
49S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

Fractured Reservoirs History Matching
based on Proxy Model and Intelligent

Optimization Algorithms

Sayyed Hadi Riazi1, Ghasem Zargar1*, Mehdi Baharimoghadam1

and Ebrahim Sharifi Darani2

1. Department of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz, Iran.
2. Department of Reservoir Evaluation, National Iranian South Oil Company (NISOC), Ahwaz, Iran.

(Received 23 December 2015, Accepted 21 February 2016)

Abstract

In this paper, a new robust approach based on Least Square Support
Vector Machine (LSSVM) as a proxy model is used for an automatic
fractured reservoir history matching. The proxy model is made to
model the history match objective function (mismatch values) based
on the history data of the field. This model is then used to minimize the
objective function through Particle Swarm Optimization (PSO) and Im-
perialist Competitive Algorithm (ICA). This procedure leads to match-
ing of history of the field in which a set of reservoir parameters is used.
The final sets of parameters are then applied for the full simulation
model to validate the technique. The obtained results showed that due
to high speed and need for little data sets, LSSVM is the best tool to
build a proxy model. Also the comparison of PSO and ICA showed that
PSO is less time-consuming and more effective.

Keywords

Automatic fractured reser-
voir history matching;
ICA;
LSSVM;
Proxy model;
PSO.

Introduction1

* Corresponding Author.
Email: zargar@put.ac.ir

1. Introduction

Numerical reservoir simulation could provide
the ability to understand the real reservoir
behavior. To propel the simulated data to

the real data, it is necessary to carry out the his-
tory matching operations and tune the reservoir
parameters [1].

 The main stages of the history matching pro-
cess involve selecting parameters, defining the
mathematical model, defining the objective func-
tion, analyzing sensitivity and stop conditions. The

major problems in history matching are: 1) gener-
ally, history matching is done manually and due to
the enormous number of data used, a desired result
is not achieved.; 2) it would be difficult to adjust the
parameters to obtain the match due to the large
number of reservoir parameters; 3) optimization
algorithms used in the history matching process,
optimize the problem locally; thus, when there are
several minimums an acceptable solution would
not be provided; and 4) typical history matching
procedure works for one simulation model and
does not have the ability to work with several num-
ber of models. To solve the problems mentioned
above, different techniques of automatic history
matching were offered. In the proper procedure,

50 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

one of the most important activities to achieve an
acceptable result is to improve the optimization al-
gorithms to achieve global minimum [2].

Two of the most famous global optimizers
in the literature are employed: the PSO and ICA.
These two algorithms need large number of objec-
tive function evaluation for optimization but each
function evaluation needs a full simulation run
which is time consuming. In order to reduce the
function evaluation time, proxy models are used.
Proxy models are alternatives to the reservoir sim-
ulation model. A good proxy model should have
the following features [3, 4]: 1) an acceptable imi-
tation of nonlinear behavior of the actual model,
2) a simple application, 3) straight forward con-
struction. A number of proxy models are used for
reservoir simulation by different authors and each
proxy model has been used for a particular reser-
voir and application [5]. Proxy models can simplify
the process of finding the optimal values of reser-
voir parameters to reach the history matching by
speeding up the calculations. This is very impor-
tant for fractured reservoir because of its complex
behavior.

History matching of fractured reservoirs poses
more challenges compared to conventional reser-
voirs in two main areas: the number and type of
history matching parameters, and the increased
computational cost. For example, in the single po-
rosity model, relative permeability and kv⁄kh (kv:
vertical permeability; kh: horizontal permeability)
are uesd as matching parameters in the match of
water cut and gas production, whereas the match-
ing parameters in the dual porosity model are frac-
ture porosity, shape factor and kfv⁄kfh (kfv: fracture
vertical permeability; kfh: fracture horizontal per-
meability). The dual porosity models have longer
execution time than the single porosity models be-
cause of the large number of parameters. Also, the
inter-porosity flow between the matrix and frac-
ture poses additional challenge arising from the
matrix-fracture interactions because it requires
extensive computation. The doubling of the num-
ber of computational cells and significant non-
linearity increase the computations required to
evaluate the dual porosity model compared with
an equivalent single porosity model. A partial rep-
resentation of the fracture networks or describing
them in a simplistic way in reservoir models due
to scarcity of fracture data or lack of necessary nu-
merical tools is one of the challenges of the frac-
tured reservoir history matching.

Considering the importance of proxy applica-
tion in the history matching, many studies have
been carried out in this area. Cullik et al. conduct-

ed the history matching using a nonlinear proxy
and global optimization [6]. They used the neural
networks as a proxy model and showed that the
required number of simulation runs to obtain a
good history match can be reduced by the neural
network. Yu et al. used the genetic programming
as a proxy model for history matching [7]. Zhang et
al. provided an automatic history matching based
on improved genetic algorithm [1]. They showed
that the rate of convergence of the automatic his-
tory matching can be significantly increased by the
improved genetic algorithm. Rammay et al. used
the Adaptive Neuro-Fuzzy System (ANFIS) as a
proxy to reservoir simulator [8]. They combined
ANFIS and Differential Evolution (DE) algorithm
to reduce the number of simulation runs and the
expensive simulation time. Maschio et al. replaced
the flow simulator by proxy models created by ar-
tificial neural network (ANN) to make possible the
application of the sampling method in the history
matching [9]. They used Markov Chain Monte Car-
lo (MCMC) sampling and combined it with ANN.
Goodwin appraised the limitations of random
walk MCMC [10]. They showed that a combination
of MCMC and proxy models provide a more reli-
able probabilistic uncertainty quantification and a
suitable ensemble of deterministic reservoir mod-
els. He et al. proposed the proxy-for-data approach
[11]. In their work, the aggregated mismatch was
calculated by the data values predicted by proxies.
They also reduced the number of proxies needed
by using of reduced order modeling.

In this paper, use of Least Square Support Vec-
tor Machine (LSSVM) as a nonlinear proxy model
is proposed and a history match workflow with
strong and nonlinear LSSVM proxy model to im-
prove the history matching process is presented.
One of the Iranian fractured reservoir simulation
model and its history data is used as the case study.

2. LSSVM for Function Approximation

Considering the high performance of the support
vector machine (SVM) in function approximation,
the application of this algorithm has caused a sig-
nificant growth in the field of oil reservoir mod-
eling. SVM as a learning organization takes the
nonlinear problems into high dimensional feature
space and solves the problem through the kernel
functions. Accordingly, SVM forecasts the functions
so that the desired functions are developed on the
subset of support vectors [12, 13, 14, 15 and 16].
A version of SVM for regression is called support
vector regression (SVR).

51S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

The purpose of SVR is to find a function f(x) that
has at most ϵ deviation from the actually obtained
targets y(i) for all the training data, and is as flat as
possible simultaneously. In the case where f(x) is a
linear function of the form f(x) =ωTx + b, the result-
ing primal optimization problem is shown in the
following form [17]:

Minimize

Subject to

 (1)

•	 ωTω controls the trade-off between the com-
plexity and the approximation accuracy of the
model

•	 εi, εi* are slack variables that measure the error
of the up and down sides, respectively

•	 C controls the trade-off between the error and
margin

This optimization problem can transformed
into the dual problem, which is easier to solve, and
its solution is given by

 (2)

subject to 0 ≤ αi*,αi ≤ C

Where αi* and αi are called the lagrangian mul-
tipliers are in Eq. (2), which satisfy the equalities
αi*αi=0, αi>0 and αi*≥0 and nSV is the number of
Support Vectors (SVs) and the kernel function

(3)

In order to reduce complexity and increase
computing speed, modified SVM as LSSVM is of-
fered [18]. LSSVM as a approximation function is
to estimate a function y(x) from a given training
set of N samples in which xi ∈ RN (N di-
mensional vector space) as input data and yi ∈ r
(one dimensional vector space) as corresponding
output data [19]. LSSVM suggests the following
equation to estimatey (x):

y(x)=wTφ(x)+b (4)

Where the nonlinear function φ(x) takes the
input data into a high dimensional feature space
to reduce the complexity and increase the speed
of problem solving; b is the bias value and w is a

weight vector having the similar dimension with
the defined space dimension. To approximate LSS-
VM, y(x) should optimize the following problem
[19]:

 Must be minimized

Where γ* = regularization parameter and ei =
error variable. After minimization the above prob-
lem, y(x) can be obtained as follows [7]:

 (5)

Where k(x, xi) is the kernel function and α_i is La-
grange multiplier called the “support value” which
αi and b are obtained from optimization problem
described above. There are different forms of ker-
nel functions such as linear, polynomial and radial
basis function (RBF) [20]. Table 1 shows common
kernel function and corresponding mathematical
expression.

Must be minimized

 In this paper, use of Least Square Support
Vector Machine (LSSVM) as a nonlinear
proxy model is proposed and a history match
workflow with strong and nonlinear LSSVM
proxy model to improve the history
matching process is presented. One of the
Iranian fractured reservoir simulation model
and its history data is used as the case study.

2. LSSVM for Function
Approximation
 Considering the high performance of the
support vector machine (SVM) in function
approximation, the application of this
algorithm has caused a significant growth in
the field of oil reservoir modeling. SVM as a
learning organization takes the nonlinear
problems into high dimensional feature
space and solves the problem through the
kernel functions. Accordingly, SVM
forecasts the functions so that the desired
functions are developed on the subset of
support vectors [12, 13, 14, 15 and 16]. A
version of SVM for regression is called
support vector regression (SVR).

 The purpose of SVR is to find a function
f(x) that has at most ϵ deviation from the
actually obtained targets y(i) for all the
training data, and is as flat as possible
simultaneously. In the case where f(x) is a
linear function of the form f(x) = ωTx + b,
the resulting primal optimization problem is
shown in the following form [17]:

Minimize 12 ωTω + C ∑ (εi + εi
∗)m

i=1

Subject to

 {
y(i) − ωTx(i) − b ≤ ϵ + εi
ωTx(i) − y(i) + b ≤ ϵ + εi

∗

ϵ, εi, εi
∗ ≥ 0

 (1)

 ωTω controls the trade-off between the
complexity and the approximation
accuracy of the model

 εi , εi
∗ are slack variables that measure

the error of the up and down sides,
respectively

 C controls the trade-off between the error
and margin

 This optimization problem can
transformed into the dual problem, which is
easier to solve, and its solution is given by

f(x) = ∑ (αi − αi
∗)k(xi, x)nSV

i=1 (2)

subject to 0 ≤ αi
∗, αi ≤ C

 Where αi
∗ and αi are called the lagrangian

multipliers are in Eq. (2), which satisfy the
equalities αi

∗αi=0, αi > 0 and αi
∗ ≥ 0 and

nSV is the number of Support Vectors (SVs)
and the kernel function

K(x, xi) = ∑ gi(x)gi(xi)m
j=1 (3)

 In order to reduce complexity and
increase computing speed, modified SVM as
LSSVM is offered [18]. LSSVM as a
approximation function is to estimate a
function y(x) from a given training set of N
samples {xi, yi}i=1

N in which xi ∈ RN (N
dimensional vector space) as input data and
yi ∈ r (one dimensional vector space) as
corresponding output data [19]. LSSVM
suggests the following equation to
estimatey (x):

y(x) = wTφ(x) + b (4)

 Where the nonlinear function φ(x) takes
the input data into a high dimensional
feature space to reduce the complexity and
increase the speed of problem solving; b is
the bias value and w is a weight vector
having the similar dimension with the
defined space dimension. To approximate
LSSVM, y(x) should optimize the following
problem [19]:

 12 wTw + γ ∗ 1
2 ∑ ei

2N
i=1

 Where γ ∗ = regularization parameter and
ei = error variable. After minimization the

Must be minimized

 In this paper, use of Least Square Support
Vector Machine (LSSVM) as a nonlinear
proxy model is proposed and a history match
workflow with strong and nonlinear LSSVM
proxy model to improve the history
matching process is presented. One of the
Iranian fractured reservoir simulation model
and its history data is used as the case study.

2. LSSVM for Function
Approximation
 Considering the high performance of the
support vector machine (SVM) in function
approximation, the application of this
algorithm has caused a significant growth in
the field of oil reservoir modeling. SVM as a
learning organization takes the nonlinear
problems into high dimensional feature
space and solves the problem through the
kernel functions. Accordingly, SVM
forecasts the functions so that the desired
functions are developed on the subset of
support vectors [12, 13, 14, 15 and 16]. A
version of SVM for regression is called
support vector regression (SVR).

 The purpose of SVR is to find a function
f(x) that has at most ϵ deviation from the
actually obtained targets y(i) for all the
training data, and is as flat as possible
simultaneously. In the case where f(x) is a
linear function of the form f(x) = ωTx + b,
the resulting primal optimization problem is
shown in the following form [17]:

Minimize 12 ωTω + C ∑ (εi + εi
∗)m

i=1

Subject to

 {
y(i) − ωTx(i) − b ≤ ϵ + εi
ωTx(i) − y(i) + b ≤ ϵ + εi

∗

ϵ, εi, εi
∗ ≥ 0

 (1)

 ωTω controls the trade-off between the
complexity and the approximation
accuracy of the model

 εi , εi
∗ are slack variables that measure

the error of the up and down sides,
respectively

 C controls the trade-off between the error
and margin

 This optimization problem can
transformed into the dual problem, which is
easier to solve, and its solution is given by

f(x) = ∑ (αi − αi
∗)k(xi, x)nSV

i=1 (2)

subject to 0 ≤ αi
∗, αi ≤ C

 Where αi
∗ and αi are called the lagrangian

multipliers are in Eq. (2), which satisfy the
equalities αi

∗αi=0, αi > 0 and αi
∗ ≥ 0 and

nSV is the number of Support Vectors (SVs)
and the kernel function

K(x, xi) = ∑ gi(x)gi(xi)m
j=1 (3)

 In order to reduce complexity and
increase computing speed, modified SVM as
LSSVM is offered [18]. LSSVM as a
approximation function is to estimate a
function y(x) from a given training set of N
samples {xi, yi}i=1

N in which xi ∈ RN (N
dimensional vector space) as input data and
yi ∈ r (one dimensional vector space) as
corresponding output data [19]. LSSVM
suggests the following equation to
estimatey (x):

y(x) = wTφ(x) + b (4)

 Where the nonlinear function φ(x) takes
the input data into a high dimensional
feature space to reduce the complexity and
increase the speed of problem solving; b is
the bias value and w is a weight vector
having the similar dimension with the
defined space dimension. To approximate
LSSVM, y(x) should optimize the following
problem [19]:

 12 wTw + γ ∗ 1
2 ∑ ei

2N
i=1

 Where γ ∗ = regularization parameter and
ei = error variable. After minimization the

Must be minimized

 In this paper, use of Least Square Support
Vector Machine (LSSVM) as a nonlinear
proxy model is proposed and a history match
workflow with strong and nonlinear LSSVM
proxy model to improve the history
matching process is presented. One of the
Iranian fractured reservoir simulation model
and its history data is used as the case study.

2. LSSVM for Function
Approximation
 Considering the high performance of the
support vector machine (SVM) in function
approximation, the application of this
algorithm has caused a significant growth in
the field of oil reservoir modeling. SVM as a
learning organization takes the nonlinear
problems into high dimensional feature
space and solves the problem through the
kernel functions. Accordingly, SVM
forecasts the functions so that the desired
functions are developed on the subset of
support vectors [12, 13, 14, 15 and 16]. A
version of SVM for regression is called
support vector regression (SVR).

 The purpose of SVR is to find a function
f(x) that has at most ϵ deviation from the
actually obtained targets y(i) for all the
training data, and is as flat as possible
simultaneously. In the case where f(x) is a
linear function of the form f(x) = ωTx + b,
the resulting primal optimization problem is
shown in the following form [17]:

Minimize 12 ωTω + C ∑ (εi + εi
∗)m

i=1

Subject to

 {
y(i) − ωTx(i) − b ≤ ϵ + εi
ωTx(i) − y(i) + b ≤ ϵ + εi

∗

ϵ, εi, εi
∗ ≥ 0

 (1)

 ωTω controls the trade-off between the
complexity and the approximation
accuracy of the model

 εi , εi
∗ are slack variables that measure

the error of the up and down sides,
respectively

 C controls the trade-off between the error
and margin

 This optimization problem can
transformed into the dual problem, which is
easier to solve, and its solution is given by

f(x) = ∑ (αi − αi
∗)k(xi, x)nSV

i=1 (2)

subject to 0 ≤ αi
∗, αi ≤ C

 Where αi
∗ and αi are called the lagrangian

multipliers are in Eq. (2), which satisfy the
equalities αi

∗αi=0, αi > 0 and αi
∗ ≥ 0 and

nSV is the number of Support Vectors (SVs)
and the kernel function

K(x, xi) = ∑ gi(x)gi(xi)m
j=1 (3)

 In order to reduce complexity and
increase computing speed, modified SVM as
LSSVM is offered [18]. LSSVM as a
approximation function is to estimate a
function y(x) from a given training set of N
samples {xi, yi}i=1

N in which xi ∈ RN (N
dimensional vector space) as input data and
yi ∈ r (one dimensional vector space) as
corresponding output data [19]. LSSVM
suggests the following equation to
estimatey (x):

y(x) = wTφ(x) + b (4)

 Where the nonlinear function φ(x) takes
the input data into a high dimensional
feature space to reduce the complexity and
increase the speed of problem solving; b is
the bias value and w is a weight vector
having the similar dimension with the
defined space dimension. To approximate
LSSVM, y(x) should optimize the following
problem [19]:

 12 wTw + γ ∗ 1
2 ∑ ei

2N
i=1

 Where γ ∗ = regularization parameter and
ei = error variable. After minimization the

Must be minimized

 In this paper, use of Least Square Support
Vector Machine (LSSVM) as a nonlinear
proxy model is proposed and a history match
workflow with strong and nonlinear LSSVM
proxy model to improve the history
matching process is presented. One of the
Iranian fractured reservoir simulation model
and its history data is used as the case study.

2. LSSVM for Function
Approximation
 Considering the high performance of the
support vector machine (SVM) in function
approximation, the application of this
algorithm has caused a significant growth in
the field of oil reservoir modeling. SVM as a
learning organization takes the nonlinear
problems into high dimensional feature
space and solves the problem through the
kernel functions. Accordingly, SVM
forecasts the functions so that the desired
functions are developed on the subset of
support vectors [12, 13, 14, 15 and 16]. A
version of SVM for regression is called
support vector regression (SVR).

 The purpose of SVR is to find a function
f(x) that has at most ϵ deviation from the
actually obtained targets y(i) for all the
training data, and is as flat as possible
simultaneously. In the case where f(x) is a
linear function of the form f(x) = ωTx + b,
the resulting primal optimization problem is
shown in the following form [17]:

Minimize 12 ωTω + C ∑ (εi + εi
∗)m

i=1

Subject to

 {
y(i) − ωTx(i) − b ≤ ϵ + εi
ωTx(i) − y(i) + b ≤ ϵ + εi

∗

ϵ, εi, εi
∗ ≥ 0

 (1)

 ωTω controls the trade-off between the
complexity and the approximation
accuracy of the model

 εi , εi
∗ are slack variables that measure

the error of the up and down sides,
respectively

 C controls the trade-off between the error
and margin

 This optimization problem can
transformed into the dual problem, which is
easier to solve, and its solution is given by

f(x) = ∑ (αi − αi
∗)k(xi, x)nSV

i=1 (2)

subject to 0 ≤ αi
∗, αi ≤ C

 Where αi
∗ and αi are called the lagrangian

multipliers are in Eq. (2), which satisfy the
equalities αi

∗αi=0, αi > 0 and αi
∗ ≥ 0 and

nSV is the number of Support Vectors (SVs)
and the kernel function

K(x, xi) = ∑ gi(x)gi(xi)m
j=1 (3)

 In order to reduce complexity and
increase computing speed, modified SVM as
LSSVM is offered [18]. LSSVM as a
approximation function is to estimate a
function y(x) from a given training set of N
samples {xi, yi}i=1

N in which xi ∈ RN (N
dimensional vector space) as input data and
yi ∈ r (one dimensional vector space) as
corresponding output data [19]. LSSVM
suggests the following equation to
estimatey (x):

y(x) = wTφ(x) + b (4)

 Where the nonlinear function φ(x) takes
the input data into a high dimensional
feature space to reduce the complexity and
increase the speed of problem solving; b is
the bias value and w is a weight vector
having the similar dimension with the
defined space dimension. To approximate
LSSVM, y(x) should optimize the following
problem [19]:

 12 wTw + γ ∗ 1
2 ∑ ei

2N
i=1

 Where γ ∗ = regularization parameter and
ei = error variable. After minimization the

Must be minimized

 In this paper, use of Least Square Support
Vector Machine (LSSVM) as a nonlinear
proxy model is proposed and a history match
workflow with strong and nonlinear LSSVM
proxy model to improve the history
matching process is presented. One of the
Iranian fractured reservoir simulation model
and its history data is used as the case study.

2. LSSVM for Function
Approximation
 Considering the high performance of the
support vector machine (SVM) in function
approximation, the application of this
algorithm has caused a significant growth in
the field of oil reservoir modeling. SVM as a
learning organization takes the nonlinear
problems into high dimensional feature
space and solves the problem through the
kernel functions. Accordingly, SVM
forecasts the functions so that the desired
functions are developed on the subset of
support vectors [12, 13, 14, 15 and 16]. A
version of SVM for regression is called
support vector regression (SVR).

 The purpose of SVR is to find a function
f(x) that has at most ϵ deviation from the
actually obtained targets y(i) for all the
training data, and is as flat as possible
simultaneously. In the case where f(x) is a
linear function of the form f(x) = ωTx + b,
the resulting primal optimization problem is
shown in the following form [17]:

Minimize 12 ωTω + C ∑ (εi + εi
∗)m

i=1

Subject to

 {
y(i) − ωTx(i) − b ≤ ϵ + εi
ωTx(i) − y(i) + b ≤ ϵ + εi

∗

ϵ, εi, εi
∗ ≥ 0

 (1)

 ωTω controls the trade-off between the
complexity and the approximation
accuracy of the model

 εi , εi
∗ are slack variables that measure

the error of the up and down sides,
respectively

 C controls the trade-off between the error
and margin

 This optimization problem can
transformed into the dual problem, which is
easier to solve, and its solution is given by

f(x) = ∑ (αi − αi
∗)k(xi, x)nSV

i=1 (2)

subject to 0 ≤ αi
∗, αi ≤ C

 Where αi
∗ and αi are called the lagrangian

multipliers are in Eq. (2), which satisfy the
equalities αi

∗αi=0, αi > 0 and αi
∗ ≥ 0 and

nSV is the number of Support Vectors (SVs)
and the kernel function

K(x, xi) = ∑ gi(x)gi(xi)m
j=1 (3)

 In order to reduce complexity and
increase computing speed, modified SVM as
LSSVM is offered [18]. LSSVM as a
approximation function is to estimate a
function y(x) from a given training set of N
samples {xi, yi}i=1

N in which xi ∈ RN (N
dimensional vector space) as input data and
yi ∈ r (one dimensional vector space) as
corresponding output data [19]. LSSVM
suggests the following equation to
estimatey (x):

y(x) = wTφ(x) + b (4)

 Where the nonlinear function φ(x) takes
the input data into a high dimensional
feature space to reduce the complexity and
increase the speed of problem solving; b is
the bias value and w is a weight vector
having the similar dimension with the
defined space dimension. To approximate
LSSVM, y(x) should optimize the following
problem [19]:

 12 wTw + γ ∗ 1
2 ∑ ei

2N
i=1

 Where γ ∗ = regularization parameter and
ei = error variable. After minimization the

Must be minimized

 In this paper, use of Least Square Support
Vector Machine (LSSVM) as a nonlinear
proxy model is proposed and a history match
workflow with strong and nonlinear LSSVM
proxy model to improve the history
matching process is presented. One of the
Iranian fractured reservoir simulation model
and its history data is used as the case study.

2. LSSVM for Function
Approximation
 Considering the high performance of the
support vector machine (SVM) in function
approximation, the application of this
algorithm has caused a significant growth in
the field of oil reservoir modeling. SVM as a
learning organization takes the nonlinear
problems into high dimensional feature
space and solves the problem through the
kernel functions. Accordingly, SVM
forecasts the functions so that the desired
functions are developed on the subset of
support vectors [12, 13, 14, 15 and 16]. A
version of SVM for regression is called
support vector regression (SVR).

 The purpose of SVR is to find a function
f(x) that has at most ϵ deviation from the
actually obtained targets y(i) for all the
training data, and is as flat as possible
simultaneously. In the case where f(x) is a
linear function of the form f(x) = ωTx + b,
the resulting primal optimization problem is
shown in the following form [17]:

Minimize 12 ωTω + C ∑ (εi + εi
∗)m

i=1

Subject to

 {
y(i) − ωTx(i) − b ≤ ϵ + εi
ωTx(i) − y(i) + b ≤ ϵ + εi

∗

ϵ, εi, εi
∗ ≥ 0

 (1)

 ωTω controls the trade-off between the
complexity and the approximation
accuracy of the model

 εi , εi
∗ are slack variables that measure

the error of the up and down sides,
respectively

 C controls the trade-off between the error
and margin

 This optimization problem can
transformed into the dual problem, which is
easier to solve, and its solution is given by

f(x) = ∑ (αi − αi
∗)k(xi, x)nSV

i=1 (2)

subject to 0 ≤ αi
∗, αi ≤ C

 Where αi
∗ and αi are called the lagrangian

multipliers are in Eq. (2), which satisfy the
equalities αi

∗αi=0, αi > 0 and αi
∗ ≥ 0 and

nSV is the number of Support Vectors (SVs)
and the kernel function

K(x, xi) = ∑ gi(x)gi(xi)m
j=1 (3)

 In order to reduce complexity and
increase computing speed, modified SVM as
LSSVM is offered [18]. LSSVM as a
approximation function is to estimate a
function y(x) from a given training set of N
samples {xi, yi}i=1

N in which xi ∈ RN (N
dimensional vector space) as input data and
yi ∈ r (one dimensional vector space) as
corresponding output data [19]. LSSVM
suggests the following equation to
estimatey (x):

y(x) = wTφ(x) + b (4)

 Where the nonlinear function φ(x) takes
the input data into a high dimensional
feature space to reduce the complexity and
increase the speed of problem solving; b is
the bias value and w is a weight vector
having the similar dimension with the
defined space dimension. To approximate
LSSVM, y(x) should optimize the following
problem [19]:

 12 wTw + γ ∗ 1
2 ∑ ei

2N
i=1

 Where γ ∗ = regularization parameter and
ei = error variable. After minimization the

above problem, y(x) can be obtained as
follows [7]:

y(x) = ∑ αiK(x, xi)N
i=1 + b (5)

 Where k(x, xi) is the kernel function
and αi is Lagrange multiplier called the
“support value” which αi and b are obtained
from optimization problem described above.
There are different forms of kernel functions
such as linear, polynomial and radial basis
function (RBF) [20]. Table 1 shows common
kernel function and corresponding
mathematical expression.

Table 1: Common kernel function and
corresponding mathematical expression.

Among the forms available for the
construction of kernel function, RBF has the
maximum efficiency and can improve the
performance of the LSSVM [21]. Table 2
shows the performance of LSSVM with
different kernels.

Table 2: The performance of LSSVM with
different kernels

The RBF is defined as follows [7]:

K(x1, x2) = exp(−‖x1 − x2‖2 2σ2⁄) (6)

 Where σ 2 is the width of RBF. The values
of γ ∗ and σ2 are gained during the training
of LSSVM [19].

3. Particle Swarm Optimization
(PSO)
 The Particle Swarm Optimization (PSO),
which was first presented by Kennedy and

Eberhart [22], could be a strong competitor
to other evolutionary algorithms that solve
global optimization problems [23]. PSO as a
stochastic optimization technique is the
model of the motion of a group of birds and
fishes [23]. Works done by other authors
showed that PSO acts quickly and more
efficiently compared to other optimization
techniques like Genetic Algorithms (GA)
and DE [24]. PSO has the same
effectiveness (finding the true global optimal
solution) as the GA but with significantly
better computational efficiency (less
function evaluations) by executing statistical
analysis and formal hypothesis testing [25].
Another reason that PSO is interesting is that
it has a small number of parameters to tune,
its formula is simple and easy to implement
in computer [26].

 In PSO, a set of randomly generated
solutions, called particles, fly through the
problem hyperspace. According to the
following equations, the position of each
particle is changed according to its own
experience (pbest) and that of its neighbors
(gbest) [22]:

vi+1 = w vi + c1r1(pbesti − xi) +
c2r2(gbesti − xi) (7)

xi+1 = xi + ∆t vi+1 (8)
 v is the particles speed
 r1 , r2 are two random numbers

generated in the interval [0, 1]
 c1 (Self Confidence), c2 (Swarm

Confidence) are intensities of attraction
towards pbest and gbest respectively

 ∆t is a time parameter which represents
the advance step of the particles

 w is a factor of inertia which controls
the velocity effect. In this work, the value
of 1 was used for w

 At iteration i+1, the velocity of a particle
is updated and two forces that attract the
particle to pbset and gbest. The position of

Kernel function Mathematical expression
Linear function K(xi, x)= < xi, x >
Radial basis function K(xi, x)= exp(−‖xi − x‖2 2σ2⁄)
Polynomial function K(xi, x)= (xi

Tx + 1)d, d= 1,2,3, …

Model RMSE ARE 𝐑𝐑𝟐𝟐
LSSVM
(linear) 48.274 0.9821 0.7856

LSSVM
(radial) 25.639 0.7302 0.9491

LSSVM
(polynomial) 37.821 0.8329 0.8635

Table 1. Common kernel function and corresponding math-
ematical expression.

Kernel function Mathematical expression

Linear function K(xi, x)= <xi,x>

Radial basis function K(xi, x)=exp(-‖xi-x‖2⁄2σ2)

Polynomial function K(xi, x)= (xT
ix+1)d, d= 1,2,3, …

Among the forms available for the construction
of kernel function, RBF has the maximum efficien-
cy and can improve the performance of the LSSVM
[21]. Table 2 shows the performance of LSSVM
with different kernels.

Table 2. The performance of LSSVM with different kernels.

Model RMSE ARE R2

LSSVM (linear) 48.274 0.9821 0.7856

LSSVM (radial) 25.639 0.7302 0.9491

LSSVM (polynomial) 37.821 0.8329 0.8635

The RBF is defined as follows [7]:
K(x1, x2) = exp(-‖x1-x2‖2⁄2σ2) (6)

Where σ2 is the width of RBF. The values of γ*
and σ2 are gained during the training of LSSVM
[19].

52 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

Figure 1. Concept of modification of a searching point by
PSO [27].

3. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO), which
was first presented by Kennedy and Eberhart
[22], could be a strong competitor to other evolu-
tionary algorithms that solve global optimization
problems [23]. PSO as a stochastic optimization
technique is the model of the motion of a group of
birds and fishes [23]. Works done by other authors
showed that PSO acts quickly and more efficiently
compared to other optimization techniques like
Genetic Algorithms (GA) and DE [24]. PSO has the
same effectiveness (finding the true global optimal
solution) as the GA but with significantly better
computational efficiency (less function evalua-
tions) by executing statistical analysis and formal
hypothesis testing [25]. Another reason that PSO
is interesting is that it has a small number of pa-
rameters to tune, its formula is simple and easy to
implement in computer [26].

In PSO, a set of randomly generated solutions,
called particles, fly through the problem hyper-
space. According to the following equations, the
position of each particle is changed according to
its own experience (pbest) and that of its neigh-
bors (gbest) [22]:

vi+1 = w vi+c1r1 (pbesti-xi)+c2r2 (gbesti-xi) (7)

xi+1 = xi+∆t vi+1 (8)

•	 v is the particles speed
•	 r1, r2 are two random numbers generated in the

interval [0, 1]
•	 c1 (Self Confidence), c2 (Swarm Confidence)

are intensities of attraction towards pbest and
gbest respectively

•	 ∆t is a time parameter which represents the ad-
vance step of the particles

•	 w is a factor of inertia which controls the veloc-
ity effect. In this work, the value of 1 was used
for w

At iteration i+1, the velocity of a particle is up-
dated and two forces that attract the particle to
pbset and gbest. The position of each particle is
updated using its velocity vector in the end of the
iteration.

PSO is expressed in the following simple com-
mands [27]:
1.	 Initialize the swarm particles with random

placement of particles in parameter space such
that each particle has an acceptable random ve-
locity;

2.	 Calculate and evaluate the cost function for
each particle;

3.	 Compare the value of each particle with its per-
sonal best position (pbest). If the current value
of the desired particle is better than the pbest
value, the position of the particle and pbest are
replaced with each other;

4.	 Update the position and the cost function of
global best (gbest);

5.	 Update the position and velocity of every par-
ticle after steps 1 to 4;

6.	 Continue steps 1 to 5 until stopping conditions
are reached such as the maximum number of it-
erations and/or the appropriate cost function.

Fig. 1 shows how to update the position of the
particle by PSO.

each particle is updated using its velocity
vector in the end of the iteration.

 PSO is expressed in the following simple
commands [27]:

1. Initialize the swarm particles with
random placement of particles in
parameter space such that each particle
has an acceptable random velocity;

2. Calculate and evaluate the cost function
for each particle;

3. Compare the value of each particle with
its personal best position (pbest). If the
current value of the desired particle is
better than the pbest value, the position of
the particle and pbest are replaced with
each other;

4. Update the position and the cost function
of global best (gbest);

5. Update the position and velocity of every
particle after steps 1 to 4;

6. Continue steps 1 to 5 until stopping
conditions are reached such as the
maximum number of iterations and/or the
appropriate cost function.

 Fig. 1 shows how to update the position of
the particle by PSO.

Figure 1: Concept of modification of a searching

point by PSO [27].

4. Imperialist Competitive
Algorithm (ICA)
 Imperialism is a policy that an imperialist
applies it in order to extend its power
beyond its boundaries. Countries colonized

by the colonizer are controlled directly or
indirectly such as controlled goods or raw
materials [28]. An algorithm based on this
policy named: Imperialist Competitive
Algorithm (ICA) was presented by
Atashpaz-Gargari and Lucas [29]. ICA as a
sociopolitical global search technique was
presented for different optimization
problems recently.

 There are many studies about the
application of the optimization techniques
such as PSO, GA and DE in history
matching while ICA is rarely used. ICA is a
new optimization technique. The aim of this
work is to evaluate the performance of ICA
in history matching. Also, the works done in
other fields showed that ICA has exhibited
excellent abilities such as accuracy, faster
convergence and better global optimum
attainment compared to traditional GA [30].

 Like PSO, ICA starts with an initial
random population. Each individual of the
population called countries are divided into
two types: colonies and imperialists that all
together create some empires. Imperialistic
competition among these empires is the core
of ICA. In this step, based on the cost of the
imperialists, each country is allocated to an
empire. Firstly, the total cost of every empire
is calculated and normalized according to
following equations [29]:

T. C.n = Cost(imperialistn) +
 ξ . mean {Cost(colonies of empiren)} (9)

N. T. C.n = T. C.n− max {T. C.i } (10)

Where

 T. C.n is the total cost
 N. T. C.n is the normalized total cost of

the nth empire
 ξ is a little positive number which is

considered to be less than 1. This
value determines the role of the colonies
in determining the total power of an
empire.

4. Imperialist Competitive Algorithm
(ICA)

Imperialism is a policy that an imperialist applies
it in order to extend its power beyond its bound-
aries. Countries colonized by the colonizer are
controlled directly or indirectly such as controlled
goods or raw materials [28]. An algorithm based
on this policy named: Imperialist Competitive Al-
gorithm (ICA) was presented by Atashpaz-Gar-
gari and Lucas [29]. ICA as a sociopolitical global
search technique was presented for different opti-
mization problems recently.

There are many studies about the application
of the optimization techniques such as PSO, GA
and DE in history matching while ICA is rarely
used. ICA is a new optimization technique. The
aim of this work is to evaluate the performance of
ICA in history matching. Also, the works done in
other fields showed that ICA has exhibited excel-
lent abilities such as accuracy, faster convergence

53S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

and better global optimum attainment compared
to traditional GA [30].

Like PSO, ICA starts with an initial random pop-
ulation. Each individual of the population called
countries are divided into two types: colonies and
imperialists that all together create some empires.
Imperialistic competition among these empires is
the core of ICA. In this step, based on the cost of
the imperialists, each country is allocated to an
empire. Firstly, the total cost of every empire is
calculated and normalized according to following
equations [29]:

T.C.n = Cost (imperialistn)+ ξ .mean {Cost (colo-
nies of empiren} (9)

N.T.C.n = T.C.n-max {T.C.i} (10)

Where

•	 T.C.n is the total cost
•	 N.T.C.n is the normalized total cost of the nth

empire
•	 ξ is a little positive number which is consid-

ered to be less than 1. This value determines
the role of the colonies in determining the total
power of an empire.

After creating initial empires, the colony moves
toward the imperialist by x units, and the moving
model is shown in Fig. 2 [29].

selected. This colony is colonized by other empires
through competition. The possession probability
of each empire is given by the equation (12) and
form the vector P as the equation (13) [29]:

 (12)

 (13)

A vector R with the same size as P whose ele-
ments are uniformly distributed random numbers
is produced as the equation (14):

where

 (14)

Then vector D is created by simply subtracting

R from P, as the equation (15):

 (15)

Finally, the empire whose related index in D is
maximized will obtain the mentioned colony. The
competition continues until the stop condition is
met. The stop condition can be one of the follow-
ing:

•	 A preset maximum number of iterations is
reached

•	 All the colonies is under the control of unique
empire

 The weak empires gradually lose their colo-
nies and ultimately they will collapse. The impe-
rialistic competition and the collapse mechanism
will cause all the colonies to converge to a state in
which there exists just one empire.This remaining
empire stands for the solution.

 The following workflow is offered to apply the
ICA at the computer system [23]:
1.	 Initialize to generate the initial empires and

colonies;
2.	 Move the colonized countries towards self-em-

pire (assimilation);
3.	 Change the position of some countries under

colonial randomly (revolution);

 After creating initial empires, the colony
moves toward the imperialist by x units, and
the moving model is shown in Fig. 2 [29].

Figure 2: Movement of colonies toward their
relevant imperialist in a randomly deviated

direction.
In this movement, θ and x are random
numbers with uniform distribution as
demonstrated in equation (11) and d is the
distance between the colony and the
imperialist.

x~U(0,β × d),θ~U(-γ, γ) (11)

 Where β and γ are arbitrary numbers that
modify the random searching domain of
colonies around the imperialist.

 The weakest colony of the weakest empire
is selected. This colony is colonized by other
empires through competition. The
possession probability of each empire is
given by the equation (12) and form the
vector P as the equation (13) [29]:

pn = | N.T.C.n
∑ N.T.C.i

Nimp
i=1

| (12)

P = [pp1, pp2, pp3, … , ppNimp
] (13)

 A vector R with the same size as P whose
elements are uniformly distributed random
numbers is produced as the equation (14):

R = [r1, r2, r3, … , rNimp]

r1, r2, r3, … , rNimp~ U(0,1) (14)

 Then vector D is created by simply
subtracting R from P, as the equation (15):

D = P − R = [D1, D2, D3, … , DNimp] =
[pp1 − r1, pp2 − r2, pp3 − r3, … , ppNimp

−
rNimp] (15)

 Finally, the empire whose related index in
D is maximized will obtain the mentioned
colony. The competition continues until the
stop condition is met. The stop condition can
be one of the following:

 A preset maximum number of iterations
is reached

 All the colonies is under the control of
unique empire

 The weak empires gradually lose their
colonies and ultimately they will collapse.
The imperialistic competition and the
collapse mechanism will cause all the
colonies to converge to a state in which there
exists just one empire.This remaining empire
stands for the solution.

 The following workflow is offered to
apply the ICA at the computer system [23]:

1. Initialize to generate the initial empires
and colonies;

2. Move the colonized countries towards
self-empire (assimilation);

3. Change the position of some countries
under colonial randomly (revolution);

4. Replace the position of a country with its
empire if the cost function of the country
in a colonial is greater than its empire;

5. Calculate and compare the total cost of all
empires with each other. (total cost for
an empire depends on the strength of the
emperor and its controlled countries);

6. Transfer the colonies of the weakened
empire to the empire with greater power
(imperialistic competition);

7. Remove the weakest empire;
8. Continue steps 2 to 7 so that it reaches the

stop condition.

where

Figure 2. Movement of colonies toward their relevant im-
perialist in a randomly deviated direction.

In this movement, θ and x are random num-
bers with uniform distribution as demonstrated in
equation (11) and d is the distance between the
colony and the imperialist.

x~U (0, β×d), θ~U (-γ, γ) (11)

Where β and γ are arbitrary numbers that
modify the random searching domain of colonies
around the imperialist.

The weakest colony of the weakest empire is

 After creating initial empires, the colony
moves toward the imperialist by x units, and
the moving model is shown in Fig. 2 [29].

Figure 2: Movement of colonies toward their
relevant imperialist in a randomly deviated

direction.
In this movement, θ and x are random
numbers with uniform distribution as
demonstrated in equation (11) and d is the
distance between the colony and the
imperialist.

x~U(0,β × d),θ~U(-γ, γ) (11)

 Where β and γ are arbitrary numbers that
modify the random searching domain of
colonies around the imperialist.

 The weakest colony of the weakest empire
is selected. This colony is colonized by other
empires through competition. The
possession probability of each empire is
given by the equation (12) and form the
vector P as the equation (13) [29]:

pn = | N.T.C.n
∑ N.T.C.i

Nimp
i=1

| (12)

P = [pp1, pp2, pp3, … , ppNimp
] (13)

 A vector R with the same size as P whose
elements are uniformly distributed random
numbers is produced as the equation (14):

R = [r1, r2, r3, … , rNimp]

r1, r2, r3, … , rNimp~ U(0,1) (14)

 Then vector D is created by simply
subtracting R from P, as the equation (15):

D = P − R = [D1, D2, D3, … , DNimp] =
[pp1 − r1, pp2 − r2, pp3 − r3, … , ppNimp

−
rNimp] (15)

 Finally, the empire whose related index in
D is maximized will obtain the mentioned
colony. The competition continues until the
stop condition is met. The stop condition can
be one of the following:

 A preset maximum number of iterations
is reached

 All the colonies is under the control of
unique empire

 The weak empires gradually lose their
colonies and ultimately they will collapse.
The imperialistic competition and the
collapse mechanism will cause all the
colonies to converge to a state in which there
exists just one empire.This remaining empire
stands for the solution.

 The following workflow is offered to
apply the ICA at the computer system [23]:

1. Initialize to generate the initial empires
and colonies;

2. Move the colonized countries towards
self-empire (assimilation);

3. Change the position of some countries
under colonial randomly (revolution);

4. Replace the position of a country with its
empire if the cost function of the country
in a colonial is greater than its empire;

5. Calculate and compare the total cost of all
empires with each other. (total cost for
an empire depends on the strength of the
emperor and its controlled countries);

6. Transfer the colonies of the weakened
empire to the empire with greater power
(imperialistic competition);

7. Remove the weakest empire;
8. Continue steps 2 to 7 so that it reaches the

stop condition.

where

 After creating initial empires, the colony
moves toward the imperialist by x units, and
the moving model is shown in Fig. 2 [29].

Figure 2: Movement of colonies toward their
relevant imperialist in a randomly deviated

direction.
In this movement, θ and x are random
numbers with uniform distribution as
demonstrated in equation (11) and d is the
distance between the colony and the
imperialist.

x~U(0,β × d),θ~U(-γ, γ) (11)

 Where β and γ are arbitrary numbers that
modify the random searching domain of
colonies around the imperialist.

 The weakest colony of the weakest empire
is selected. This colony is colonized by other
empires through competition. The
possession probability of each empire is
given by the equation (12) and form the
vector P as the equation (13) [29]:

pn = | N.T.C.n
∑ N.T.C.i

Nimp
i=1

| (12)

P = [pp1, pp2, pp3, … , ppNimp
] (13)

 A vector R with the same size as P whose
elements are uniformly distributed random
numbers is produced as the equation (14):

R = [r1, r2, r3, … , rNimp]

r1, r2, r3, … , rNimp~ U(0,1) (14)

 Then vector D is created by simply
subtracting R from P, as the equation (15):

D = P − R = [D1, D2, D3, … , DNimp] =
[pp1 − r1, pp2 − r2, pp3 − r3, … , ppNimp

−
rNimp] (15)

 Finally, the empire whose related index in
D is maximized will obtain the mentioned
colony. The competition continues until the
stop condition is met. The stop condition can
be one of the following:

 A preset maximum number of iterations
is reached

 All the colonies is under the control of
unique empire

 The weak empires gradually lose their
colonies and ultimately they will collapse.
The imperialistic competition and the
collapse mechanism will cause all the
colonies to converge to a state in which there
exists just one empire.This remaining empire
stands for the solution.

 The following workflow is offered to
apply the ICA at the computer system [23]:

1. Initialize to generate the initial empires
and colonies;

2. Move the colonized countries towards
self-empire (assimilation);

3. Change the position of some countries
under colonial randomly (revolution);

4. Replace the position of a country with its
empire if the cost function of the country
in a colonial is greater than its empire;

5. Calculate and compare the total cost of all
empires with each other. (total cost for
an empire depends on the strength of the
emperor and its controlled countries);

6. Transfer the colonies of the weakened
empire to the empire with greater power
(imperialistic competition);

7. Remove the weakest empire;
8. Continue steps 2 to 7 so that it reaches the

stop condition.

where

 After creating initial empires, the colony
moves toward the imperialist by x units, and
the moving model is shown in Fig. 2 [29].

Figure 2: Movement of colonies toward their
relevant imperialist in a randomly deviated

direction.
In this movement, θ and x are random
numbers with uniform distribution as
demonstrated in equation (11) and d is the
distance between the colony and the
imperialist.

x~U(0,β × d),θ~U(-γ, γ) (11)

 Where β and γ are arbitrary numbers that
modify the random searching domain of
colonies around the imperialist.

 The weakest colony of the weakest empire
is selected. This colony is colonized by other
empires through competition. The
possession probability of each empire is
given by the equation (12) and form the
vector P as the equation (13) [29]:

pn = | N.T.C.n
∑ N.T.C.i

Nimp
i=1

| (12)

P = [pp1, pp2, pp3, … , ppNimp
] (13)

 A vector R with the same size as P whose
elements are uniformly distributed random
numbers is produced as the equation (14):

R = [r1, r2, r3, … , rNimp]

r1, r2, r3, … , rNimp~ U(0,1) (14)

 Then vector D is created by simply
subtracting R from P, as the equation (15):

D = P − R = [D1, D2, D3, … , DNimp] =
[pp1 − r1, pp2 − r2, pp3 − r3, … , ppNimp

−
rNimp] (15)

 Finally, the empire whose related index in
D is maximized will obtain the mentioned
colony. The competition continues until the
stop condition is met. The stop condition can
be one of the following:

 A preset maximum number of iterations
is reached

 All the colonies is under the control of
unique empire

 The weak empires gradually lose their
colonies and ultimately they will collapse.
The imperialistic competition and the
collapse mechanism will cause all the
colonies to converge to a state in which there
exists just one empire.This remaining empire
stands for the solution.

 The following workflow is offered to
apply the ICA at the computer system [23]:

1. Initialize to generate the initial empires
and colonies;

2. Move the colonized countries towards
self-empire (assimilation);

3. Change the position of some countries
under colonial randomly (revolution);

4. Replace the position of a country with its
empire if the cost function of the country
in a colonial is greater than its empire;

5. Calculate and compare the total cost of all
empires with each other. (total cost for
an empire depends on the strength of the
emperor and its controlled countries);

6. Transfer the colonies of the weakened
empire to the empire with greater power
(imperialistic competition);

7. Remove the weakest empire;
8. Continue steps 2 to 7 so that it reaches the

stop condition.

where

 After creating initial empires, the colony
moves toward the imperialist by x units, and
the moving model is shown in Fig. 2 [29].

Figure 2: Movement of colonies toward their
relevant imperialist in a randomly deviated

direction.
In this movement, θ and x are random
numbers with uniform distribution as
demonstrated in equation (11) and d is the
distance between the colony and the
imperialist.

x~U(0,β × d),θ~U(-γ, γ) (11)

 Where β and γ are arbitrary numbers that
modify the random searching domain of
colonies around the imperialist.

 The weakest colony of the weakest empire
is selected. This colony is colonized by other
empires through competition. The
possession probability of each empire is
given by the equation (12) and form the
vector P as the equation (13) [29]:

pn = | N.T.C.n
∑ N.T.C.i

Nimp
i=1

| (12)

P = [pp1, pp2, pp3, … , ppNimp
] (13)

 A vector R with the same size as P whose
elements are uniformly distributed random
numbers is produced as the equation (14):

R = [r1, r2, r3, … , rNimp]

r1, r2, r3, … , rNimp~ U(0,1) (14)

 Then vector D is created by simply
subtracting R from P, as the equation (15):

D = P − R = [D1, D2, D3, … , DNimp] =
[pp1 − r1, pp2 − r2, pp3 − r3, … , ppNimp

−
rNimp] (15)

 Finally, the empire whose related index in
D is maximized will obtain the mentioned
colony. The competition continues until the
stop condition is met. The stop condition can
be one of the following:

 A preset maximum number of iterations
is reached

 All the colonies is under the control of
unique empire

 The weak empires gradually lose their
colonies and ultimately they will collapse.
The imperialistic competition and the
collapse mechanism will cause all the
colonies to converge to a state in which there
exists just one empire.This remaining empire
stands for the solution.

 The following workflow is offered to
apply the ICA at the computer system [23]:

1. Initialize to generate the initial empires
and colonies;

2. Move the colonized countries towards
self-empire (assimilation);

3. Change the position of some countries
under colonial randomly (revolution);

4. Replace the position of a country with its
empire if the cost function of the country
in a colonial is greater than its empire;

5. Calculate and compare the total cost of all
empires with each other. (total cost for
an empire depends on the strength of the
emperor and its controlled countries);

6. Transfer the colonies of the weakened
empire to the empire with greater power
(imperialistic competition);

7. Remove the weakest empire;
8. Continue steps 2 to 7 so that it reaches the

stop condition.

where

 After creating initial empires, the colony
moves toward the imperialist by x units, and
the moving model is shown in Fig. 2 [29].

Figure 2: Movement of colonies toward their
relevant imperialist in a randomly deviated

direction.
In this movement, θ and x are random
numbers with uniform distribution as
demonstrated in equation (11) and d is the
distance between the colony and the
imperialist.

x~U(0,β × d),θ~U(-γ, γ) (11)

 Where β and γ are arbitrary numbers that
modify the random searching domain of
colonies around the imperialist.

 The weakest colony of the weakest empire
is selected. This colony is colonized by other
empires through competition. The
possession probability of each empire is
given by the equation (12) and form the
vector P as the equation (13) [29]:

pn = | N.T.C.n
∑ N.T.C.i

Nimp
i=1

| (12)

P = [pp1, pp2, pp3, … , ppNimp
] (13)

 A vector R with the same size as P whose
elements are uniformly distributed random
numbers is produced as the equation (14):

R = [r1, r2, r3, … , rNimp]

r1, r2, r3, … , rNimp~ U(0,1) (14)

 Then vector D is created by simply
subtracting R from P, as the equation (15):

D = P − R = [D1, D2, D3, … , DNimp] =
[pp1 − r1, pp2 − r2, pp3 − r3, … , ppNimp

−
rNimp] (15)

 Finally, the empire whose related index in
D is maximized will obtain the mentioned
colony. The competition continues until the
stop condition is met. The stop condition can
be one of the following:

 A preset maximum number of iterations
is reached

 All the colonies is under the control of
unique empire

 The weak empires gradually lose their
colonies and ultimately they will collapse.
The imperialistic competition and the
collapse mechanism will cause all the
colonies to converge to a state in which there
exists just one empire.This remaining empire
stands for the solution.

 The following workflow is offered to
apply the ICA at the computer system [23]:

1. Initialize to generate the initial empires
and colonies;

2. Move the colonized countries towards
self-empire (assimilation);

3. Change the position of some countries
under colonial randomly (revolution);

4. Replace the position of a country with its
empire if the cost function of the country
in a colonial is greater than its empire;

5. Calculate and compare the total cost of all
empires with each other. (total cost for
an empire depends on the strength of the
emperor and its controlled countries);

6. Transfer the colonies of the weakened
empire to the empire with greater power
(imperialistic competition);

7. Remove the weakest empire;
8. Continue steps 2 to 7 so that it reaches the

stop condition.

where

54 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

4.	 Replace the position of a country with its em-
pire if the cost function of the country in a colo-
nial is greater than its empire;

5.	 Calculate and compare the total cost of all em-
pires with each other. (total cost for an empire
depends on the strength of the emperor and its
controlled countries);

6.	 Transfer the colonies of the weakened empire
to the empire with greater power (imperialistic
competition);

7.	 Remove the weakest empire;
8.	 Continue steps 2 to 7 so that it reaches the stop

condition.

5. A Case Study

A sector of one of the Iranian fractured reservoir
in the Ahwaz oilfield has been used for this study.
This reservoir is part of the Asmari reservoir and is
mainly composed of carbonate entities (limestone
and dolomite). Oil, water and gas exist as three
phase in this reservoir. The schematic diagram of
the reservoir is shown in Fig. 3. Other properties of
the reservoir are summarized in Table 3. The res-
ervoir is double porosity.

This case study is a highly fractured reservoir
such that pressure of all wells is equal in the whole
reservoir. Also, the performances of the wells such
as well productivity index are very similar. There-

fore, the fractures properties can be assumed ho-
mogeneous with good approximation.

In fact, the problem of this type of fractured
reservoirs is dependence of the model output such
as water and gas production rate and coning phe-
nomenon upon the fractures properties (fracture
porosity, shape factor and etc). Due to lack of frac-
ture data such as Formation Micro Scanner (FMS)
and Formation Micro Imaging (FMI), fracture mod-
eling has not been established.

Despite the homogeneity of the fracture sys-
tem, the matrix systems are quite heterogeneous.
To show this heterogeneity, matrix porosity dis-
tribution is shown in Fig. 4. Also, Fig. 5 shows the
histogram of matrix porosity distribution in cells.

There is little or no difference between this
fractured reservoir and conventional reservoir in
history matching process because this model is a
highly fractured reservoir and fracture properties
are largely homogeneous. But the main difference
between this dual porosity model and conven-
tional model is longer execution time in history
matching process. Therefore, the main objective of
this paper is to reduce the necessary runtime for
matching of history of the field. Another aim of
this work is to evaluate the LSSVM performance as
a proxy model in this type of fractured reservoirs.

Fig. 6 shows the location of the drilled wells. In
this reservoir, 18 wells have been drilled. All the
drilled wells have production except well #7. In or-

Property Value Property Value
X Dimension 53 Ave Matrix Perm (x & y) (md) 0.18589
Y Dimension 15 Ave Matrix Perm (z) (md) 0.34677
Z Dimension 146 Ave Matrix Porosity 0.05503

Ave Fracture Dx (ft) 1174 Ave Fracture Pressure (psi) 3223.6
Ave Fracture Dy (ft) 1543.6 Ave Matrix Pressure (psi) 3219.4
Ave Fracture Dz (ft) 22.169 Ave Fracture Oil Saturation 0.58231
Ave Matrix Dx (ft) 1207.9 Ave Fracture Water Saturation 0.33771
Ave Matrix Dy (ft) 1559.9 Ave Matrix Oil Saturation 0.36983
Ave Matrix Dz (ft) 22.246 Ave Matrix Water Saturation 0.61439

Active Phases Live Oil , Water and Gas Water Density (Ib ⁄ ft3) 62.428
Number of Active Cells (Fracture) 58035 Gas Density (Ib ⁄ ft3) 0.0608
Number of Active Cells (Matrix) 58035 Oil Density (Ib ⁄ ft3) 51.78
Ave Fracture Perm (x & y) (md) 707.09 OWC (ft) 6070

Ave Fracture Perm (z) (md) 445.41 GOC (ft) 2750
Ave Fracture Porosity 0.00786 IOIP (STB) 3553366676

Table 3. Reservoir properties in full simulation model.

55S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

der to maintain the reservoir pressure, well #7 has
been drilled for gas injection. All wells produce oil

5. A Case Study
 A sector of one of the Iranian fractured
reservoir in the Ahwaz oilfield has been used
for this study. This reservoir is part of the
Asmari reservoir and is mainly composed of
carbonate entities (limestone and dolomite).
Oil, water and gas exist as three phase in this
reservoir. The schematic diagram of the
reservoir is shown in Fig. 3. Other properties
of the reservoir are summarized in Table 3.
The reservoir is double porosity.

This case study is a highly fractured
reservoir such that pressure of all wells is
equal in the whole reservoir. Also, the
performances of the wells such as well
productivity index are very similar.
Therefore, the fractures properties can be
assumed homogeneous with good
approximation.

Property Value Property Value
X Dimension 53 Ave Matrix Perm (x & y) (md) 0.18589

Y Dimension 15 Ave Matrix Perm (z) (md) 0.34677

Z Dimension 146 Ave Matrix Porosity 0.05503

Ave Fracture Dx (ft) 1174 Ave Fracture Pressure (psi) 3223.6

Ave Fracture Dy (ft) 1543.6 Ave Matrix Pressure (psi) 3219.4

Ave Fracture Dz (ft) 22.169 Ave Fracture Oil Saturation 0.58231

Ave Matrix Dx (ft) 1207.9 Ave Fracture Water Saturation 0.33771

Ave Matrix Dy (ft) 1559.9 Ave Matrix Oil Saturation 0.36983

Ave Matrix Dz (ft) 22.246 Ave Matrix Water Saturation 0.61439

Active Phases Live Oil , Water and Gas Water Density (𝐈𝐈𝐈𝐈 𝐟𝐟𝐟𝐟𝟑𝟑⁄) 62.428

Number of Active Cells (Fracture) 58035 Gas Density (𝐈𝐈𝐈𝐈 𝐟𝐟𝐟𝐟𝟑𝟑⁄) 0.0608

Number of Active Cells (Matrix) 58035 Oil Density (𝐈𝐈𝐈𝐈 𝐟𝐟𝐟𝐟𝟑𝟑⁄) 51.78

Ave Fracture Perm (x & y) (md) 707.09 OWC (ft) 6070

Ave Fracture Perm (z) (md) 445.41 GOC (ft) 2750

Ave Fracture Porosity 0.00786 IOIP (STB) 3553366676

Figure 3: Three-dimensional reservoir model

 Table 3: Reservoir properties in full simulation

model.

Figure 3. Three-dimensional reservoir model.

Figure 4. Matrix porosity distribution.

Parameters

Data
No.

Base
Value

Min

Max

Mean

Standard
Deviation

Aquifer Porosity 480 0.1 0.03 0.2 0.054222972 0.009505285
Aquifer Permeability (md) 480 20 1 2000 1025.057408 575.5163989

Aquifer Raduis (ft) 480 5000 3000 25000 19041.81708 3214.940298
Aquifer Height (ft) 480 2000 700 3000 1858.985328 636.4149481

Aquifer Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 5.0 × 10−5 9.89× 10−5 2.96× 10−4 0.000199214 5.72527× 10−5
Matrix Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 3.55 × 10−6 2× 10−6 15× 10−6 8.71× 10−6 3.72571× 10−6

Fracture Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 160 × 10−6 150× 10−6 200× 10−6 0.000175379 1.41999× 10−5
Shape factor (ft-2) 480 0.002 0.0001 0.1 0.050673449 0.028564032

Matrix block height (ft) 480 20 10 100 56.34262044 26.09562503
Pore volume multiplier 480 0.5 0.2 1 0.634034597 0.213547505

Fracture Permeability (z) (md) 480 100 90 500 350.1113464 87.10665108
Fracture Permeability (x&y)(md) 480 1000 50 2000 1043.143136 556.5866535

Fracture Porosity 480 0.002 0.0001 0.01 0.005592596 0.002747863

Figure 4: Matrix porosity distribution

Figure 5: Histogram of matrix porosity
distribution in cells

Table 4: Input parameters features.

Figure 5. Histogram of matrix porosity distribution in cells.

Parameters

Data
No.

Base

Value

Min

Max

Mean

Standard
Deviation

Aquifer Porosity 480 0.1 0.03 0.2 0.054222972 0.009505285
Aquifer Permeability (md) 480 20 1 2000 1025.057408 575.5163989

Aquifer Raduis (ft) 480 5000 3000 25000 19041.81708 3214.940298
Aquifer Height (ft) 480 2000 700 3000 1858.985328 636.4149481

Aquifer Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 5.0 × 10−5 9.89× 10−5 2.96× 10−4 0.000199214 5.72527× 10−5
Matrix Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 3.55 × 10−6 2× 10−6 15× 10−6 8.71× 10−6 3.72571× 10−6

Fracture Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 160 × 10−6 150× 10−6 200× 10−6 0.000175379 1.41999× 10−5
Shape factor (ft-2) 480 0.002 0.0001 0.1 0.050673449 0.028564032

Matrix block height (ft) 480 20 10 100 56.34262044 26.09562503
Pore volume multiplier 480 0.5 0.2 1 0.634034597 0.213547505

Fracture Permeability (z) (md) 480 100 90 500 350.1113464 87.10665108
Fracture Permeability (x&y)(md) 480 1000 50 2000 1043.143136 556.5866535

Fracture Porosity 480 0.002 0.0001 0.01 0.005592596 0.002747863

Figure 4: Matrix porosity distribution

Figure 5: Histogram of matrix porosity
distribution in cells

Table 4: Input parameters features.

and gas. In addition to oil and gas production, well
#9 also produces water.

Matrix Porosity

N
um

be
r o

f C
el

ls

56 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

6. Methodology

6.1. Data Preparation
Due to high level of Iranian fractured reservoirs
heterogeneities, these reservoirs are described by
wide range of uncertainties. These uncertainties
mostly originate from unknown fracture network,
aquifer volume and etc.Uncertainties in Iranian
fractured reservoirs have many sources and may
be created anywhere within the reservoir model-
ing workflow [31]. All these uncertainties lead to a
complex reservoir model. Therefore evaluation of
this model produces unacceptable results.
In this work, parameters that have wide range of
uncertainty are selected as matching parameters
so that fractured reservoirs evaluation will be im-
proved by finding the appropriate value of these
parameters in history matching process. Table 4
shows the 13 parameters as input data to build a
proxy model for history matching. These param-
eters will have wide range of uncertainty and the
greatest impact on the behavior of fractured res-
ervoirs.

The most important step to build a high-per-
formance proxy model is sampling the input data
(design of experiments on data) [5]. Several meth-
ods for data sampling and design of experiments
are available like full factorial designs in two lev-
els, Plackett-Burman designs and Latin Hypercube
Sampling (LHS). Among sampling methods, LHS
has more computational efficiency. To design n
samples of data, LHS acquires cumulative-proba-

bility distribution for each input parameter. Then
LHS offers n uniform distributed points on cumu-
lative-probability distribution for each parameter.
Obtained values for the input parameters related
to these n points, are combined together to create
the sampling randomly. Using the LHS, 480 data
sets as input files to run in full simulation model
were generated from the 13 parameters. Table 4
shows a summary of the 480 data sets features.
The base value column in Table 4 shows the values
of these 13 parameters before history matching
process. These 480 data sets as input parameters
are used to build the proxy model. We are going to
match the oil, water and gas rates and well static
pressures for all wells in this paper. After running
the full simulation model, the oil, water and gas
rates and static pressures as the full simulation
model outputs are used to create the objective
function. The objective function (mismatch func-
tion) is defined by the following equation.

Objective Function = (16)

yi
calc(x) as the simulation value is achieved from

simulator model. yi
obs(x) as the observed value is

obtained from reservoir production history. σi rep-
resents the standard deviation of the observed val-
ues. In this work, the objective function is defined
for the oil, gas and water rates and static pressures
separately. The final objective function (final out-
put) is the weighted sum of the objective functions
that is defined for the oil, gas and water rates and

Parameters Data
No.

Base
Value Min Max Mean Standard

Deviation
Aquifer Porosity 480 0.1 0.03 0.2 0.054222972 0.009505285

Aquifer Permeability (md) 480 20 1 2000 1025.057408 575.5163989
Aquifer Raduis (ft) 480 5000 3000 25000 19041.81708 3214.940298
Aquifer Height (ft) 480 2000 700 3000 1858.985328 636.4149481

Aquifer Compressibility (psi-1) 480 5.0×10-5 9.89×10-5 2.96×10-4 0.000199214 5.72527×10-5

Matrix Compressibility (psi-1) 480 3.55×10-6 2×10-6 15×10-6 8.71×10-6 3.72571×10-6

Fracture Compressibility (psi-1) 480 160×10-6 150×10-6 200×10-6 0.000175379 1.41999×10-5

Shape factor (ft2) 480 0.002 0.0001 0.1 0.050673449 0.028564032
Matrix block height (ft) 480 20 10 100 56.34262044 26.09562503
Pore volume multiplier 480 0.5 0.2 1 0.634034597 0.213547505

Fracture Permeability (z) (md) 480 100 90 500 350.1113464 87.10665108
Fracture Permeability (x&y)(md) 480 1000 50 2000 1043.143136 556.5866535

Fracture Porosity 480 0.002 0.0001 0.01 0.005592596 0.002747863

Table 4. Input parameters.

wells in this paper. After running the full
simulation model, the oil, water and gas
rates and static pressures as the full
simulation model outputs are used to create
the objective function. The objective
function (mismatch function) is defined by
the following equation.

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐅𝐅𝐮𝐮𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 = ∑ (𝐲𝐲𝐢𝐢
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜− 𝐲𝐲𝐢𝐢

𝐨𝐨𝐨𝐨𝐨𝐨)𝟐𝟐

𝛔𝛔𝐢𝐢
𝟐𝟐𝐢𝐢 (16)

 yi
calc(x) as the simulation value is

achieved from simulator model. yi
obs(x) as

the observed value is obtained from
reservoir production history. σi represents
the standard deviation of the observed
values. In this work, the objective function is
defined for the oil, gas and water rates and
static pressures separately. The final
objective function (final output) is the
weighted sum of the objective functions that
is defined for the oil, gas and water rates and
static pressures. Fig. 7 shows how to create
the final objective function needed to build
the proxy model.

Required weights of the weighted sum have
been used for assimilation the objective
functions impact on the final objective
function.The weights were adjusted based on
the magnitude of the oil, water and gas rates
and static pressure. Due to the higher
magnitude of the oil rate, the smallest weight
for the oil rate was selected. Table 5 shows
weights value used in construction of the
final objective function.
Table 5: Weights value used in construction of the

final objective function.

6.2. Proxy Construction using LSSVM
 The proxy model construction based on
LSSVM is summarized as following steps
[20]:

Weights Value
𝐰𝐰𝟏𝟏 𝐰𝐰𝟐𝟐 𝐰𝐰𝟑𝟑 𝐰𝐰𝟒𝟒
5 10 10 10

Figure 6: Location of the drilled wells

Figure 7: Final objective function
construction.

57S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

static pressures. Fig. 7 shows how to create the
final objective function needed to build the proxy
model.

Required weights of the weighted sum have
been used for assimilation the objective functions
impact on the final objective function.The weights
were adjusted based on the magnitude of the oil,
water and gas rates and static pressure. Due to
the higher magnitude of the oil rate, the smallest
weight for the oil rate was selected. Table 5 shows
weights value used in construction of the final ob-
jective function.

Figure 7. Final objective function construction.

Figure 6. Location of the drilled wells.

wells in this paper. After running the full
simulation model, the oil, water and gas
rates and static pressures as the full
simulation model outputs are used to create
the objective function. The objective
function (mismatch function) is defined by
the following equation.

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐅𝐅𝐮𝐮𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 = ∑ (𝐲𝐲𝐢𝐢
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜− 𝐲𝐲𝐢𝐢

𝐨𝐨𝐨𝐨𝐨𝐨)𝟐𝟐

𝛔𝛔𝐢𝐢
𝟐𝟐𝐢𝐢 (16)

 yi
calc(x) as the simulation value is

achieved from simulator model. yi
obs(x) as

the observed value is obtained from
reservoir production history. σi represents
the standard deviation of the observed
values. In this work, the objective function is
defined for the oil, gas and water rates and
static pressures separately. The final
objective function (final output) is the
weighted sum of the objective functions that
is defined for the oil, gas and water rates and
static pressures. Fig. 7 shows how to create
the final objective function needed to build
the proxy model.

Required weights of the weighted sum have
been used for assimilation the objective
functions impact on the final objective
function.The weights were adjusted based on
the magnitude of the oil, water and gas rates
and static pressure. Due to the higher
magnitude of the oil rate, the smallest weight
for the oil rate was selected. Table 5 shows
weights value used in construction of the
final objective function.
Table 5: Weights value used in construction of the

final objective function.

6.2. Proxy Construction using LSSVM
 The proxy model construction based on
LSSVM is summarized as following steps
[20]:

Weights Value
𝐰𝐰𝟏𝟏 𝐰𝐰𝟐𝟐 𝐰𝐰𝟑𝟑 𝐰𝐰𝟒𝟒
5 10 10 10

Figure 6: Location of the drilled wells

Figure 7: Final objective function
construction.

wells in this paper. After running the full
simulation model, the oil, water and gas
rates and static pressures as the full
simulation model outputs are used to create
the objective function. The objective
function (mismatch function) is defined by
the following equation.

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐅𝐅𝐮𝐮𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 = ∑ (𝐲𝐲𝐢𝐢
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜− 𝐲𝐲𝐢𝐢

𝐨𝐨𝐨𝐨𝐨𝐨)𝟐𝟐

𝛔𝛔𝐢𝐢
𝟐𝟐𝐢𝐢 (16)

 yi
calc(x) as the simulation value is

achieved from simulator model. yi
obs(x) as

the observed value is obtained from
reservoir production history. σi represents
the standard deviation of the observed
values. In this work, the objective function is
defined for the oil, gas and water rates and
static pressures separately. The final
objective function (final output) is the
weighted sum of the objective functions that
is defined for the oil, gas and water rates and
static pressures. Fig. 7 shows how to create
the final objective function needed to build
the proxy model.

Required weights of the weighted sum have
been used for assimilation the objective
functions impact on the final objective
function.The weights were adjusted based on
the magnitude of the oil, water and gas rates
and static pressure. Due to the higher
magnitude of the oil rate, the smallest weight
for the oil rate was selected. Table 5 shows
weights value used in construction of the
final objective function.
Table 5: Weights value used in construction of the

final objective function.

6.2. Proxy Construction using LSSVM
 The proxy model construction based on
LSSVM is summarized as following steps
[20]:

Weights Value
𝐰𝐰𝟏𝟏 𝐰𝐰𝟐𝟐 𝐰𝐰𝟑𝟑 𝐰𝐰𝟒𝟒
5 10 10 10

Figure 6: Location of the drilled wells

Figure 7: Final objective function
construction.

training, validation and testing. The training
and validation dataset are used to build the
LSSVM model and the tested data set are used
to verify and evaluate the performance and ef-
ficiency of this model.

2.	 Initialize the parameters σ2 and γ* using the
training dataset. (regularization parameter
(γ*) and kernel width parameter (σ2) play an
important role in the LSSVM performance. The
task of γ* is creating a suitable LSSVM struc-
ture based on the minimum training error and
is minimizing the model complexity. The input
data in original space is transferred into a high-
dimensional feature space by σ2. The small val-
ue of σ2 causes the over fitting. Also the large
value of σ2 reduces the LSSVM accuracy [32]).

3.	 Using the grid search technique with cross-
validation method, the optimal values of pa-
rameters σ2 and γ* were obtained. In this work,
ten-fold cross-validation is used. In this pro-
cess, the training datasets are divided into ten
equal parts. The grid training data consists of
nine equal parts and remaining part devoted to
grid validation data. LSSVM will be trained by
the grid training data. σ2 and γ* are also opti-
mized via the training process of LSSVM. After
training the LSSVM, this model is tested by grid
validation data and this operation is repeated
ten times .The LSSVM training and testing pro-
cesses continue until a stopping condition is
reached. In this condition, optimal value of σ2

and γ* can be achieved with the minimized er-
ror.

4.	 After obtaining the optimum value of σ2 and
γ*, these parameters are used to construct the
LSSVM model.

5.	 After building the LSSVM model, the testing
datasets are applied on the model in order to
investigate the model performance.

Table 6 shows the optimum value of σ2 and γ*
to build the LSSVM model in this paper.

Table 5. Weights value used in construction of the final ob-
jective function.

Weights Value
w1 w2 w3 w4

5 10 10 10

6.2. Proxy Construction using LSSVM
The proxy model construction based on LSSVM is
summarized as following steps [20]:
1.	 The entire dataset are divided into three parts:

58 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

6.3. Evaluation of Model Performance
Assessment the accuracy of the prediction model
is the last and most important step in the modeling
process. In this work, quantitative analysis is used
to evaluate the model performance. Therefore,
correlation coefficient (R2), absolute relative er-
ror (ARE) and root mean square error (RMSE) are
used for quantitative analysis. ARE shows close-
ness of the simulated data with the actual data.
ARE is defined as:

ARE = (17)

Where, yi is an actual data and ŷî is a forecasted
value obtained by proxy model. R2 provides a val-
ue that represents the amount of success in reduc-
ing the standard deviation by regression analysis.
R2 is defined as:

 (18)

Where ȳ� is the average of yi.
RMSE represents the difference between the

simulation data and real data. RMSE is defined as:

RMSE = (19)

Where, n is the number of observation data.

7. Results

The 480 sets of data were provided as input files
to run in full simulation model by LHS. The con-
vergence of reservoir simulation model was ob-
tained in 270 of 480 data sets. These 270 data sets
as input parameters are used to build the proxy
model. 70%, 15% and 15% of these input data-
set are defined as training, validation and testing
sets, respectively. To construct the proxy, 230 cas-
es of the numerical simulation model were made
and used for the training of the proxy model. 40
cases are selected randomly among the training
cases and used to validate the proxy model. 40
cases were also made and used for the testing of
the proxy model. The datasets of these cases are

Table 6. The optimal parameter combination (γ, σ2) to build
the LSSVM model.

Tuned Parameters
γ* σ2

3.1392 1.5982

different from the datasets of training cases. Table
7 shows the performance of constructed LSSVM
proxy model.

1. The entire dataset are divided into three
parts: training, validation and testing. The
training and validation dataset are used to
build the LSSVM model and the tested
data set are used to verify and evaluate
the performance and efficiency of this
model.

2. Initialize the parameters σ2 and γ ∗ using
the training dataset. (regularization
parameter (γ ∗) and kernel width
parameter (σ2) play an important role in
the LSSVM performance. The task of γ ∗
is creating a suitable LSSVM structure
based on the minimum training error and
is minimizing the model complexity. The
input data in original space is transferred
into a high-dimensional feature space by
σ2. The small value of σ2 causes the over
fitting. Also the large value of σ2 reduces
the LSSVM accuracy [32]).

3. Using the grid search technique with
cross-validation method, the optimal
values of parameters σ2 and γ ∗ were
obtained. In this work, ten-fold cross-
validation is used. In this process, the
training datasets are divided into ten
equal parts. The grid training data
consists of nine equal parts and remaining
part devoted to grid validation data.
LSSVM will be trained by the grid
training data. σ2 and γ ∗ are also
optimized via the training process of
LSSVM. After training the LSSVM, this
model is tested by grid validation data
and this operation is repeated ten times
.The LSSVM training and testing
processes continue until a stopping
condition is reached. In this condition,
optimal value of σ2 and γ ∗ can be
achieved with the minimized error.

4. After obtaining the optimum value of σ2
and γ ∗, these parameters are used to
construct the LSSVM model.

5. After building the LSSVM model, the
testing datasets are applied on the model

in order to investigate the model
performance.

 Table 6 shows the optimum value of σ2
and γ ∗ to build the LSSVM model in this
paper.

Table 6: The optimal parameter combination
(𝜸𝜸, 𝝈𝝈𝟐𝟐) to build the LSSVM model.

Tuned Parameters

𝛄𝛄* 𝛔𝛔𝟐𝟐

3.1392 1.5982

6.3. Evaluation of Model Performance
 Assessment the accuracy of the prediction
model is the last and most important step in
the modeling process. In this work,
quantitative analysis is used to evaluate the
model performance. Therefore, correlation
coefficient (R2), absolute relative error
(ARE) and root mean square error (RMSE)
are used for quantitative analysis. ARE
shows closeness of the simulated data with
the actual data. ARE is defined as:

𝐀𝐀𝐀𝐀𝐀𝐀 = |𝐲𝐲𝐢𝐢−𝐲̂𝐲𝐢𝐢
𝐲𝐲𝐢𝐢

| (17)

 Where, 𝐲𝐲𝐢𝐢 is an actual data and 𝐲̂𝐲𝐢𝐢 is a
forecasted value obtained by proxy model.
𝐑𝐑𝟐𝟐 provides a value that represents the
amount of success in reducing the standard
deviation by regression analysis. 𝐑𝐑𝟐𝟐 is
defined as:

R2 = 1 − ∑(yi−ŷi)2

∑(yi−y̅)2 (18)

 Where y̅ is the average of yi.
RMSE represents the difference between the
simulation data and real data. RMSE is
defined as:

RMSE = √(yi−ŷi)2

n (19)

 Where, n is the number of observation
data.

7. Results

1. The entire dataset are divided into three
parts: training, validation and testing. The
training and validation dataset are used to
build the LSSVM model and the tested
data set are used to verify and evaluate
the performance and efficiency of this
model.

2. Initialize the parameters σ2 and γ ∗ using
the training dataset. (regularization
parameter (γ ∗) and kernel width
parameter (σ2) play an important role in
the LSSVM performance. The task of γ ∗
is creating a suitable LSSVM structure
based on the minimum training error and
is minimizing the model complexity. The
input data in original space is transferred
into a high-dimensional feature space by
σ2. The small value of σ2 causes the over
fitting. Also the large value of σ2 reduces
the LSSVM accuracy [32]).

3. Using the grid search technique with
cross-validation method, the optimal
values of parameters σ2 and γ ∗ were
obtained. In this work, ten-fold cross-
validation is used. In this process, the
training datasets are divided into ten
equal parts. The grid training data
consists of nine equal parts and remaining
part devoted to grid validation data.
LSSVM will be trained by the grid
training data. σ2 and γ ∗ are also
optimized via the training process of
LSSVM. After training the LSSVM, this
model is tested by grid validation data
and this operation is repeated ten times
.The LSSVM training and testing
processes continue until a stopping
condition is reached. In this condition,
optimal value of σ2 and γ ∗ can be
achieved with the minimized error.

4. After obtaining the optimum value of σ2
and γ ∗, these parameters are used to
construct the LSSVM model.

5. After building the LSSVM model, the
testing datasets are applied on the model

in order to investigate the model
performance.

 Table 6 shows the optimum value of σ2
and γ ∗ to build the LSSVM model in this
paper.

Table 6: The optimal parameter combination
(𝜸𝜸, 𝝈𝝈𝟐𝟐) to build the LSSVM model.

Tuned Parameters

𝛄𝛄* 𝛔𝛔𝟐𝟐

3.1392 1.5982

6.3. Evaluation of Model Performance
 Assessment the accuracy of the prediction
model is the last and most important step in
the modeling process. In this work,
quantitative analysis is used to evaluate the
model performance. Therefore, correlation
coefficient (R2), absolute relative error
(ARE) and root mean square error (RMSE)
are used for quantitative analysis. ARE
shows closeness of the simulated data with
the actual data. ARE is defined as:

𝐀𝐀𝐀𝐀𝐀𝐀 = |𝐲𝐲𝐢𝐢−𝐲̂𝐲𝐢𝐢
𝐲𝐲𝐢𝐢

| (17)

 Where, 𝐲𝐲𝐢𝐢 is an actual data and 𝐲̂𝐲𝐢𝐢 is a
forecasted value obtained by proxy model.
𝐑𝐑𝟐𝟐 provides a value that represents the
amount of success in reducing the standard
deviation by regression analysis. 𝐑𝐑𝟐𝟐 is
defined as:

R2 = 1 − ∑(yi−ŷi)2

∑(yi−y̅)2 (18)

 Where y̅ is the average of yi.
RMSE represents the difference between the
simulation data and real data. RMSE is
defined as:

RMSE = √(yi−ŷi)2

n (19)

 Where, n is the number of observation
data.

7. Results

1. The entire dataset are divided into three
parts: training, validation and testing. The
training and validation dataset are used to
build the LSSVM model and the tested
data set are used to verify and evaluate
the performance and efficiency of this
model.

2. Initialize the parameters σ2 and γ ∗ using
the training dataset. (regularization
parameter (γ ∗) and kernel width
parameter (σ2) play an important role in
the LSSVM performance. The task of γ ∗
is creating a suitable LSSVM structure
based on the minimum training error and
is minimizing the model complexity. The
input data in original space is transferred
into a high-dimensional feature space by
σ2. The small value of σ2 causes the over
fitting. Also the large value of σ2 reduces
the LSSVM accuracy [32]).

3. Using the grid search technique with
cross-validation method, the optimal
values of parameters σ2 and γ ∗ were
obtained. In this work, ten-fold cross-
validation is used. In this process, the
training datasets are divided into ten
equal parts. The grid training data
consists of nine equal parts and remaining
part devoted to grid validation data.
LSSVM will be trained by the grid
training data. σ2 and γ ∗ are also
optimized via the training process of
LSSVM. After training the LSSVM, this
model is tested by grid validation data
and this operation is repeated ten times
.The LSSVM training and testing
processes continue until a stopping
condition is reached. In this condition,
optimal value of σ2 and γ ∗ can be
achieved with the minimized error.

4. After obtaining the optimum value of σ2
and γ ∗, these parameters are used to
construct the LSSVM model.

5. After building the LSSVM model, the
testing datasets are applied on the model

in order to investigate the model
performance.

 Table 6 shows the optimum value of σ2
and γ ∗ to build the LSSVM model in this
paper.

Table 6: The optimal parameter combination
(𝜸𝜸, 𝝈𝝈𝟐𝟐) to build the LSSVM model.

Tuned Parameters

𝛄𝛄* 𝛔𝛔𝟐𝟐

3.1392 1.5982

6.3. Evaluation of Model Performance
 Assessment the accuracy of the prediction
model is the last and most important step in
the modeling process. In this work,
quantitative analysis is used to evaluate the
model performance. Therefore, correlation
coefficient (R2), absolute relative error
(ARE) and root mean square error (RMSE)
are used for quantitative analysis. ARE
shows closeness of the simulated data with
the actual data. ARE is defined as:

𝐀𝐀𝐀𝐀𝐀𝐀 = |𝐲𝐲𝐢𝐢−𝐲̂𝐲𝐢𝐢
𝐲𝐲𝐢𝐢

| (17)

 Where, 𝐲𝐲𝐢𝐢 is an actual data and 𝐲̂𝐲𝐢𝐢 is a
forecasted value obtained by proxy model.
𝐑𝐑𝟐𝟐 provides a value that represents the
amount of success in reducing the standard
deviation by regression analysis. 𝐑𝐑𝟐𝟐 is
defined as:

R2 = 1 − ∑(yi−ŷi)2

∑(yi−y̅)2 (18)

 Where y̅ is the average of yi.
RMSE represents the difference between the
simulation data and real data. RMSE is
defined as:

RMSE = √(yi−ŷi)2

n (19)

 Where, n is the number of observation
data.

7. Results

Table 7. LSSVM performance.

Sample RMSE ARE R2

Training Data 25.639 0.7302 0.9491
Validation Data 27.8243 0.8691 0.9392

Testing Data 30.275 0.9326 0.9363

Figs. 8, 9 and 10 illustrate difference between
the real and the simulated LSSVM output, for train-
ing, validation and testing sets, respectively.

 The 480 sets of data were provided as
input files to run in full simulation model by
LHS. The convergence of reservoir
simulation model was obtained in 270 of 480
data sets. These 270 data sets as input
parameters are used to build the proxy
model. 70%, 15% and 15% of these input
dataset are defined as training, validation
and testing sets, respectively. To construct
the proxy, 230 cases of the numerical
simulation model were made and used for
the training of the proxy model. 40 cases are
selected randomly among the training cases
and used to validate the proxy model. 40
cases were also made and used for the
testing of the proxy model. The datasets of
these cases are different from the datasets of
training cases. Table 7 shows the
performance of constructed LSSVM proxy
model.

Table 7: LSSVM performance.

Figs. 8, 9 and 10 illustrate difference
between the real and the simulated LSSVM
output, for training, validation and testing
sets, respectively.

For history matching, the proxy model
output should be minimized by the
optimization algorithms. In fact,
optimization algorithms choose a set of input
parameters in which the objective function is
minimum i.e. the simulation model is history
matched.

Prior to optimization, sensitivity of final
objective function to each input parameter is
evaluated. Figs. 11-23 show the sensitivity
of final objective function to each input
parameter. In these figures, the sensitivity of
the matching parameters to final objective
function are shown separately because the
new range of the matching parameters (min,
max) should be determine in which the final
objective function is minimal.

Sample RMSE ARE 𝐑𝐑𝟐𝟐

Training Data 25.639 0.7302 0.9491

Validation Data 27.8243 0.8691 0.9392

Testing Data 30.275 0.9326 0.9363

𝐑𝐑𝟐𝟐 = 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

Figure 8: Training Datasets in LSSVM

Figure 9: Validation Datasets in
LSSVM

𝐑𝐑𝟐𝟐 = 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

𝐑𝐑𝟐𝟐 = 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

Figure 10: Testing Datasets in LSSVM

Figure 9: Validation Datasets in
LSSVM

𝐑𝐑𝟐𝟐 = 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

𝐑𝐑𝟐𝟐 = 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

Figure 10: Testing Datasets in LSSVM

Figure 8. Training Datasets in LSSVM.

Figure 9. : Validation Datasets in LSSVM.

Figure 10. Testing Datasets in LSSVM.

59S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

For history matching, the proxy model output
should be minimized by the optimization algo-
rithms. In fact, optimization algorithms choose
a set of input parameters in which the objective
function is minimum i.e. the simulation model is
history matched.

Prior to optimization, sensitivity of final objec-
tive function to each input parameter is evaluated.
Figs. 11-23 show the sensitivity of final objective
function to each input parameter. In these figures,
the sensitivity of the matching parameters to final
objective function are shown separately because
the new range of the matching parameters (min,
max) should be determine in which the final ob-
jective function is minimal.

Figure 11: Average Final Output Sensitivity to Aquifer Compressibility in LSSVM Model.

Figure 12: Average Final Output Sensitivity to Aquifer Height in LSSVM Model.

Figure 13: Average Final Output Sensitivity to Aquifer Permeability in LSSVM Model.

Figure 11: Average Final Output Sensitivity to Aquifer Compressibility in LSSVM Model.

Figure 12: Average Final Output Sensitivity to Aquifer Height in LSSVM Model.

Figure 13: Average Final Output Sensitivity to Aquifer Permeability in LSSVM Model.

Figure 11: Average Final Output Sensitivity to Aquifer Compressibility in LSSVM Model.

Figure 12: Average Final Output Sensitivity to Aquifer Height in LSSVM Model.

Figure 13: Average Final Output Sensitivity to Aquifer Permeability in LSSVM Model.

Figure 14: Average Final Output Sensitivity to Aquifer Porosity in LSSVM Model.

Figure 15: Average Final Output Sensitivity to Aquifer Raduis in LSSVM Model

Figure 16: Average Final Output Sensitivity to Vertical dimension of matrix in LSSVM Model.

Figure 14: Average Final Output Sensitivity to Aquifer Porosity in LSSVM Model.

Figure 15: Average Final Output Sensitivity to Aquifer Raduis in LSSVM Model

Figure 16: Average Final Output Sensitivity to Vertical dimension of matrix in LSSVM Model.

Figure 14: Average Final Output Sensitivity to Aquifer Porosity in LSSVM Model.

Figure 15: Average Final Output Sensitivity to Aquifer Raduis in LSSVM Model

Figure 16: Average Final Output Sensitivity to Vertical dimension of matrix in LSSVM Model.

Figure 11. Average Final Output Sensitivity to Aquifer Com-
pressibility in LSSVM Model.

Figure 12. Average Final Output Sensitivity to Aquifer
Height in LSSVM Model.

Figure 13. Average Final Output Sensitivity to Aquifer Per-
meability in LSSVM Model.

Figure 14. Average Final Output Sensitivity to Aquifer Po-
rosity in LSSVM Model.

Figure 15. Average Final Output Sensitivity to Aquifer
Raduis in LSSVM Model.

Figure 16. Average Final Output Sensitivity to Vertical di-
mension of matrix in LSSVM Model.

Figure 17. Average Final Output Sensitivity Fracture Com-
pressibility in LSSVM Model.

Figure17: Average Final Output Sensitivity Fracture Compressibility in LSSVM Model.

Figure 18: Average Final Output Sensitivity to Fracture Permeability (x & y) in LSSVM

Model.

Figure 19: Average Final Output Sensitivity to Fracture Permeability (z) in LSSVM Model.

The main purpose of history matching is to
reach the minimum objective function. Therefore,

60 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

Figure17: Average Final Output Sensitivity Fracture Compressibility in LSSVM Model.

Figure 18: Average Final Output Sensitivity to Fracture Permeability (x & y) in LSSVM

Model.

Figure 19: Average Final Output Sensitivity to Fracture Permeability (z) in LSSVM Model.

Figure17: Average Final Output Sensitivity Fracture Compressibility in LSSVM Model.

Figure 18: Average Final Output Sensitivity to Fracture Permeability (x & y) in LSSVM

Model.

Figure 19: Average Final Output Sensitivity to Fracture Permeability (z) in LSSVM Model.

determining these ranges is useful to improve
the history matching efficiency. Red dash lines in
these figures show the modified range of input
parameters in which the final objective function is
minimal. Fig. 24 shows a comparison between the
sensitivity of the final objective function to 13 pa-
rameters. Fracture permeability in x and y direc-
tion and pore volume multiplier as shown in Fig.
24 have the greatest impact on the LSSVM model
output. So, the modified range of these two param-
eters is more effective in minimizing the LSSVM
model output. Table 8 shows the modified ranges
of input data.

Figure 18. Average Final Output Sensitivity to Fracture Per-
meability (x & y) in LSSVM Model.

Figure 19. Average Final Output Sensitivity to Fracture Per-
meability (z) in LSSVM Model.

Figure 20: Average Final Output Sensitivity to Fracture Porosity in LSSVM Model.

Figure 21: Average Final Output Sensitivity to Matrix Compressibility in LSSVM Model.

Figure 22: Average Final Output Sensitivity to Pore volume multiplier in LSSVM Model.

Figure 20: Average Final Output Sensitivity to Fracture Porosity in LSSVM Model.

Figure 21: Average Final Output Sensitivity to Matrix Compressibility in LSSVM Model.

Figure 22: Average Final Output Sensitivity to Pore volume multiplier in LSSVM Model.

Figure 20: Average Final Output Sensitivity to Fracture Porosity in LSSVM Model.

Figure 21: Average Final Output Sensitivity to Matrix Compressibility in LSSVM Model.

Figure 22: Average Final Output Sensitivity to Pore volume multiplier in LSSVM Model.

The main purpose of history matching is to
reach the minimum objective function.
Therefore, determining these ranges is useful
to improve the history matching efficiency.
Red dash lines in these figures show the
modified range of input parameters in which
the final objective function is minimal. Fig.
24 shows a comparison between the
sensitivity of the final objective function to
13 parameters. Fracture permeability in x
and y direction and pore volume multiplier
as shown in Fig. 24 have the greatest impact
on the LSSVM model output. So, the
modified range of these two parameters is
more effective in minimizing the LSSVM
model output. Table 8 shows the modified
ranges of input data.

 Next step is to apply the modified ranges in
two optimization algorithms (ICA and PSO).
These two algorithms have some adjustable
parameters as mentioned before. These
parameters are used to tune the optimization
process.

 The main tuning parameters of the PSO
model are C1, C2 and the swarm size. The
settings of these parameters determine how
it optimizes the search-space. According to
the type of problem, these tuning parameters
should be changed. Therefore, the proper
tuning parameters value is needed to be get.
The way to solve this problem is by trial and
error. In this work, 15 alterations to the PSO
were investigated and their performance
(mean square error) determined. Due to the
high number of matching parameters (13
parameters), PSO requires a high number of
particles (3000, 4000 and 5000) to improve
its performance.

Table 8: Modified range of input parameters in

LSSVM model.

Parameters Modified Range

Aquifer Porosity 0.04 - 0.0625

Aquifer Permeability (md) 200 - 1400

Aquifer Raduis (ft) 1.8× 104 - 2.4× 104

Aquifer Height (ft) 750 - 1900

Aquifer Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 1.75× 10−4 – 2.5× 10−4

Matrix Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 6× 10−6 - 11× 10−6

Fracture Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 1.5× 10−4 - 1.75× 10−4

Shape factor (ft-2) 0.005 - 0.04

Matrix block height (ft) 50 - 90

Pore volume multiplier 0.25 - 0.75

Fracture Permeability (z) (md) 200 - 400

Fracture Permeability (x & y) (md) 100 - 400

Fracture Porosity 0.0025 - 0.0065

Figure 23: Average Final Output Sensitivity to Shape Factor in LSSVM Model.

Figure 20. Average Final Output Sensitivity to Fracture Po-
rosity in LSSVM Model.

Figure 21. Average Final Output Sensitivity to Matrix Com-
pressibility in LSSVM Model.

Figure 22. Average Final Output Sensitivity to Pore volume
multiplier in LSSVM Model.

Figure 23. Average Final Output Sensitivity to Shape Fac-
tor in LSSVM Model.

Next step is to apply the modified ranges in two
optimization algorithms (ICA and PSO). These two
algorithms have some adjustable parameters as
mentioned before. These parameters are used to
tune the optimization process.

The main tuning parameters of the PSO model
are C1, C2 and the swarm size. The settings of these
parameters determine how it optimizes the search-
space. According to the type of problem, these tun-
ing parameters should be changed. Therefore, the
proper tuning parameters value is needed to be get.
The way to solve this problem is by trial and error.
In this work, 15 alterations to the PSO were inves-

61S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

tigated and their performance (mean square error)
determined. Due to the high number of matching
parameters (13 parameters), PSO requires a high
number of particles (3000, 4000 and 5000) to im-
prove its performance.

Fig. 25 shows impact of the tuning parameters
on performance of the PSO.

It is observed that there is a slight improve-
ment of performance of the PSO with increasing
swarm size; a larger swarm increases the number
of calculations to converge to an error limit. The
research presented in this paper found out that
setting the two weight factors C1 and C2 at 1.5 and
2.5, respectively provides the best performance
of the PSO for all runs. Other combinations of val-
ues lead to lower performance of the PSO. Table 9
shows performance of the alterations to the PSO.

It is clear that the performance of the ICA is
affected by tuning parameters such as number of
countries, revolution rate, assimilation coefficient
(β) and assimilation angle coefficient (γ). So, good
values for the tuning parameters were obtained
by trial and error. To investigate the effect of the
population size on the performance of the ICA the
number of countries was selected from the set {50,
70, 90, 100, 120, 150, 170 and 200} and then ex-
ecuted ICA. Fig. 26 shows the results. Increasing
the number of countries reduces MSE.

MSE decreased rapidly for up to 100 countries.
So, 100 countries have been used in this work.
Based on previous studies on a number of optimi-

Parameters Modified Range
Aquifer Porosity 0.04 – 0.0625

Aquifer Permeability (md) 200 – 1400
Aquifer Raduis (ft) 1.8×104 – 2.4×104

Aquifer Height (ft) 750 - 1900
Aquifer Compressibility (psi-1) 1.75×10-4 – 2.5×10-4

Matrix Compressibility (psi-1) 6×10-6 – 11×10-6

Fracture Compressibility (psi-1) 1.5×10-4 – 1.75×10-4

Shape factor (ft-2) 0.005 – 0.04
Matrix block height (ft) 50 – 90
Pore volume multiplier 0.25 – 0.75

Fracture Permeability (z) (md) 200 – 400
Fracture Permeability (x & y)

(md) 100 – 400

Fracture Porosity 0.0025 – 0.0065

Table 8. Modified range of input parameters in LSSVM
model.

Fig. 25 shows impact of the tuning
parameters on performance of the PSO.

Figure 25: Impact of the tuning parameters on

performance of the PSO

It is observed that there is a slight
improvement of performance of the PSO
with increasing swarm size; a larger swarm
increases the number of calculations to
converge to an error limit. The research
presented in this paper found out that setting
the two weight factors C1and C2 at 1.5 and
2.5, respectively provides the best
performance of the PSO for all runs. Other
combinations of values lead to lower
performance of the PSO. Table 9 shows
performance of the alterations to the PSO.

 It is clear that the performance of the ICA is
affected by tuning parameters such as
number of countries, revolution rate,
assimilation coefficient (β) and assimilation
angle coefficient (γ). So, good values for the
tuning parameters were obtained by trial and
error. To investigate the effect of the
population size on the performance of the
ICA the number of countries was selected
from the set {50, 70, 90, 100, 120, 150, 170
and 200} and then executed ICA. Fig. 26
shows the results. Increasing the number of
countries reduces MSE.

Figure 26: The impact of the population size on

the performance of the ICA

Figure 24: The Sensitivity of the LSSVM Model Output to each Input Argument

Figure 24. The Sensitivity of the LSSVM Model Output to
each Input Argument.

Fig. 25 shows impact of the tuning
parameters on performance of the PSO.

Figure 25: Impact of the tuning parameters on

performance of the PSO

It is observed that there is a slight
improvement of performance of the PSO
with increasing swarm size; a larger swarm
increases the number of calculations to
converge to an error limit. The research
presented in this paper found out that setting
the two weight factors C1and C2 at 1.5 and
2.5, respectively provides the best
performance of the PSO for all runs. Other
combinations of values lead to lower
performance of the PSO. Table 9 shows
performance of the alterations to the PSO.

 It is clear that the performance of the ICA is
affected by tuning parameters such as
number of countries, revolution rate,
assimilation coefficient (β) and assimilation
angle coefficient (γ). So, good values for the
tuning parameters were obtained by trial and
error. To investigate the effect of the
population size on the performance of the
ICA the number of countries was selected
from the set {50, 70, 90, 100, 120, 150, 170
and 200} and then executed ICA. Fig. 26
shows the results. Increasing the number of
countries reduces MSE.

Figure 26: The impact of the population size on

the performance of the ICA

Figure 24: The Sensitivity of the LSSVM Model Output to each Input Argument

Figure 25. Impact of the tuning parameters on perfor-
mance of the PSO.

Figure 26. The impact of the population size on the perfor-
mance of the ICA.

Fig. 25 shows impact of the tuning
parameters on performance of the PSO.

Figure 25: Impact of the tuning parameters on

performance of the PSO

It is observed that there is a slight
improvement of performance of the PSO
with increasing swarm size; a larger swarm
increases the number of calculations to
converge to an error limit. The research
presented in this paper found out that setting
the two weight factors C1and C2 at 1.5 and
2.5, respectively provides the best
performance of the PSO for all runs. Other
combinations of values lead to lower
performance of the PSO. Table 9 shows
performance of the alterations to the PSO.

 It is clear that the performance of the ICA is
affected by tuning parameters such as
number of countries, revolution rate,
assimilation coefficient (β) and assimilation
angle coefficient (γ). So, good values for the
tuning parameters were obtained by trial and
error. To investigate the effect of the
population size on the performance of the
ICA the number of countries was selected
from the set {50, 70, 90, 100, 120, 150, 170
and 200} and then executed ICA. Fig. 26
shows the results. Increasing the number of
countries reduces MSE.

Figure 26: The impact of the population size on

the performance of the ICA

Figure 24: The Sensitivity of the LSSVM Model Output to each Input Argument

zation problems [29, 33 and 34], the best range of
variation is 0.1-0.2 for the revolution rate, 0.5-2.5
for β and 0.3-1 (radian) for γ. In this paper, many
tests are executed by changing the range of varia-
tion for these parameters (the revolution rate be-
tween 0.1-0.2, β between 0.5-2.5 and γ from 0.3-
1 radian). Table 10 shows the results of some of
these tests. The best performance of ICA (the low-
est MSE) occurred in the revolution rate=0.1, β=2
and γ=0.5.

62 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

Table 11 shows the best performance of opti-
mization algorithms to minimize the LSSVM model
output (final objective function).

MSE shown in Table 11 indicates the minimum
value of the LSSVM model output obtained by the
optimization algorithms. According to the achieved
MSE, PSO performance in minimization of the LSS-
VM model output is better than ICA.

Ru
n

N
o

Re
vo

lu
ti

on
 R

at
e

As
si

m
ila

ti
on

 C
oe

f-
fic

ie
nt

(β
)

As
si

m
ila

ti
on

An

gl
e

Co
ef

fic
ie

nt
(γ

)

M
SE

Ru
n

N
o

Re
vo

lu
ti

on
 R

at
e

As
si

m
ila

ti
on

 C
oe

f-
fic

ie
nt

(β
)

As
si

m
ila

ti
on

An

gl
e

Co
ef

fic
ie

nt
(γ

)

M
SE

Run # 1 0.2 0.5 0.3 143.356 Run # 11 0.11 0.7 0.4 141.236

Run # 2 0.2 2 0.7 142.965 Run # 12 0.2 2.3 0.8 143.754

Run # 3 0.12 1 0.5 142.780 Run # 13 0.14 1.7 0.5 139.987

Run # 4 0.1 2.5 0.5 141.324 Run # 14 0.15 1 0.5 140.327

Run # 5 0.1 2 0.5 139.721 Run # 15 0.1 1.5 0.4 143.540

Run # 6 0.2 2.5 0.4 140.013 Run # 16 0.15 2.5 0.3 141.783

Run # 7 0.1 2 1 140.732 Run # 17 0.18 2.5 1 143.481

Run # 8 0.2 1.5 0.4 140.12 Run # 18 0.16 1.5 0.4 141.331

Run # 9 0.15 2.3 0.5 139.823 Run # 19 0.2 1.3 0.5 142.471

Run # 10 0.2 2.5 0.6 140.654 Run # 20 0.1 2 0.7 139.908

Table 9. Performance of the PSO on LSSVM model.

Table 10. Performance of the ICA on LSSVM model.

Ru
n

N
o

Sw
ar

m
 S

iz
e

Se
lf

Co
nf

id
en

ce
(C

1)

Sw
ar

m
Co

nf
id

en
ce

(C
2)

M
SE

Ru
n

N
o

Sw
ar

m
 S

iz
e

Se
lf

Co
nf

id
en

ce
(C

1)

Sw
ar

m
Co

nf
id

en
ce

(C
2)

M
SE

Run # 1 3000 1.5 2.5 113.132 Run # 8 4000 2 2 116.142

Run # 2 3000 1.7 2.3 115.223 Run # 9 4000 2.2 1.8 116.789

Run # 3 3000 2 2 116.754 Run # 10 4000 2.5 1.5 118.381

Run # 4 3000 2.2 1.8 117.121 Run # 11 5000 1.5 2.5 112.642

Run # 5 3000 2.5 1.5 119.587 Run # 12 5000 1.7 2.3 113.285

Run # 6 4000 1.5 2.5 112.802 Run # 13 5000 2 2 115.585

Run # 7 4000 1.7 2.3 113.937 Run # 14 5000 2.2 1.8 115.285

Run # 15 5000 2.5 1.5 117.285

Table 11. The best performance of the optimization algo-
rithms on LSSVM model.

Performance LSSVM+PSO LSSVM+ICA

MSE 112.642 139.729

63S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

Table 12 shows the outputs of the optimization
algorithms. These outputs are the matching pa-
rameters. Fig. 27 shows comparison of matching
parameters obtained from the optimization algo-
rithms. Also, table 13 shows the CPU time for using
the techniques described in this work.

In automatic history matching, sensitive analy-
sis is often performed on full simulation model. In
this work, to get new range of the uncertain pa-
rameters (matching parameters) in which the ob-
jective function has a minimum value, sensitivity
analysis is also performed on the proxy model.

By applying the modified ranges to the opti-
mization methods, optimization of the objective
function will be faster and more accurate. So, out-
puts of the optimization methods (matching pa-

Table 12 shows the outputs of the
optimization algorithms. These outputs are
the matching parameters. Fig. 27 shows
comparison of matching parameters obtained
from the optimization algorithms. Also, table
13 shows the CPU time for using the
techniques described in this work.

 In automatic history matching, sensitive
analysis is often performed on full
simulation model. In this work, to get new
range of the uncertain parameters (matching
parameters) in which the objective function
has a minimum value, sensitivity analysis is
also performed on the proxy model.

Parameters LSSVM+PSO LSSVM+ICA
Aquifer Porosity 0.044502455 0.0499802

Aquifer Permeability (md) 490.59655812 815.1510
Aquifer Raduis (ft) 24734.9675 23740.975
Aquifer Height (ft) 1438.803772 1886.7283

Aquifer Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 0.000238368 0.0002408
Matrix Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 9.582× 10−6 8.67× 10−6

Fracture Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 0.000153298 0.000154381
Shape factor (ft-2) 0.03266354 0.026635967

Matrix block height (ft) 78.82779504 60.9488937
Pore volume multiplier 0.709300894 0.699201758

Fracture Permeability (z) (md) 213.5918638 362.0976531
Fracture Permeability (x & y) (md) 191.542375 436.8632893

Fracture Porosity 0.006230512 0.005529285

Figure 27: Comparison of matching parameters obtained from the optimization algorithms.

Table 12: Matching parameters achieved from the optimization algorithms.

Figure 27. Comparison of matching parameters obtained
from the optimization algorithms.

Table 12. Matching parameters achieved from the optimization algorithms.

Parameters LSSVM+PSO LSSVM+ICA
Aquifer Porosity 0.044502455 0.0499802

Aquifer Permeability (md) 490.59655812 815.1510
Aquifer Raduis (ft) 24734.9675 23740.975
Aquifer Height (ft) 1438.803772 1886.7283

Aquifer Compressibility (psi-1) 0.000238368 0.0002408
Matrix Compressibility (psi-1) 9.582×10-6 8.67×10-6

Fracture Compressibility (psi-1) 0.000153298 0.000154381
Shape factor (ft-2) 0.03266354 0.026635967

Matrix block height (ft) 78.82779504 60.9488937
Pore volume multiplier 0.709300894 0.699201758

Fracture Permeability (z) (md) 213.5918638 362.0976531
Fracture Permeability (x & y) (md) 191.542375 436.8632893

Fracture Porosity 0.006230512 0.005529285

Model Optimization
technique

CPU time
(second)

LSSVM
(linear)

PSO 179

ICA 213

LSSVM
(radial)

PSO 78

ICA 92

LSSVM
(polynomial)

PSO 122

ICA 157

Table 13. Comparison of CPU time in different models.

rameters) are produced in less time and with high
precision.

Now matching parameters obtained by each of
the optimization methods are applied in the res-
ervoir simulator. Simulator outputs which include
oil, gas and water rates and well static pressure are
compared with the real data.

Figs. 28-32 show history matching between
simulation data and real data achieved by two dif-
ferent methods. The base case in these figures,
states the simulation data before history matching
operation.

Table 14 shows the performance of the in-
vestigated optimization techniques in history
matching. RMSE in this table expresses the dif-
ference between the actual data and simulation
data. LSSVM+PSO has a better performance than
LSSVM+ICA in the history matching process.

64 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

By applying the modified ranges to the
optimization methods, optimization of the
objective function will be faster and more
accurate. So, outputs of the optimization
methods (matching parameters) are
produced in less time and with high
precision.

 Now matching parameters obtained by
each of the optimization methods are applied
in the reservoir simulator. Simulator outputs
which include oil, gas and water rates and
well static pressure are compared with the
real data.

Figs. 28-32 show history matching between
simulation data and real data achieved by
two different methods. The base case in
these figures, states the simulation data
before history matching operation.

Table 14 shows the performance of the
investigated optimization techniques in
history matching. RMSE in this table
expresses the difference between the actual
data and simulation data. LSSVM+PSO has
a better performance than LSSVM+ICA in
the history matching process.

Model Optimization technique CPU time (second)

LSSVM (linear) PSO 179
ICA 213

LSSVM (radial) PSO 78
ICA 92

LSSVM (polynomial) PSO 122
ICA 157

Figure 28: Gas Flow Rate vs Date (Field).

Table 13: Comparison of CPU time in different models

Figure 29: Oil Flow Rate vs Date (Field).

Figure 30: Water Flow Rate vs Date (Field).

Figure 29: Oil Flow Rate vs Date (Field).

Figure 30: Water Flow Rate vs Date (Field).

Figure 31: Static Pressure vs Date (Well # 1).

Figure 32: Static Pressure vs Date (Well # 6).

Figure 31: Static Pressure vs Date (Well # 1).

Figure 32: Static Pressure vs Date (Well # 6).

Figure 28. Gas Flow Rate vs Date (Field).

Figure 29. Oil Flow Rate vs Date (Field).

Figure 30. Water Flow Rate vs Date (Field).

Figure 31. Static Pressure vs Date (Well # 1).

Figure 32. Static Pressure vs Date (Well # 6).

Figs. 28 and 29 show the gas rate and oil rate
history matching at the field scale. In these figures,
both proposed methods have provided acceptable

match. Fig. 30 shows the water rate history match-
ing in the field scale. In this figure, lack of historical
water rate data reduces the effectiveness of ICA in
the water rate history matching. To investigate the
static pressure history matching, two wells (Well
#1 and Well #6) were selected from this reservoir
randomly. Figs. 31 and 32 show the static pressure
history matching in Well #1 and Well #6 respective-
ly. During production, pressure data registered by
the well head gauges is often noisy [35]. The noise
in the pressure data reduces the efficiency of the in-
vestigated optimization methods and proxy model.

8. Conclusions

After evaluating the results of previous section, the
concluded items are as follow:
•	 Due to high speed and need for little data sets,

LSSVM is the best tool to build a proxy model

65S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

•	 PSO as an optimization algorithm has a better
performance than ICA. High- speed operation
and small number of tuning parameters im-
prove the efficiency of PSO.

•	 The population size has hardly any effect on the
performance of the PSO method.

•	 By performing the sensitivity analysis on the
proxy model, fracture permeability in x and y
direction and pore volume multiplier are deter-

Nomenclature

ARE Absolute relative error md Millidarcy
Ave Average Obj Fcn Objective function
R2 Correlation coefficient OWC Oil water contact
DE Differential evolution PSO Particle swarm optimization

GOC Gas oil contact Perm Permeability
GA Genetic algorithm pbest Personal best position

gbest Global best position psi Pounds per square inch
ICA Imperialist competitive algorithm RMSE Root mean square error
IOIP Initial oil in place c1, c2 Self and Swarm confidence
LHS Latin hypercube sampling STB Stock tank barrel

LSSVM Least square support vector machine SVM Support vector machine

MSE Mean square error tDay Time in Day

mined as the most important matching param-
eters in the history matching. These param-
eters have the greatest impact on the oil, gas,
water rates and the static pressure.

•	 The LSSVM as a proxy model reduces the num-
ber of required runs to history matching. It also
increases the speed, precision and ease of the
history matching process.

Greek symbols

γ Assimilation angle coefficient
β Assimilation coefficient
σ2 Kernel width parameter

αi*, αi Lagrangian multipliers
γ* Regularization parameter
Σ Shape factor

εi, εi* Slack variables
σ_i Standard deviation

σ_i^2 Variance

References

1.	 Zhang, X., Hou, H., Wang, D., Mu, T., Wu, J. and
Lu, X., (2012), “An Automatic History Match-
ing Method of Reservoir Numerical Simula-
tion Based on Improved Genetic Algorithm”,
International Workshop on Information and
Electronics Engineering (IWIEE), Procedia En-
gineering, Vol. 29, pp. 3924-3928.

2.	 Bjorndalen, N., Kuru, E. and Schiozer, D.J.,
(2008), “Application of Neural Network and
Global Optimization in History Matching”, Jour-
nal of Canadian Petroleum Technology, PET-
SOC-08-11-22-TN, Vol. 47, Issue. 11.

3.	 Jurecka, F., (2007), “Robust Design Optimi-
zation Based on Metamodeling Techniques”,
Ph.D. thesis, Technische Universität München,
München.

4.	 Lophaven, S.N., Nielsen, H.B. and Sonder-
gaard, J., (2002), “DACE: A Mathlab Kriging
Toolbox Version 2.0. Technical Report IMM-
TR-2002-12”, Technical University of Denmark,
Lyngby, Denmark, 1st August.

5.	 Zubarev, D.I., (2009), “Pros and cons of apply-
ing proxy models as a substitute for full reser-
voir simulations”, SPE 124815, in Proceedings
of the SPE Annual Technical Conference and
Exhibition held in New Orleans, Louisiana, USA.

6.	 Cullick, A.S., Johnson, D. and Shi, G., (2006),

66 S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

“Improved and More-Rapid History Matching
With a Nonlinear Proxy and Global Optimiza-
tion”, SPE 101933, SPE Annual Technical Con-
ference and Exhibition held in San Antonio,
Texas, U.S.A., 24–27 September, http://dx.doi.
org/10.2118/101933-MS.

7.	 Yu, T., Wilkinson, D. and Castellini, A., (2008),
“Constructing Reservoir Flow Simulator Prox-
ies Using Genetic Programming for History
Matching and Production Forecast Uncertain-
ty Analysis”, Journal of Artificial Evolution and
Applications, Vol. 2008, Article ID 263108.

8.	 Rammay, M.H. and Abdulraheem, A., (2014),
“Automated History Matching Using Combina-
tion of Adaptive Neuro Fuzzy System (ANFIS)
and Differential Evolution Algorithm”, Society
of Petroleum Engineers, SPE Large Scale Com-
puting and Big Data Challenges in Reservoir
Simulation Conference and Exhibition, Istan-
bul, Turkey, SPE-172992-MS, 15-17 September.

9.	 Maschio, C. and Schiozer, D. J., (2014), “Bayes-
ian history matching using artificial neural
network and Markov Chain Monte Carlo”, En-
gineering, Vol. 123, pp. 62-71.

10.	 Goodwin, N., (2015), “Bridging the Gap Be-
tween Deterministic and Probabilistic Uncer-
tainty Quantification Using Advanced Proxy
Based Methods”, SPE Reservoir Simulation
Symposium, 23-25 February, Houston, Texas,
USA, SPE-173301-MS.

11.	 He, J., Xie, J., Wen, X. and Chen, W., (2015),
“Improved Proxy For History Matching Using
Proxy-for-data Approach And Reduced Order
Modeling”, SPE Western Regional Meeting, 27-
30 April, Garden Grove, California, USA, SPE-
174055-MS.

12.	 Boser, B. E., Guyon, I. M. and Vapnik, V., (1992),
“A training algorithm for optimal margin”. In:
Haussler, D. (Ed.), Proceedings of the Annual
Workshop on Computational Learning Theory.
Pittsburgh, PA, ACM, New York, NY, pp. 144-
152.

13.	 Cortes, C. and Vapnik, V., (1995), “Support vec-
tor networks. Machine Learning”, Vol. 20, pp.
273-297.

14.	 Guyon, I., Boser, B. and Vapnik, V., (1993),
“Automatic capacity tuning of very large VC-

dimension classifiers”. In: Hanson, S.J., Cowan,
J.D., Giles, C.L. (Eds.), Advances in Neural Infor-
mation Processing Systems. Morgan Kaufmann
Publishers, San Mateo, CA, Vol. 5, pp. 147-155.

15.	 Scho ̈lkopf, B., Burges, C. and Vapnik, V., (1995),
“Extracting support data for a given task”, In:
Fayyad, U.M., Uthurusamy, R. (Eds.), Proceed-
ings of the First International Conference on
Knowledge Discovery & Data Mining, Menlo
Park, CA, pp. 252-257.

16.	 Vapnik, V., Golowich, S. and Smola, A., (1997),
“Support vector method for function approxi-
mation, regression estimation, and signal pro-
cessing”, In: Mozer, M.C., Jordan, M.I., Petsche,
T. (Eds.), Advances in Neural Information Pro-
cessing Systems. MIT Press, Cambridge, MA,
Vol. 9, pp. 281-287.

17.	 Smolatand Bernhard Scholkof, A. J., (2003), “A
tutorial on support vector regression”.

18.	 Suykens, J.A.K. and Vandewalle, J., (1999),
“Neural Processing Letters”, Vol. 9, pp. 293-
300.

19.	 Samui, p., (2011), “Application of Least Square
Support Vector Machine (LSSVM) for Determi-
nation of Evaporation Losses in Reservoirs”,
Engineering, Vol. 3, pp. 431-434.

20.	 Elmabrouk, S. Kh., (2012), “Application of func-
tion approximations to reservoir engineering”,
Ph.D. thesis, Department of Petroleum Engi-
neering, University of Regina.

21.	 Shi, D.F. and Nabil, N.G., (2007), “Tool wear
predictive model based on least squares sup-
port vector machines”, Mechanical Systems
and Signal Processing, Vol. 21, pp. 1799-1814.

22.	 Kennedy, J. and Eberhart, R., (1995), “Particle
Swarm Optimization”, Proceedings of the IEEE
International Conference on Neural Networks,
Piscataway, NJ, USA, Vol. 4, pp. 1942-1948.

23.	 Riazi, S.H., Heydari, H., Ahmadpour, E., Ghola-
mi, A. and Parvizi, S., (2014), “Development of
novel correlation for prediction of hydrate for-
mation temperature based on intelligent op-
timization algorithms”, Journal of Natural Gas
Science and Engineering, Vol. 18, pp. 377-384.

24.	 Kennedy, J. and Mendes, R., (2002), “Popu-

67S. H. Riazi et al. / Journal of Chemical and Petroleum Engineering, 50 (1), Jun. 2016 / 49-67

lation structure and particle swarm perfor-
mance”, Proc. of IEEE Conference on Evolu-
tionary Computation, Vol. 2, pp. 1671-1676.

25.	 Hassan, R., Cohanim, B., Weck, O. and Venter,
G., (2005), “A copmarison of particle swarm
optimization and the genetic algorithm”, Pro-
ceedings of the 1st AIAA multidisciplinary de-
sign optimization specialist conference, 18-21
April, Austin, Texas, pp. 1-13.

26.	 Martinez-Soto, R., Rodriguez, A., Castillo, O.
and Aguilar, T., (2012), “Gain Optimization
for Inertia Wheel Pendulum Stabilization us-
ing Particle Swarm Optimization and Genetic
Algorithms” Computing, Information and Con-
trol, Vol. 8, pp. 4421-4430.

27.	 Mohamed, L., Christie, M. and Demyanov, V.,
(2010), “Reservoir Model History Matching
With Particle Swarms”, Institute of Petroleum
Engineering, Heriot–Watt University, Edin-
burgh, UK, SPE 129152.

28.	 Mokhtari, Gh., Ghanizadeh, A.J. and Ebrahimi,
E., (2012), “Application of Imperialist Compet-
itive Algorithm to Solve Constrained Economic
Dispatch”, Electrical Engineering Department,
Amirkabir University of Technology, Tehran,
Iran, International Journal on Electrical Engi-
neering and Informatics, Vol. 4, No. 4.

29.	 Atashpaz-Gargari, E. and Lucas, C., (2007),
“Imperialist Competitive Algorithm: An Algo-
rithm for Optimization Inspired by Imperialis-
tic Competition”, IEEE Congress on Evolution-
ary Computation, Singapore, pp. 4661- 4667.

30.	 Towsyfyan, H., Adnani-Salehi, S. A., Ghayyem,
M. and Mosaedi, F., (2013), “The Comparison
of Imperialist Competitive Algorithm Applied
and Genetic Algorithm for Machining Alloca-
tion of Clutch Assembly”, International Journal
of Engineering, Vol. 26, No. 12, pp. 1485-1494.

31.	 Zabalza-Mezghani, I., Manceau, E., Feraille, M.
and Jourdan, A., (2004), “Uncertainty manage-
ment: From geological scenarios to production
scheme optimization”, Journal of Petroleum
Science and Engineering, Vol. 44, pp. 11-25.

32.	 Espinoza, M., Suykens, J.A.K. and De Moor, B.,
(2003), “Least squares support vector ma-
chines and primal space estimation”, Proceed-
ings of the 42nd IEEE Conference on Decision

and Control Maui Hawaii, USA, Vol. 4, pp.
3451-3456.

33.	 Bijami, E., Abshari, R., Askari, J., Hoseinnia, S.
and Farsangi, M. M., (2011), “Optimal Design of
Damping Controllers for Multi-machine Power
Systems Using Metaheuristic Techniques”, In-
ternational Review of Electrical Engineering
(IREE), Vol. 6, No. 4, pp. 1883-1894.

34.	 Rajabioun, R., Hashemzadeh, F., Atashpaz-
Gargari, E., Mesgari, B. and Rajaiee Salmasi, F.,
(2008), “Identification of a MIMO Evaporator
and its Decentralized PID Controller Tuning
Using Colonial Competitive Algorithm”, Pro-
ceedings of the 17th World Congress, The In-
ternational Federation of Automatic Control,
pp. 9952-9957.

35.	 Nardone, P., (2009), “Well Testing Project Man-
agement: Onshore and Offshore Operations”,
book, Gulf professional press, pp. 61.

