تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,085,386 |
تعداد دریافت فایل اصل مقاله | 97,189,292 |
بررسی ویژگیهای چندسازههای خمیر کاغذ-پلاستیک تولید شده از باگاس با فرآیندهای مختلف خمیرکاغذسازی | ||
نشریه جنگل و فرآورده های چوب | ||
مقاله 12، دوره 69، شماره 1، خرداد 1395، صفحه 133-145 اصل مقاله (853.43 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2016.57773 | ||
نویسندگان | ||
علیرضا سوخته سرائی1؛ سحاب حجازی* 2؛ لعیا جمالی راد3؛ محمد احمدی1؛ سید بهنام حسینی1 | ||
1دانشگاه تهران | ||
2دانشگاه تهران- دکترا | ||
3دانشگاه گنبد کاووس | ||
چکیده | ||
در این پژوهش ویژگیهای فیزیکی و مکانیکی چندسازههای پلیپروپیلن تقویتشده با خمیرکاغذهای شیمیایی سولفیت قلیائی-آنتراکینون، سودا-آنتراکینون و مونواتانول آمین-آنتراکینون و همچنین مکانیکی باگاس که تحت عنوان چندسازه های خمیرکاغذ –پلاستیک شناخت می شوند مورد مطالعه واقع گردیدند و نتایج حاصله بین چندسازه های خمیرکاغذ-پلاستیک و چندسازههای تولید شده با آرد باگاس که به عنوان چندسازه های چوب-پلاستیک مد نظر قرار میگیرند مورد مقایسه قرار گرفتند. نسبت ماده زمینه (پلیپروپیلن) به ماده تقویتکننده (خمیرکاغذ) 50 به 50 در نظر گرفتهشد. نتایج نشان دادند که فرآیند خمیر کاغذ سازی بطور معنی داری مدول الاستسیته، مقاومت کششی، مقاومت خمشی و مقاومت به ضربه چندسازهها را تحت تاثیر قرار می دهد. علاوه بر این، چندسازههای حاوی خمیرکاغذهای شیمیایی، مقاومت و پایداری ابعاد بیشتر و جذب آب کمتری نسبت به چندساز های حاوی خمیرکاغذهای مکانیکی دارا بودند. در مقایسه با چندسازه چوب-پلاستیک جذب آب چندسازههای خمیر کاغذ به شدت کاهش و پایداری ابعاد آنها افزایش یافت. در کل نتایج نشان دهنده بهبود ویژگیهای مقاومتی و فیزیکی در چندسازههای خمیرکاغذ- پلاستیک در مقایسه با چندسازههای چوب- پلاستیک میباشد. | ||
کلیدواژهها | ||
پلیپروپیلن؛ چندسازه؛ خمیر کاغذ؛ ماده لیگنوسلولزی؛ ویژگیهای فیزیکی و مکانیکی | ||
عنوان مقاله [English] | ||
The Study of Pulp-Plastic Composites Properties Produced from Bagasse with Different Pulping Processes | ||
نویسندگان [English] | ||
Sahab Hedjazi2؛ | ||
چکیده [English] | ||
In this study , the physical and mechanical properties of polypropylene composites reinforced with bagasse alkaline-Sulfite-Anthraquinone, Soda-Anthraqouinone, Monoethanolamine-Anthraquinone chemical pulps and mechanical pulp (CMP) known as Pulp-Plastic Compostes (PPC) were investigated and the results were compared among PPCs and with polypropylene composites reinforced with bagasse flour known as Wood-Plastic Composite (WPC) . The ratio of the matrix (polypropylene) to reinforcement agent (pulp) was 50/50. The results showed that elastic modulus, tensile strength, bending strength and impact strengths of the produced composites were influenced by the pulping processes significantly. Furthermore, the composites which contained chemical pulps had higher strength and dimensional stability as well as less water absorption than that of containing mechanical pulp. In comparison to WPCs , the water absorption and dimensional stability of PPCs decreased and increased, respectively. Generally, the results showed very superior physical and mechanical properties in pulp - plastic composites than flour bagasse- plastic composites. | ||
کلیدواژهها [English] | ||
Polypropylene, Composite, Pulp, Lignocellulosic Material, Mechanical and physical properties | ||
مراجع | ||
[1]. Zahedi, M., Tabarsa, T., Madhoushi, M., and Shakeri, A.R. (2013). Effect of nanoclay (Montmorillonite) on the physical-mechanical properties of polypropylene / wood flour composites. Journal of Wood and Forest Science and Technology, 20(3): 95-110.
[2]. Buzarovska, A., Bogoeva, G., Grozfanov, A., Avella, M., and Gentile, G. (2009). Potential use of rice straw as filler in eco-composite materials. Australian Journal of Crop Science, 1(2): 37-42.
[3]. Kord, B. (2009). Improvement of practical properties of wood polymer composite with nanoclay particles. Journal of Materials Engineering, 1(4): 369-377.
[4]. Froozanfar, R., Sukhtesarie, A., and Noroozi, E. (2011). The managment of leavings in cellulosic industries (case study). The 5th National Conference & Exhibition on Environmental Engineering. Nov. 19-23 Tehran.
[5]. Gassan, J., and Bledzki A.K. (1999). Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science, 71(2): 623-629.
[6]. Mohanty, A.K., Khan, M.A., and Hinrichsen, G. (2005). Surface modification of jut and its influence on performance of biodegradable jute- fabric / biopol composite. Composites Science and Technology, 60: 1115-1124.
[7]. Li, x., Tabi, L., and Panigrahi, S. (2007). Chemical treatment of natural fiber for Use natural fiber-reinforced composites: A Review. Journal of Polymers and the Environment, 15 (1): 25-33.
[8]. Khademi Eslam, H., Kargar, M., Bazayar, B., and Hedjazi, S. (2010). Investigation on the effect of alkali treatment of the rice straw on mechanical properties of rice straw flour-polypropylene composites. Journal of Renewable Natural Resources, 1(2):84-97.
[9]. Li, H., and Sain, M. (2003). High stiffness natural fiber-reinforced hybrid polypropylene composites. Polymer–Plastic Technology and Engineering, 42 (5): 853–862.
[10]. Beg, M.D.H., and Pickering, K.L. (2008). Mechanical performance of Kraft fibre reinforced polypropylene composites: Influence of fibre length, fibre beating and hygrothermal ageing, Journal of Composites: Part A, 39:1748–1755.
[11]. Lee Y, H., Sain, M., Kuboki, T., and Park, C.B. (2009). Extrusion foaming of nano-clay filled wood fiber composites for automotive applications. Journal of Material and Manufacturing, 1(1):641-647.
[12]. Niaraki, P., Jahan Latibari, A., Roohnia, M., and Tajdini, A. (2014).The influence of fiber lignin content on mechanical properties of wood fiber-polypropylene composites, Iranian Journal of Wood and Paper Science Research, 29(1):1-11.
[13]. Ghofrani, M., Pishan, S., Mohammadi, M., and Omidi, H. (2011). Study of physical and mechanical properties of wood-plastic composites using rice husk / waste HDPE. Journal of Environmental Sciences, 9(1): 99-112.
[14]. Lai, Y., and Sapuan, S.M. (2005). Mechanical and properties of coconut Coir Fiber-Reinforced polypropylene Composites. Polymer-Plastics Technology and Engineering, 44(2):619-632.
[15]. Behrooz, R., Younesi Kordkheili, H., and Kazemi Najafi, S. (2011). Use of kraft lignin as compatibilizer in wood flour-polypropylene composites. Iranian Journal of Wood and Paper Science Research, 26 (3):454-465.
[16]. Sukhtesaraie, A., Noroozi, E., and Ahmadi, M. (2014). Production and evaluation of cellulosic fiber- Plastic composites Properties, Journal of Nano World, 37: 43-57.
[17]. Basiji, F., Safdari, V., Latibari, A., and Nourbakhsh, A. (2010). Effect of fiber length on mechanical properties of wood composite plastic (Polypropylene). Iranian Journal of Wood and Paper Science Research, 25(2):187-200.
[18]. Gyoung Gwon, J., Lee, S., Chun, S.J., Doh, G., and Kim J. (2010). Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean Journal of Chemical Engineering, 27(2):651-657.
[19]. Kannan, R., Sasitharan, N., and Mat, J. (2012). The effect of sodium hydroxide on water absorption and biodegradability of low density polyethylene (LDPE/sugarcane bagass) composites. Canadian Journal on Mechanical Sciences & Engineering, 3(1):19-24.
[20]. Talavera, J.F., Guzmán, J.A., Richter, H.G., Dueñas, R., and Quirarte, J.R. (2007). Effect of production variables on bending properties, water absorption and thickness swelling of bagasse/plastic composite boards. Industrial Crops and Products, 26(1):1-7.
| ||
آمار تعداد مشاهده مقاله: 1,246 تعداد دریافت فایل اصل مقاله: 889 |