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In this research, the influence of structure on the tensile properties of single- walled carbon nanotubes 
(CNTs) is evaluated using molecular mechanics technique and finite element method. The effects of 
diameter, length and chiral angle on elastic modulus and Poisson’s ratio of armchair, zigzag and chiral 
structures are investigated. To simulate the CNTs, a 3D FEM code is developed using the ANSYS commercial 
software. Considering the carbon-carbon covalent bonds as connecting load-carrying beam elements, and 
the atoms as joints of the elements, CNTs are simulated as space-frame structures. The atomic potentials 
are estimated using harmonic simple functions. The numerical results show that by increasing the diameter 
and length to a certain amount, the size effect on tensile behavior of modeled nanotubes is omitted. In fact, 
for nanotubes with diameter over 2 nm and length over 36.5 nm the chiral angle is the only effective factor 
on the tensile properties. Also, it is found that the structure has a little effect on the elasticity modulus, 
which is about 4%. However, Poisson’s ratio can be affected significantly with chiral angle. Asymmetric 
structures with angles θ <18˚ show higher Poisson’s ratio in comparison with the other structures, such 
that it can be 16% larger for little chirality CNTs than armchair.

1. Introduction 
Carbon nanotubes have exciting physical 

and mechanical properties that cause extensive 
interest to understand their behavior after the first 
introduction in 1991[1]. Carbon nanotubes have 
high stiffness and low density. From mechanical 
viewpoint, carbon nanotubes are the stiffest material 
known; with about 100 times more stiffness than 
the metal, they only weighs one-six of the metal. 
These amazing features put more emphasis on 
studying mechanical properties of such structures 
under different loading conditions. 

Because of high costs and difficulties of 
experimental methods, many researchers have 
tended to use computational techniques such as 
molecular dynamics simulation and continuum 
modeling techniques to analyze the mechanical 

behavior of CNTs. Equivalent continuum modeling 
(ECM) is one the leading techniques of continuum 
modeling which is used as an efficient method 
for studying nano-structures at large scale. ECM 
is comprised of molecular mechanics and finite 
element method (FEM); mainly deal with nanotube 
modeling methods using shell, truss, spring and 
beam elements. ECM with shell elements was 
introduced by Yakobson et al. [2]. Odegard et al. [3] 
used ECM to find the relation between mechanics 
of solid and computational chemistry. Carbon 
nanotube bonds were replaced by truss elements 
and computational chemistry and continuum 
mechanics were interconnected by equalizing 
nanotube molecular potential energy and strain 
energy of the whole structure. 
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Li and Chou [4] introduced an FEM technique by 
replacing carbon-carbon bonds with representative 
beam elements. The beam element was defined 
based on the relation between molecular mechanics 
and continuum mechanics. They obtained Young’s 
modulus of armchair and zigzag nanotubes at the 
range of 0.995 to 1.033 TPa, which was in good 
consistency with elastic modulus of graphene 
sheet. Xiao et al. [5] developed the FEM of beam 
elements using modified Morse potential. A 
similar method was used by Ávila and Lacerda 
[6], and they obtained elastic modules of CNTs at 
the range of 0.97 and 1.03 TPa. In addition, they 
reported that for nanotubes with small diameter, 
Young’s modulus increases along with increase in 
the diameter.

The ECM and replacement of beam elements 
for carbon-carbon bonds was also used by Tserpes 
and Papanikos [7] and they concluded that chiral 
nanotubes have higher Young’s modulus comparing 
with armchair and zigzag ones. In another research, 
Zaeri et al. [8] reported that armchair structure has 
higher Young’s modulus comparing with zigzag 
structure. But, with increase of diameter, Young’s 
modulus for the both structures is equal to 1.04 
TPa. Shokrieh and Rafiee [9] employed the ECM 
to simulate armchair and zigzag nanotubes. They 
reported higher Young’s modulus of armchair 
nanotubes than zigzag ones. Moreover, Lu and 
Hu [10] used ECM to compute the mechanical 
properties of carbon nanotubes. Their results 
showed increase of elastic modulus of zigzag and 
chiral CNTs with increase in diameter. However, 
only negligible changes on Young’s modulus were 
observed for armchair structures.

Despite many studies published on mechanical 
properties of carbon nanotubes, the only covered 
area is the armchair, zigzag, and a few of chiral 
structures with certain angles. Indeed, there is 
not a comprehensive evaluation on the influence 
of structure on the CNT’s properties. Since the 
chirality defines the engineering properties of 
CNTs, characterizing the tensile properties of 
chiral structures is a key to discover the science 
behind the tensile behavior of this kind of 
nanotubes, and understanding their capabilities for 
practical applications. The main goal of this study 
is to find out the role of nanotube structure on its 
mechanical properties. To this end, single walled 
CNTs of different structures (armchair, zigzag, 
and chiral) are simulated using ECM technique 
through replacing carbon-carbon bonds by the 
representative beam elements. Then, their tensile 
behavior is investigated through numerical analysis 
for different length, diameter, and chiral angles. 

2. Atomic Structure of a Carbon Nanotube 
A single-walled carbon nanotube can be 

simulated as a cylinder by rolling graphene sheet. 
The sheet is rolled along a specific vector known as 
chiral vector hC  defined as:
Ch=na1+ma2                                                               (1)

where 1a  and 2a  are unit vectors in the 
honeycomb lattice (figure 1) and the integer 
ordered pair of (n,m)  introduces the chiral index. 
Using m and n, chiral angleθ can be determined 
based on Eq. 2:

( ) 3tan
2

m
n m

θ =
+                                                          (2)

Nanotubes with (n,n) structure and chiral angle 
of 30° are known as armchair, and (n,0) structures 
with chiral angle of 0° are known as zigzag. Also, 
CNTs with (n,m) structures where n>m and chiral 
angle of 0<θ <30 are known as chiral nanotubes. 
Diameter of nanotube (D) is obtained using Eq. 3 
[11]:

( )2 23c ca n m nm
D

π
− + +

=
                                        

(3)

in which, c ca − is the distance between two 
adjacent atoms (≅0.142 nm).

3. Principles of Molecular Mechanics
Molecular mechanics technique uses classical 

physic laws for predicting the molecular and 
structural properties. In molecular scale, interaction 
between the atoms is explained using potential 
energies of the molecules. Different methods and 
relations have been introduced to express the 
potential energies between the molecules such as 
Morse potentials, Tersoff-Brenner, and harmonics 
types [13]. These potentials provide different levels 
of accuracy for different applications. Although 
CNT structures show nonlinear behavior, the 
potential of bonds of molecular lattices with small 
deformations may be estimated using harmonic 
simple functions with acceptable accuracy. Based 

 
Fig. 1- Graphene sheet and parameters required to define 
nanotube structures [12].
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on harmonic functions, different types of inter-
atomic potential energy for covalent bonds of 
carbon atoms can be represented in the form of 
Eqs. 4-6 [14]:

21 ( )
2r rU k r∆=

                                                            
(4)

21 ( )
2r rU k r∆=

                                                            
(5)

21 ( )
2

U kφ φ ∆φ=                                                            
(6)

where Ur, Uθ , and Uφ are the bond energies 
including bond stretching, bending, and torsion 
respectively; and r∆ , ∆θ , ∆φ  represent variations 
in length, in-plane angle, and out of plane twist 

angle of the bond. Also, rk , kθ  , and kφ  are the 
force constants of bond stretching, bending, and 
torsion respectively. These constants are listed in 
Table 1 based on the results presented by Cornell 
et al. [15]. In this reference, rk  and kθ values have 
been used as starting values adjusted as necessary to 
reproduce experimental normal mode frequencies. 
These values were initially derived by fitting to 
structural and vibrational frequency data on small 
molecular fragments making up proteins and 
nucleic acids. For example, in complex fragments 
such as the nucleic acid bases, the rk  values 
determined by linear interpolation between pure 
single and double bond values using the observed 
bond distances and the kθ value taken from 
vibrational analysis of a simple sp2 atom containing 
fragments such as benzene. Finally, for rk , kθ , 

and kφ  constants the values of 938,  126, and 40 
kcal mole-1A0 -2 have been derived. In 2005, Tserpes 
and Papanikos [7] used the results from Ref. [15] 
to adopt the values of rk , kθ , and kφ according 
to Table 1.

4. Finite Element Modeling 
As mentioned earlier, equivalent continuum 

modeling is comprised of molecular mechanics 
and FEM methods. The equality of inter-molecular 
potential energy in chemistry and strain energy in 
structural mechanics was ensured by Li and Chou 
[4]. Given that covalent bonds act as connecting 
elements of carbon atoms in the molecular lattice, 
carbon-carbon bond may be taken as a beam in 
structure where the atoms act as connection of 
the bonds. Li and Chou [4] drawn a direct relation 
between structural mechanic properties o oE A ,

o oE I , and o oG J and parameters of molecular 

mechanics rk , kθ , and kφ  (Eq. 7):

, ,o o o o o o
r

o o o

E A E I G Jk k k
L L L

= = =θ φ
                   

(7)

where, Lo, Ao, Io, oJ , Eo, and Go are length, cross 
sectional area, moment of inertia, polar moment 
of inertia, elastic modulus, and shear modulus, 
respectively of a beam element with a circular cross 
section of diameter d. Then, cross-sectional area, 
moment of inertia, and polar moment of inertia of 
beam element are:

Length of the replaced beam element is equal 
with the length of carbon-carbon bond. By 
replacing Eq. 8 in Eq. 7 and using the specific values 
of potential energy coefficients (Table 1), diameter, 
elastic modulus, and shear modulus of the beam 
element are obtained. Having the diameter, area 
of cross-section, and moment of inertia of the 
replaced beam element can be obtained using Eq. 
8 (Table 2).

2 4 4
, ,

4 64 32o o o
d d dA I Jπ π π

= = =

 
                     

(8)
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Table 1- Force constants of molecular harmonic potential [7]

  

 0.142 nm

 0.1466 nm  

 20.0169 nm  

5 42.27 10 nm

5.4836 TPa

0.8701 TPa

Table 2- Geometric and mechanical properties of the beam 
element used in FEM
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By determining coordinates of carbon atoms 
(nodes) and using a simple algorithm, geometric 
model of different kinds of carbon nanotubes was 
obtained. Afterward, position matrix for each 
element was developed between the corresponding 
two nodes and having the stiffness matrix of each 
element and inducing loading and boundary 
condition, FEM of the carbon nanotubes was 
obtained for different length and diameters. 

Since CNTs carbon atoms are bonded together 
with covalent bonds having a characteristic 
bond length aC–C and bond angle in the 3D 
space, the displacement of each atom under an 
external force is constrained by the bonds, and 
the total deformation of nanotube is the result of 
interactions between the bonds. As mentioned by 
Tserpes and Papanikos [7], considering the bonds 
as connecting load-carrying beam elements, and 
the atoms as joints of the elements, CNTs could be 
simulated as space-frame structures. By treating 
CNTs as space-frame structures, their mechanical 
behavior can be analyzed using classical structural 
mechanics methods. A schematic of beam element 
replacement with carbon-carbon bond, to be used 
in FEM, is illustrated in figure 2.

In this research, a 3D FEM code is developed 
using the ANSYS commercial software. For the 
modeling of the bonds, the 3D elastic BEAM 
188 element is used which is a uni-axial element 
with tension, compression, torsion and bending 
capabilities. It has six degrees of freedom at each 
node; including translations and rotations about the 
nodal x, y, and z-axes. Geometric and mechanical 
properties of the element are defined according 
to Table 2. Figure 3 shows finite element model of 
three types of nanotubes.

5. Tensile Properties of Carbon Nanotubes 
5.1. Young’s Modulus 

To compute the mechanical properties, first 
proper boundary condition and loading should be 
implemented. In computation of Young’s modulus 
of single-walled carbon nanotubes, all degrees of 
freedom of nodes are closed at the end of nanotube 

and a small displacement equal to 1%  strain is 
induced to the nodes at the tip of the nanotube 
(Fig.3). Having the displacement implemented, 
total axial forces on the nodes located at the end 
of the nanotube were calculated by software. Then, 
Young’s modulus of carbon nanotubes under 
tension is obtained using Eq. 9.

F LE
L A∆

=
                                                                 

(9)

where, F, L, L∆ , and A represent the total 
implemented axial forces at the end of nanotube, 
length, change of length, and cross sectional area of 
the nanotube, respectively. To calculate the cross-
sectional area, the carbon nanotube is considered 
as a continuous tube with a thickness equal to Van 
der Waals diameter of carbon atom which is 0.34 
nm [17].

 
5.2. Poisson’s Ratio

Based on classic theory of elasticity, Poisson’s 
ratio of CNTs (n) is obtained using Eq. 10.

radial

axial

R
R

L
L

∆ε
ν

∆ε
= − = −

                                         
(10)

where, radialε  is radial strain, axialε  is axial 
strain, L∆  is change of length (i.e. induced 
displacement of the nodes at the tip of nanotube),

R∆  is radius change, R is radius, and L is length of 
the nanotube.

6. Results and Discussion 
The mechanical behavior of CNTs can be 

influenced by their geometry. Hence, the influence 
of geometrical parameters of diameter, length, and 
chiral angle on Young’s modulus and Poisson’s ratio 
should be studied separately to recognize the roll 
of chirality. In the following, tensile properties 
obtained by numerical analyses of CNTs are 
presented.

6.1. Effect of Nanotube Diameter 
Many researchers have been engaged in 

investigating the effect of diameter on Young’s 
modulus of carbon nanotubes. However, the main 

 

Fig. 2. Replacement of beam element with C-C bonds in CNT [16].

 
Fig. 3. Finite element model of CNTs:    a) armchair (11,11),   
b) zigzag (18,0),   c) chiral (14,7).
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body of the literature has only focused on armchair 
and zigzag structures. In this work, all three 
structures of CNTs (armchair, zigzag, and chiral) 
are studied. To find the effect of diameter on CNT’s 
tensile behavior, nanotubes with the same length 
and chiral angle must be analyzed. Therefore, in 
this step, armchair, zigzag, and chiral structures 
with constant chiral angle of 19.11º are modeled 
such that all CNTs of these three structural groups 
have the lengths of 12.6665, 12.638, and 12.6664 
nm, respectively. Table 3 presents the geometrical 
characteristics of the studied armchair, zigzag, and 
chiral nanotubes with different diameters. After 
calculating Young’s modulus using Eq. 9, the effect 
of diameter on this parameter is obtained and 
plotted according to figure 4.

As shown in figure 4, increase in diameter for all 
types of structures with small diameter results in 
increase of Young’s modulus. However, the increase 
is trivial and almost zero for diameters more than 
2 nm. The effect of curvature in carbon-carbon 
bonds was mentioned by Li and Chou [4] as the 
reason of the increase in Young’s module for CNTs 
with small diameter. In fact, nanotubes with small 
diameters have larger curvature than those with 
larger diameter which means higher distortion of 
c-c bonds in nanotubes with small diameter. This 
curvature decreases with increase of diameter; 
and Young’s modulus of nanotubes approaches to 
Young’s modulus of graphene sheet. It should be 
mentioned that there are some size effects such 
as nonlocal effect of the interatomic interaction; 
which did not considered in the present study 
because of using the simple laws to calculate the 
atomic potentials. A more accurate model could 
be derived when accounting for the long-range 
interaction. 

To ensure removal of the diameter effect, the 
diameters of the nanotubes have been investigated 
up to 5 nm. As pictured in figure 4, chiral nanotube 
of angle θ =19.11o has higher Young’s modulus 
than armchair and zigzag nanotubes; and zigzag 
has the smallest Young’s modulus.

To evaluate the validity of current FEM modeling 
and results, Young’s modulus for armchair 

nanotubes with (5,5) and (15,15) structures, zigzag 
nanotubes with (9, 0) and (21, 0) structures, and 
chiral nanotubes with (8,4) and (16, 8) structures 
are compared with the results presented in Refs. 
[4,8,10] in Table 4. Moreover, a comparison between 
Young’s modulus obtained in this study and that of 
other works with similar diameter range is shown 
in Table 5. A considerable consistency between the 
results is evident. 

At the next step, Poisson’s ratio (n) was 
determined using Eq. 10 and variation diagram was 
plotted against the diameter of nanotube. Figure 5 
illustrates the effect of diameter on Poisson’s ratio. 
Clearly, this parameter increases with increase of 
diameter in armchair and chiral CNTs at small 
diameters, but zigzag structure has the maximum 
Poisson’s ratio in small diameters, and increase in 
the diameter leads to decrease in n. However, the 
zigzag structure shows a behavior similar to the 
other structures for diameters over 1.644 nm.

These results show that armchair nanotube 
has the lowest Poisson’s ratio. Furthermore, the 
studied chiral nanotubes (θ =19.11o) has higher 
Poisson’s ratio than symmetric structures of zigzag 
and armchair for diameters below 1.2 nm; and for 
diameters over 2 nm, the effect of diameter on n 
is negligible and this parameter can be considered 
constant. 

For verification of the results, a comparison with 
the few available results from previous studies was 
made. The results presented by Lu [19] shows that 
Poisson’s ratio for CNTs with diameters over 1 nm 
is between 0.26 and 0.32. On the other hand, Sun 
and Zhao [20] reported that n is 0.31 for armchair 
nanotube with diameter of 2.8 nm. In the present 
work, Poisson’s ratio for armchair nanotube of (21, 
21) with a diameter of 2.8 nm is equal to 0.3096 
which is consistent with Ref. [20]. Also, Poisson’s 
ratio for zigzag and armchair carbon nanotubes was 
examined by Natsuki et al. [21] through modeling 
the CNTs using spring elements; in addition to 
an analytical method. According to their results, 
Poisson’s ratio for armchair and zigzag nanotubes 
with diameters at the range of 0.5-2.5 nm was 
obtained as 0.27-0.29 and 0.27-0.33, respectively 

 
Fig. 4- Variation of Young’s modulus versus diameter of 
nanotubes.

 
Fig. 5- Variation of Poisson’s ratio versus diameter of nanotube.



6

Zakeri M and Basiri O, J Ultrafine Grained Nanostruct Mater, 49(1), 2016, 1-10



Table 3- Geometrical characteristics of simulated nanotubes for investigating the effect of diameter



7

Zakeri M and Basiri O, J Ultrafine Grained Nanostruct Mater, 49(1), 2016, 1-10

[21]. They reported that Poisson’s ratio for zigzag 
structure is higher than that of armchairs, which is 
consistent with the present results.

6.2. Effect of nanotube length 
To study the effect of nanotube length on its 

tensile properties, it is needed to model the CNTs 
with the same diameter. For this aim, armchair 
(15, 15), zigzag (26, 0), and chiral (21, 8) with 
chiral angle of 15.49o with fixed diameters of 2.034, 
2.035, and 2.031 nm (respectively) are simulated. 
The length of the modeled CNTs is varying at the 

range of 6-61 nm. The obtained results for Young’s 
modulus and Poisson’s ratio are illustrated in Figs. 
6 and 7.

As illustrated in Figs. 6 and 7, increase in the 
length results in reduction of Young’s modulus 
and Poisson’s ratio for all three types of nanotube. 
However, for lengths more than 36.5 nm, the 
changes are almost trivial and these mechanical 
properties are almost constant. Changes in the 
mechanical properties with increasing the length 
from 36.5nm to 61nm are very little (<1%), 
indicating that tensile properties are not dependent 
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to the length for nanotubes with length over 36.5 
nm. 

According to the results, chiral nanotube has 
the highest Young’s modulus and Poisson’s ratio in 
comparison with the other structures; and zigzag 
structure has the lowest Young’s modulus among 
all. Moreover, armchair structure has the lowest 
Poisson’s ratio. To achieve deeper insight on the roll 
of CNT structure on its tensile properties, in the 
following section, the effect of chiral angle is taken 
into account apart from the influence of nanotube 
size. 

6.3. Effect of chiral angle 
In the previous sections, it was mentioned that 

the size effects on tensile properties vanish for 
nanotubes with diameter over 2 nm and length over 

36.5 nm. Consequently, the only parameter affecting 
the mechanical properties of such nanotubes is the 
chiral angle. In this step, the effect of chirality on 
mechanical properties is studied for different kinds 
of CNTs with diameter and length over 2 nm and 
36.5 nm, respectively. The characteristic of the 
modeled nanotubes are presented in Table 6. 

Figs. 8 and 9 illustrate the variation of Young’s 
modulus and Poisson’s ratio against chiral angle, 

Table 4- Comparison of results for Young’s modulus obtained in this work and previous studies for different structures of CNTs

Table 5- Comparison of results for Young’s modulus obtained in 
this work and previous studies for CNTs with similar diameter 
range

 

 
Fig. 7- Variation of Poisson’s ratio versus length of nanotube.

Fig. 6- Variation of Young’s modulus versus length of nanotube.
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respectively. As shown in figure 8, zigzag structure 
has the smallest Young’s modulus comparing with 
the other structures. Increase of chiral angle leads 
to increase of Young’s modulus in chiral structures. 

Chiral nanotubes with angle θ <13° have smaller 
Young’s modulus than armchair structure, while 
for angles θ >13° chiral nanotubes have the 
higher Young’s modulus comparing with the other 
structures. 

About Poisson’s ratio, as shown in figure 9, the 
armchair nanotube has the lowest n. Also, increase 
in chiral angle leads to decrease of Poisson’s ratio 
in chiral structures. In addition, comparing with 
the symmetric structures, highest n is achieved for 
chiral structures with angle less than 18°.

7. Conclusion 
In this paper, tensile properties of different 

types of carbon nanotube were studied using 
molecular mechanics and FEM techniques. Young’s 
modulus and Poisson’s ratio were obtained for 
carbon nanotubes of a wide range of diameters 
and lengths. Examination of relation between the 
mechanical properties and diameter and length 
of CNTs revealed that with increasing of diameter 
and length over a specific amount, the size effect 
on Young’s modulus and Poisson’s ratio will be 
eliminated. According to the results, for nanotubes 
with diameter over 2 nm and length over 36.5 nm, 
the chiral angle is the only effective factor on tensile 
properties. Regarding such nanotubes, the results 
show that zigzag structure has the lowest Young’s 



Table 6- Characteristics of CNTs simulated for analyzing the effect of chiral angle

 
Fig. 8. Variation of Young’s modulus versus chiral angle.

 
Fig. 9. Variation of Poisson’s ratio versus chiral angle.
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modulus comparing with armchair and chiral 
structures, and chiral nanotubes with angle θ >13º 
have higher Young’s modulus in comparing with 
the other structures. 

Concerning Poisson’s ratio, it is found that 
armchair structure has the lowest Poisson’s 
ratio comparing with the two other structures. 
Moreover, chiral structures with angles θ <18º 
showed higher Poisson’s ratio in comparison with 
the other structures; so that for little angles (about 
2º), Poisson’s ratio is considerably larger (more 
than 16%) than armchair structure.

References
1. Iijima S. Helical microtubules of graphitic carbon. nature. 

1991;354(6348):56-8.
2. Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of 

carbon tubes: instabilities beyond linear response. Physical 
review letters. 1996;76(14):2511.

3. Odegard GM, Gates TS, Nicholson LM, Wise KE. Equivalent-
continuum modeling of nano-structured materials. 
Composites Science and Technology. 2002;62(14):1869-80.

4. Li C, Chou TW. A structural mechanics approach for the 
analysis of carbon nanotubes. International Journal of Solids 
and Structures. 2003;40(10):2487-99.

5. Xiao JR, Gama BA, Gillespie JW. An analytical molecular 
structural mechanics model for the mechanical properties 
of carbon nanotubes. International Journal of Solids and 
Structures. 2005;42(11):3075-92.

6. Ávila AF, Lacerda GS. Molecular mechanics applied to 
single-walled carbon nanotubes. Materials Research. 
2008;11(3):325-33.

7. Tserpes KI, Papanikos P. Finite element modeling of single-
walled carbon nanotubes. Composites Part B: Engineering. 
2005;36(5):468-77.

8. Zaeri MM, Ziaei-Rad S, Vahedi A, Karimzadeh F. Mechanical 
modelling of carbon nanomaterials from nanotubes to 
buckypaper. Carbon. 2010;48(13):3916-30.

9. Shokrieh MM, Rafiee R. Prediction of Young’s modulus of 

graphene sheets and carbon nanotubes using nanoscale 
continuum mechanics approach. Materials & Design. 
2010;31(2):790-5.

10. Lu X, Hu Z. Mechanical property evaluation of single-walled 
carbon nanotubes by finite element modeling. Composites 
Part B: Engineering. 2012;43(4):1902-13.

11. Gogotsi Y, editor. Nanomaterials handbook. CRC press; 
2006. 

12. Kalamkarov AL, Georgiades AV, Rokkam SK, Veedu VP, 
Ghasemi-Nejhad MN. Analytical and numerical techniques 
to predict carbon nanotubes properties. International journal 
of Solids and Structures. 2006;43(22):6832-54.

13. Rafii-Tabar H. Computational modelling of thermo-
mechanical and transport properties of carbon nanotubes. 
Physics Reports. 2004;390(4):235-452.

14. Gelin BR. Molecular modeling of polymer structures and 
properties. Hanser Publishers; Hanser/Gardner Publications; 
1994.

15. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, 
Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman 
PA. A second generation force field for the simulation of 
proteins, nucleic acids, and organic molecules. Journal of the 
American Chemical Society. 1995;117(19):5179-97.

16. Gaddamanugu D. M.Sc. Thesis. Texas A & M University.2009.
17. Giannopoulos GI, Kakavas PA, Anifantis NK. Evaluation of 

the effective mechanical properties of single walled carbon 
nanotubes using a spring based finite element approach. 
Computational Materials Science. 2008;41(4):561-9.

18. Yang QS, Li BQ, He XQ, Mai YW. Modeling the mechanical 
properties of functionalized carbon nanotubes and their 
composites: design at the atomic level. Advances in Condensed 
Matter Physics. 2014;482056;doi: 10.1155/2014/482056.

19. Lu JP. Elastic properties of carbon nanotubes and nanoropes. 
Physical Review Letters. 1997;79(7):1297.

20. Sun X, Zhao W. Prediction of stiffness and strength of single-
walled carbon nanotubes by molecular-mechanics based 
finite element approach. Materials Science and Engineering: 
A. 2005;390(1):366-71.

21. Natsuki T, Tantrakarn K, Endo M. Effects of carbon nanotube 
structures on mechanical properties. Applied Physics A. 
2004;79(1):117-24.

 


