimation on the
performance of different types of control charts. Faraz
et al. [6]  evaluated the in-control performance of the S2

control chart with estimated parameters conditional on
the phase I sample.

The use of bootstrap-based T2 multivariate control
chart was first introduced by Phaladiganon et al. [13].
They used bootstrap approach to determine control
limits for a T2 control chart in which observations did
not follow a Normal distribution. Although the large
sample size is not commonly used for the statistical
process control, Phaladiganon et al. [13] applied the
large sample size in their approach. While the essence
of bootstrap method is based on using resampling from
original observations, they resampled using T2 statistic.

In present paper, a bootstrap approach based on
original observations is considered to obtain control
limits. The purposed method allows one to use different
sample sizes, while the fixed 1000 sample size was

allowed by Phaladiganon’s method. Although the
sample size is not essential to be large in the proposed
algorithm, but to be able to compare the performances
of our algorithm with the Phaladiganon’s algorithm we
used the smaller sample sizes. Bootstrap definition (
Efron and Tibshirani [5]) was used to create resample
from the original data. Here, ARL1 is also calculated for
several defined distributions. Our simulation results are
then compared to both traditional Hotelling’s T2 and
Phaladiganon methods.

In this paper, Hotelling’s T2 multivariate control
charts for monitoring mean of the process have been
reviewed. The proposed bootstrap approach for
multivariate control charts is then introduced. A
simulation study using ARL0 and ARL1 assuming
multivariate Normal, multivariate t, multivariate skew-
Normal and multivariate lognormal distributions is then
performed. Finally, an application to a real data set is
presented.

Multivariate Control Charts for Process Mean
Let a random vector X have a p-dimensional

Normal distribution, denoted by 0( , )p 0N μ . It is well
known that the statistic

2 ( ) ( ) ,   tT -1
0 0 0X μ X μ

can be used to construct a control chart. The 2T
statistic follows a chi-square distribution with p degrees

of freedom. Hence, 2
,1u pL  χ is the upper control

limit for the control chart when the vector mean 0μ and

covariance matrix  0 are known. This control chart is
called a phase II chi-squared control chart. In practice,
however, 0μ and  0 are unknown and should be

estimated using sample mean vector X and sample
covariance matrix S, respectively. The sample mean
vector and sample covariance matrix are estimated
using the random sample 1 , ..., mX X from

0( , )p 0N μ in phase I. If X is a new observation in
phase II, we compute

2 1( ) ( ),tT S   X X X X (1)

where 2cT has an F distribution with p and m-p
degrees of freedom where 2( ) ( 1)c m m p p m   .
Thus the upper control limit of a multivariate control
chart for the process mean, with unknown parameters
can be written as 1

1 , ,u p m pL c F 


  . When process
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is in control and 0μ and  0 are known, then average
run length of the multivariate control chart is

0 1ARL  , where  is the probability of 2T
exceeding uL . From practical point of view, it is better
to use the fundamental definition of ARL0 the average
number of observations required for the control chart to
detect a change under the in-control process (Woodall
and Montgomery [20]). Furthermore, the out of control
ARL (ARL1) of the multivariate chart depends on the
mean vector only through the non-centrality parameter
defined as 2 1

0( ) tm  1μ δ δ ,

where  1 0μ μ δ is a specific out of control

mean vector. Thus, ARL1 is a function of ( ) 1μ and

can be calculated using 1 1 (1 )ARL   , where 
is the probability of an in-control observation while
process is indeed out of control.

A New Bootstrap Approach
In order to construct a T2 control limit for the mean

of a process, we have introduced a new algorithm. First,
Phaladiganon Bootstrap (PB) algorithm is explained
(Figure 1).

1. Compute 2T in equation (1) using m in-control
observations.

2. Let 2*( ) 2*( )
1 ,...,i i

mT T be a set of m values from the
ith bootstrap sample (i = 1,…,B) randomly drawn from
the initial 2T statistic with replacement.

3. In each of B bootstrap samples, determine the
(1 )m  th percentile value given a specified value of
 .

4. Determine the control limit by taking the average
of (1 )B m  th percentile values ( * 2*

[ (1 )]u mL T  ).

5. If an observed statistic exceeds *
uL , we conclude

that process is out of control.

PB algorithm requires a large sample size for
calculating the percentiles 2*( )

[ (1 )]
i

mT  , i.e. m must be large

enough for small . We assume that 1,..., mX X is a
random sample in phase I from unknown distribution
and X and S are the sample mean vector and
covariance matrix, respectively.

1. Draw a bootstrap sample *X from the observed
data 1,..., mX X with replacement.

2. Compute bootstrap statistic 2*T using
2* * 1 *( ) ( ).tT S   X X X X (2)

3. Repeat steps 1 and 2, B times to produce
2* 2*

1 ,..., BT T .

4. Determine (1 )B  th percentile values 2*T as

the upper control limit * 2
[ (1 )]u BL T  * .

We use the established control limit to monitor new
observations. That is, if the monitoring statistic of the
new observations exceeds *

uL , we declare those
observations as out-of- control signals.

The New Bootstrap (NB) algorithm is applicable for
all sample sizes. Therefore, it can be stated that this
algorithm is more efficient than the PB algorithm when
the sample size is less than 1000. In this algorithm,
resampling is done from the main sample not from the
observed statistic T2. This method requires B iterations
but the PB algorithm needs to be repeated mB times,
thus the new algorithm runs faster than PB algorithm.
The proposed algorithm is illustrated in Figure 2.

Figure 1. The Phaladiganon bootstrap algorithm

2*(1)2*(1) 2*(1)
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Figure 2. A new bootstrap algorithm
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Simulation Study
In this section, a simulation study is performed to

evaluate the performance of the proposed algorithm.
Notice that there are two considerable ideas in the
proposed algorithm.

1. NB algorithm runs faster than PB algorithm.
Simulation studies are performed to investigate the
performance of our algorithm and compare it to the
traditional  control chart and PB algorithm.

2. Its efficiency is high even if the sample size is less
than 1000.

A total of m=100, 500, and 1000 observations were
generated from multivariate Normal (MN),
multivariate t (Mt), multivariate skew-Normal (MSN)
and multivariate lognormal (MLN) distributions. The
distributions MN and Mt are symmetric while MSN
and MLN  are asymmetric. Each data set contains three
variables (p=3). In the simulation, we let µ=[1  1  1]t

for MLN distribution and µ=[0  0  0]t for other
distributions and the following covariance matrix was
considered for MLN distribution:

1 0.7 0.6
0.7 1 0.1
0.6 0.1 1

 
   
  

This matrix was also used some how for data
generating from the other distributions Mt, MSN, and
MLN.

Figures 3 and 4 show the boxplot and cumulative
density function (CDF) for T2 given in Equation (1)
using exact distribution, simulated data from F
distribution with p and m-p degrees of freedom, and T2*

based on NB method for all four distributions. It is not
possible to compute distribution of T2 by PB method
because it gives only one upper bound. To draw Figures
3 and 4, we generated m=100 observations from each
distribution with 1000 Monte Carlo simulation
replications.

Figure 4 clearly shows that when distribution is not
Normal, the CDF of the NB algorithm is closer to the
CDF of T2 than F distribution. In other words, the
proposed NB algorithm provides a more accurate
density estimation for T2.

Comparison of control limits
We generated m =100 in-control observations in

phase I. The first set of observations was used to
determine control limits for T2 control charts using PB
and NB methods. The performance of the control charts
is evaluated by generating new observations until the T2

Figure 3. Boxplot of T2 values based on exact distribution, F distribution, and NB algorithm
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statistic exceeds control limits obtained in phase I.
Figure 5 represents T2 control charts from the 100 in-
control observations. The false alarm rate was specified

at  = 0.05.
Figure 5 shows that, upper control limits of all three

approaches are similar for MN distribution. It also

Figure 4. CDF of T2 based on exact distribution, F distribution, and NB algorithm

Figure 5. Control limits of T2 control charts established by F-distribution, PB and NB algorithms with m=100, B=3000, and α=0.05 in
phase I and 100 new observations in phase II
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shows that all three approaches produce comparable
control limits for MN case. When the distribution is not
Normal, control limits from traditional T2 tend to
generate higher false alarm rates. The control limits for
the traditional Hotelling’s T2 is not accurate which leeds
to deviation of rate α = 0.05 from the false alarm. The
result for NB and PB algorithms control limits are also
close together.

Comparison of in-control with out-control average run
length

ARL is the most widely used performance measure
for control charts. In this study, we emphasize on the in-
control ARL (ARL0), which is defined as the average
number of observations required until an out of control
observation is detected under the in-control process.

Furthermore, out of control ARL (ARL1) was
investigated when the process mean vector was
contaminated. To calculate ARL1, we changed the mean
of the process using µ = [1 1 1]t for MN, Mt, MSN
distributions, and set µ = [2 2 2]t for MLN distribution.
ARL1 value is calculated as the average number of
observations needed for a control chart to alarm an out
of control condition when the process is indeed out of
control. Therefore, the corresponding control chart can
give better control limits than the other ones, because if
ARL1 value is smaller than the deviations of the mean
values of the process, we can be detected sooner.
Geometric method is employed to calculate ARL0 and
ARL1 while Phaladiganon et al. [13] have used
binomial method. In the binomial method, first, we
generate m data and compute  , the percentage of

Table 1. ARL0 and ARL1 from T2 chart with control limits constructed using F-distribution, PB, and NB algorithms with B=3000
from 20000 simulation runs based on different distributions

ARL1ARL0mDist.
NBPBFNBPBFTrue
2.382.402.7617.2815.5521.81200.05100MN
1.841.872.028.908.4810.52100.1
5.105.065.5499.9888.04103.101000.01500
2.412.492.5719.4418.9820.31200.05
1.881.911.949.799.6710.08100.1
7.327.247.73209.10183.94203.112000.0051000
5.135.225.44100.7993.85100.951000.01
2.532.542.5719.7419.3920.09200.05
1.921.931.929.949.7810.02100.1
1.791.821.4718.9717.6613.30200.05100Mt
1.261.241.249.429.218.92100.1

13.8913.652.31103. 1795.6426.751000.01500
1.701.781.4019.8819.5813.40200.05
1.191.231.209.929.859.29100.1

46.5240.612.94209.74196.0433.732000.0051000
14.1214.152.28101.7998.1126.741000.01
1.711.771.3920.0019.8113.47200.05
1.191.221.29.979.899.32100.1
1.071.061.0819.0816.9720.85200.05100MSN
1.031.031.049.568.6810.66100.1
1.241.261.22104. 3492.7571.331000.01500
1.071.071.0719.5519.1218.81200.05
1.031.031.039.899.6710.18100.1
1.421.451.31213.01189.31118.772000.0051000
1.251.281.21101.4696.2270.241000.01
1.051.071.0619.8319.5318.52200.05
1.031.031.049.939.8510.12100.1
6.526.554.3920.0519.9014.89200.05100MLN
2.952.963.259.889.8411.28100.1

73.9874.828.14101. 43102.5725.611000.01500
5.805.844.3620.0419.8916.09200.05
2.722.723.2210.0210.0412.24100.1

177.14186.010.26217.68209.1030.892000.0051000
71.2473.358.12102.14101.5126.221000.01
5.585.654.3520.0619.8816.45200.05
2.672.673.239.989.9612.39100.1
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corresponding T2 that is greater than the upper control
limit, then calculate 0 1ARL  .

The values of ARL0 and ARL1 were calculated using
20000 simulation runs. When the distribution of the data
is MN, the specified ARL0 and the actual ARL0 for T2

control chart is expected to be close. Table 1 shows that

for the Normal case, based on ARL0 criterion, the
classical Hotelling’s T2 performs better than the other
two methods but the results show that in all, except two
cases, ARL1 for the NB algorithm is smaller than F and
PB algorithm. In Table 1, for Mt distribution in
comparison with PB algorithm, the performance of the

Figure 6. Boxplot of ARL0 when simulations are established by F-distribution, PB and NB algorithms
with nominal ARL0=20, B=3000 and α=0.05
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NB method is better for ARL0 criterion except in one
case. Also, ARL1 criterion for NB algorithm is
relatively better than the other methods. Table 1 shows
that for the MSN distribution, the traditional Hotelling’s
T2 does not perform as expected. In almost all cases,
ARL1 for NB algorithm are less than the ARL1 of PB
algorithm. Also for MLN,  the NB algorithm performs
better than the PB algorithm based on the ARL0
criterion, except for one case. NB algorithm has a better

performance than PB algorithm based on ARL1
criterion.

All ARL0 values obtained in the simulation study are
shown in Figures 6 and 7 for 0.05  and 0.1  ,
respectively. Looking at both figures, it can be
concluded that, in general, all methods have outlier
observations and dispersion of ARL0 values are
different.

Figure 7. Boxplot of ARL0 when simulations are established by F-distribution, PB and NB
algorithms with nominal ARL0 =10, B=3000 and α=0.1
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An Application to Real Data
In this section, we consider an example associated

with aluminum smelting data. A dataset consisting of
189 observations on 3 variables are collected over time.
To assess the multivariate normality of observations, we
conducted Royeston’s H test [17]. The p-value of less
than 0.001 indicates that this data set does not follow a
multivariate Normal distribution (Figure 8). Figure 9
shows the T2 control chart whose control limits were
estimated by F-distribution, PB, and NB algorithms
with false alarm rate  = 0.01. The actual ARL0 for NB
algorithm is 105 which is similar to the nominal ARL0.
In other words, upper control limit from NB method is
more accurate than PB method for calculating ARL0.
Aluminum smelting is an energy intensive, continuous
process, and can not easily be stopped and restarted. In
view of the possible lack of normality of the data and

considering the enormous cost of process failure, it is
worthwhile to monitor process using the NB algorithm.

Results and Discussion

In this paper, we proposed a new bootstrap algorithm
in order to obtain the control limits for a control chart
which uses observations with unknown distribution
because bootstrap method does not require a pre-
specified distribution. In comparison to the
Phaladiganon’s method, the new bootstrap method
proposed in this article is easier to carry out, faster to
run, and more accurate in estimation of the density of
T2. For non-Normal distributions, the Phaladiganon
method can be used to determine the limit for T2 control
chart. The Phaladiganon method requires a large sample
size, i.e. m =1000, to have a reasonable performance
while our new proposed algorithm works well with m <
1000. Furthermore, it is easier to implement. Our
simulation results showed that the proposed algorithm is
more efficient than the traditional T2control chart and
Phaladiganon method for both Normal and non-Normal
cases.
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