تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,175 |
تعداد دریافت فایل اصل مقاله | 97,217,028 |
طراحی دوهدفه شبکه پایش سطح آب زیرزمینی با استفاده از NSGA-II در دشت اشتهارد | ||
تحقیقات آب و خاک ایران | ||
مقاله 12، دوره 47، شماره 2، مرداد 1395، صفحه 345-354 اصل مقاله (719.44 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2016.58339 | ||
نویسندگان | ||
فهیمه میرزائی ندوشن* 1؛ امید بزرگ حداد2؛ مجید خیاط خلقی2 | ||
1دانشجو | ||
2هیئت علمی دانشگاه تهران | ||
چکیده | ||
پایش کمّی آب زیرزمینی، با هدف بررسی و تعیین عوامل مؤثر در رفتار آبخوانها نقش به سزایی در مدیریت آب زیرزمینی هر منطقه دارد. بنابراین برای مطالعه تغییرات زمانی و مکانی سطح آب زیرزمینی، شبکه پایش کمّی آب زیرزمینی مورد نیاز است. در تحقیق حاضر طراحی بهینه بلندمدت شبکه پایش سطح آب زیرزمینی به کمک روشی بر پایه بهینهسازی در آبخوان دشت اشتهارد انجام گرفته است. پایگاه داده مورد نیاز، به کمک درونیابی کریجینگ تهیه شده است. بهینهسازی شبکه چاهها توسط نسخه دوم الگوریتم ژنتیک با مرتبسازی نامغلوب (NSGA-II) با اهداف کمینه نمودن مقدار ریشه مربعات میانگین خطا (RMSE) و کمینه نمودن تعداد چاهها اجرا شده است. در بخش شبیهسازی مسئله از درونیابی وزندهی فاصله معکوس (IDW) برای مقادیر سطح آب زیرزمینی محاسباتی استفاده شد و با مقادیر مشاهداتی تهیه شده در پایگاه داده مقایسه شدند. نتیجه این تحقیق، ارائه یک جبهه پرتو با نمایش تعداد چاه در مقابل RMSE متناظر آن بود که میتواند دستورالعملی برای طراحی شبکه پایش کمّی آب زیرزمینی باشد. به این صورت که با تعیین دقت لازم در دادههای حاصل از شبکه پایش میتوان تعداد چاهها و موقعیت آنها را در منطقه مطالعاتی مشخص نمود. | ||
کلیدواژهها | ||
بهینهسازی دوهدفه؛ شبکه پایش سطح آب زیرزمینی؛ کریجینگ؛ IDW؛ NSGA-II | ||
عنوان مقاله [English] | ||
Two-objective design of groundwater-level monitoring network using NSGA-II in Eshtehard plain | ||
نویسندگان [English] | ||
Fahimeh Mirzaei-Nodoushan1؛ Omid Bozorg Haddad2؛ Majid khayyat kholghi2 | ||
1Student | ||
چکیده [English] | ||
Groundwater monitoring plays a significant role in groundwater management to control aquifer behavior. Thus, a groundwater monitoring network is required to control spatial and temporal fluctuations of groundwater characteristics. This study describes a new optimization method to design an optimum groundwater-level monitoring network and was implemented on Eshtehard aquifer. Database of the study was provided by kriging interpolation. Optimization of groundwater monitoring network was implemented by Non-Dominated Sorting Genetic Algorithm II (NSGA-II) with two objective functions of minimizing the root mean square error (RMSE) and minimizing the number of network wells which representing the cost of constructing, maintenance service and collecting data. Inverse Distance Weighting (IDW) was used to compute the groundwater-level in simulation part of optimization. The result of the study is a Pareto front showing the number of wells and corresponding RMSE which would be a guideline for groundwater monitoring network design. By selecting the required accuracy of the monitoring network data, the number of observation wells and their locations in the study area would be demonstrated. | ||
کلیدواژهها [English] | ||
Two-Objective Optimization, Groundwater-Level Monitoring Network, Kriging, IDW, NSGA-II | ||
مراجع | ||
Asefa, T., Kemblowski, M.W., Urroz, G., McKee, M., and Khalil, A. (2004). “Support vectors-based groundwater head observation networks design”, Water Resources Research, 40(11), DOI: 10.1029/2004WR003304. Barca, E., Passarella, G., Vurro, M., and Morea, A. (2015). “MSANOS: Data-Driven, Multi-Approach Software for Optimal Redesign of Environmental Monitoring Networks”, Water Resources Management, 29(2), 619-644. Bivand, R.S., Pebesma, E., and Gómez-Rubio, V. (2008). “Applied spatial data analysis with R”, Springer, New York. Cressie, N.A.C. (1991). “Statistics for spatial data”, John Wiley & Sons. Datta, B. and Dhiman, D.S. (1996). “Chance-constrained optimal monitoring network design for pollutants in groundwater”, Journal of Water Resources Planning and Management, 122(3), 180-188. Dhar, A. and Patil, R.S. (2012). “Multiobjective design of groundwater monitoring network under epistemic uncertainty”, Water Resources Management, 26(7), 1809-1825. Dokou, Z. and Pinder, G. (2009). “Optimal search strategy for the definition of a DNAPL source”, Journal of Hydrology, 376(3-4), 542-556. Esquivel, J.M., Morales, G.P., and Esteller, M.V. (2015). “Groundwater monitoring network design using GIS and multicriteria analysis”, Water Resources Management, 29(9), 3175-3194. Hudak, P.F. and Loaiciga, H.A. (1993). “An optimization method for monitoring network design in multilayered groundwater flow systems”, Water Resources Research, 29(8), 2835-2845. Hudak, P. (2006). “Heuristic for constructing minimum-well groundwater monitoring configurations at waste storage facilities”, Environmental Science and Health, 41(2), 185-193. Khader, A.I. and McKee, M. (2014). “Use of a relevance vector machine for groundwater quality monitoring network design under uncertainty”, Environmental Modelling and Software, 57, 115-126. Loaiciga, H., Charbeneau, R.J., Everett, L.G., Fogg, G.E., Hobbs, B.F., and Rouhani, S. (1992). “Review of ground-water quality monitoring network design”, Journal of Hydraulic Engineering, 118(1), 11-37. Mogheir, Y., de Lima, J.L.M.P., and Singh, V.P. (2003). “Assessment of spatial structure of groundwater quality variables based on the entropy theory”, Hydrology and Earth System Sciences, 7(5), 707-721. Wilson, C., Einberger, C., Jackson, R., and Mercer, R. (1992). “Design of ground-water monitoring networks using the monitoring efficiency model (MEMO)”, Ground Water, 30(6), 965-970. Wu, J., Zheng, C., Chien, C.C., and Zheng, L. (2006). “A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty”, Advances in Water Resources, 29(6), 899-911. Yang, F., Cao, S., Liu, X., and Yang, K. (2008). “Design of groundwater level monitoring network with ordinary kriging”, Journal of Hydrodynamic, 20(3), 339-346. | ||
آمار تعداد مشاهده مقاله: 1,371 تعداد دریافت فایل اصل مقاله: 1,429 |