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Abstract 
Assessing seismic hazards involves specifying the likelihood, magnitude and location of earthquakes in a region. Predicting the 
seismic hazards is the first step in reducing the impact of the damage caused by an earthquake.  In this study, to fully utilize all the 
known parameters which may possibly affect the occurrence of earthquakes (mb ≥ 4.5); a data-driven rule-extraction method called the 
Classification and Regression Tree (CART) was used to find the rules governing the earthquakes that occur. The method produces 
Predictive Rule Based Seismicity Map (PRBSM) of Iran that shows regions with high earthquake hazards. The rules are based on a 
large number of geophysical and geological parameters. The PRBSM has been built based on earthquake data from the year 1900 up to 
the end of 2006 and has been validated using earthquakes from 2007 to the end of 2015. In addition, this method allows for the 
identification of the most important combination of parameters associated with earthquakes. For example, the isostatic anomaly has the 
highest correlation with earthquakes in Iran. A distinctive character of this paper is the predictive rule based method which can create 
online as well as offline maps which are flexible and readily automated. 
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Introduction 
Iran is one of the disaster-prone countries of the 
world, frequently suffering from destructive 
earthquakes that leave a large number of casualties 
and financial losses. Iran and its neighboring 
countries’ seismic activities are closely related to 
their positions within the active Alpine-Himalayan 
Belt. During the past decades, many researchers 
have studied the seismicity of Iran. For example, 
(Nowroozi, 1976), (Tavakoli & Ghafory-Ashtiani, 
1999), (Bonini et al., 2003) and (Ashtari Jafari, 
2010). In studies of this type, the factors 
contributing to the earthquake occurrence were 
studied independently. These studies did not 
consider the effects of other parameters on 
earthquake occurrence. 

The application of machine learning and data 
mining methods is very common in various fields of 
science such as business, social sciences, biological 
and environmental sciences and engineering. 
During the last few years, some researchers used 
machine-learning methods to build classifiers or to 
predict earthquakes. For example, Zmazek et al. 
(2003) used a model tree to predict earthquakes 
based on soil radon data. A rough set and decision 
tree (C4.5 algorithm) have been used to characterize 
premonitory factors of low seismic activity (Iftikhar 
et al., 2009). Reyes et al., (2013) used artificial 
neural networks to predict earthquakes in Chile. 
None of these studies has shown a combination of 

parameters which leads to the identification of the 
regions with high active seismicity. 

In this study, a multivariate analysis of 
parameters affecting the earthquake occurrence was 
investigated. A rule extraction method was used to 
determine the combination of parameters that 
correlate well with earthquakes and to explain the 
seismicity patterns in Iran. A major advantage of 
using rule base methods is that they are mostly data 
driven, nonparametric and without priori 
assumptions. Historical facts are the main players in 
model construction when models are based on data 
alone without any discrimination based on the 
researchers’ opinions.  

Seismic hazard analysis requires an assessment 
of the future earthquake potential (the likelihood, 
magnitude and location of earthquake), which 
might have damaging effects in a region. 
Identifying regions with high seismic hazards is 
important in planning risk mitigation strategies and 
can help city planners to identify where to enforce 
stricter construction standards as well. Generally, 
seismic hazard maps are produced based on limited 
factors such as ground velocity and ground 
acceleration for example (Tavakoli & Ghafory-
Ashtiany, 1999).  

Studies such as: Berg et al. 1964; Bouchon 1973; 
Davis and West 1973; Caputo et al. 1984, 1985; 
Geli et al. 1988; Johnston, 1997; Clift et al. 2000; 
Zamani and Hashemi, 2000; Chen et al. 2002; 
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Mishra et al., 2005;  Li and Li 2009; Zamani et al. 
2012; Wu et al., 2015; Genti et al. 2016, indicate 
that some geological and geophysical parameters 
such as the isostatic anomaly, topography, gravity 
anomaly, and the electromagnetic field have effects 
on the seismicity of an area. Hence, in this study, to 
fully utilize all the known parameters which may 
possibly affect the occurrence of earthquakes (mb ≥ 
4.5); a data-driven rule-extraction method called the 
Classification and Regression Tree (CART) 
(Breiman et al., 1984) was used to find the rules 
governing the earthquakes that occur. CART 
analysis is a machine learning method based on 
statistical rules that proves fruitful in both 
prediction and rule extraction problems. The 
surface and sub- surface data were used to build a 
multivariate numerical database, and then based on 
a combination of major parameters rules governing 
high impact earthquakes were extracted.  

The main aim of this paper is to introduce a 
modern data analytical and sorting technique to 
develop a useful new type of seismic hazard map, 
which can create online as well as offline and it is 
flexible and readily automated. 
 
Method of Analysis 
Data Mining 
Devices which automatically collect data, together 
with inexpensive storage devices, have accumulated 
a large database to analyze properly. Indeed, a large 
amount of data is not processed at all. Data mining 
aims to extract interpretable and actionable patterns 
of knowledge from large data sets. The patterns 
must be non-trivial, interesting, implicit, previously 
unknown and potentially useful. Stated differently, 
data mining is a technology that enables 
exploration, analysis, and visualization of 
information from very large databases at a high 
level of abstraction without a specific hypothesis in 
mind. Several tools and techniques, among which 
are classifiers such as decision trees, neural 
networks, SVM, clustering algorithms, like k-means 
or k-mode and association rules like a priori and 
FP-growth are deployed in data mining (Han & 
Camber, 2006).  
 
Decision Tree 
A decision tree is a classifier in the form of a tree 
structure with a top-down hierarchy used in 
statistics, machine learning and data mining (Fig1). 
This technique by deriving meaningful decision 
rules and maximizing differences on a dependent 

variable is often considered to improve knowledge 
representation structure (Daubie et al., 2002). 
 

 
Figure 1. A typical binary decision tree 

 
   Root node-the topmost node in a tree- and the 
internal node denote a test on an attribute and the 
leaf node or terminal node denotes the predicted 
value of the target attribute given the values of the 
attributes represented by the path from the root. 

The rules are easily interpretable allowing 
complex relationships to be represented in a 
comprehensible and an intuitive manner. The 
relationship between descriptions of objects and 
their assignment to a specific class is established by 
the rules. This technique eliminates redundant 
(unnecessary) attributes from the classification. 
Decision tree produces a directed tree as a 
predictive model. A database is classified by 
starting at the root node of the decision tree and 
testing the attribute by this node. The tree branch 
corresponding to the value of the attribute moves 
down to some internal nodes. 

This process is then repeated until a leaf node is 
reached and provides the classification of the 
instance.  

The Classification and Regression Tree is a tree-
based classification and a prediction method which 
uses recursive partitioning to split the training 
dataset into segments with similar output field 
values. CART is an approach to generating a 
learning decision tree from a training dataset to 
predict a numeric value. This algorithm spawned a 
flurry of work on decision tree induction. 

CART adopts a greedy approach in which a 
decision tree is constructed in a top-down recursive 
divide-and-conquer manner (Han and Camber, 
2006). CART produces a binary decision tree which 
has a flowchart-like tree structure. The root node 
represents the source or full training dataset and is 
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displayed at the top. The classification of a 
particular source set proceeds from top to bottom. 
The questions asked at each node concern a 
particular attribute or property of the data set, and 
the downward links or branches correspond to the 
possible answer (i.e. attribute values). Based on the 
answers, the appropriate branch or links to 
successive internal nodes are followed until a leaf 
or terminal node is reached where the value of the 
target attribute (class) is read. The classification in a 
decision tree proceeds from top to bottom. In the 
CART method, each leaf or terminal node stores a 
numeric prediction. In fact, it is the average value 
of the predicted attribute for the training dataset that 
reaches the terminal node. 

CART creates a rule for each path from the root 
to a leaf node. Each splitting criterion along a given 
path is logically ANDed to form the rule antecedent 
(.IF” part). The class prediction is the resultant leaf 
node, forming consequent of the rule (.THEN” 
part). 

R1: IF a AND b,… THEN c. 
The rules are easily interpretable allowing complex 
relationships to be represented in a comprehensible 
and an intuitive manner. The relationship between 
descriptions of objects and their assignment to a 
specific class is established by the rules. Moreover, 
the rules can be used for the classification of new 
objects. 

The advantage of using CART is that it is non-
parametric and can evaluate data that are highly 
skewed or multimodal (Lewis, 2000). CART is well 
suited for data mining since it can reveal non-
obvious and complex relationships between the 
splitting variables and the predicted variables. 
Datasets are partitioned into two subsets so that the 
records within each subset are more homogeneous 
than in the previous subset. Splitting is a recursive 
process, and the process is repeated until the 
stopping criterion or homogeneity criterion is 
reached. CART is quite flexible, allowing 
specifying the prior probability distribution in a 
classification problem. CART chooses a split at 
each node such that each child node created by the 
split is purer than its parent node. Here purity refers 
to the similarity of values in the target field. In a 
completely pure node, all the records have the same 
values as the target field. CART measures the 
impurity of a split at a node by defining an impurity 
measure. Depending on the type of the target field, 
three different impurity measures are used to find 
splits for CART models. For numeric target fields, 

the least squared deviation (LSD) impurity measure 
is used. 

The process that controls how the algorithm 
decides when to stop splitting nodes in the tree is 
the stopping criteria. Tree growth continues until 
every leaf node in the tree triggers at least one 
stopping criterion.  

Pruning is the process that examines a fully-
grown tree and removes bottom-level splits, which 
do not play an important role on the accuracy of the 
tree. In pruning, the smallest tree is created by 
keeping the cost as low as possible. A tree branch is 
removed if the cost associated with having a more 
complex tree exceeds the gain associated with 
having another level of nodes (Han and Camber, 
2006). 
 
Cross Validation 
Since data-driven methods may lead to the creation 
of models which are only "good" for the training 
data, cross validation methods are deployed to 
assess the performance of the treated models on 
"unseen" data. Cross validation is a technique for 
assessing how well the results of a statistical 
analysis can be generalized to a data set that is not 
used for training. It is used in a setting where the 
goal is classification or prediction, and one wants to 
estimate how accurately a predictive model will 
perform in practice. The data used is seldom seen at 
the time of model construction. In one round of 
cross-validation, a sample of data is partitioned into 
complementary subsets. It then performs the 
analysis on the training set, and validates the 
analysis on the validation set or testing set. A 
variety of cross validation techniques exist (Efron 
and Tibshirani, 1997), (Kohavi, 1995) and 
(McLachlan et al., 2004). In this paper 10-fold 
cross validation, 10-CV was used. In K-fold cross-
validation, the original data set is randomly 
partitioned into K- folds or subsample. The model 
is then generated excluding the data from each 
subsample in turn. The first tree is generated based 
on all of the cases except those in the first fold, and 
the second tree is based on all cases except those in 
the second sample fold. Therefore, K times the 
process of training and testing is performed, where 
in each round a single subsample is retained as the 
validation data for testing the model, and the 
remaining K−1 subsamples are used for training.  
 
Gain Summary 
The gain summary displays descriptive statistics for 
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all terminal nodes in the tree. 
The gain summary in target field with continuous 

parameter shows the weighted mean of the target 
value for each terminal node. Gains provide a 
measure of how far the mean or proportion at a 
given node differs from the overall mean. For the 
most part, the greater this difference, the more 
useful the tree is as a tool for making decisions.  
 
Data Set 
Databases are highly susceptible to missing, noisy, 
and inconsistent data. Low-quality mining results 
will be obtained from Low-quality data. If the data 
have been normalized, data mining methods 
provide better results (Han & Camber, 2006). 

In order to construct an exact Predictive Rule 
Based Seismicity Map (PRBSM) of Iran, large 
numbers of updated, numeric and normalized 
geological, geophysical and seismological 
characteristics have been compiled for the 175 
quadrangular sites of 1º area. The study area (Iran) 
with coordinates of 44°- 63° east longitude and 25°-
39° north latitude is divided into 175 quadrangles 
each covering one degree of latitude and longitude 
(None of offshore Iran and islands is included in the 
data set). These quadrangles are used as 
observations (input samples) and a large number of 
possible measures of tectonic and seismotectonic 
characteristics are considered as variables 
(attributes). Each observation or case has been 
characterized by 46 variables which seem to 
characterize the intensity and degree of contrast 
between tectonic and seismotectonic structures in 
Iran. 

In this research geological data had been 
obtained from digitized and regular geological maps 
of Iran (Geological Survey of Iran, 2004) including 
relative areas of surface rock (age and type) (%), 
fault length density and average Moho depth. 
Geophysical data were taken from Dehghani and 
Makris (1983), total magnetic intensity maps of 
Iran (Yousefi, 1989), and consist of magnetic 
intensity, free air anomaly, gravity anomaly, 
Bouger anomaly, residual Bouger anomaly and 
isostatic anomaly. Seismological data (historical 
and instrumental) were taken from earthquakes that 
occurred between the years 1900 to end of 2015 
(Ambraseys, 2001); (Engdhal et al., 2006); (ISC, 
2015) and (NEIC, 2015). It is comprised of 
earthquake magnitude, energy and number of 
earthquakes greater than mb ≥ 4.5; (Table 1). 

Generally, it is useful to forecast destructive 

earthquakes with magnitudes more than 6 but due 
to the fact that many towns, and villages in Iran 
have low resistance against earthquakes a threshold 
magnitude of MC = 4.5 has been selected (Zamani 
and Agh- Atabai, 2009; Zamani et al., 2012). In 
addition, using a threshold magnitude of MC=4.5 
makes model validation easier because of the poor 
statistics of the very few large earthquakes. 
Characteristically, the geophysical and geological 
variables gathered are not only correlated with each 
other, but each attribute is also influenced by the 
other attributes. Therefore, in many cases the 
attributes are interwoven in such a way that they 
yield little information about the region under 
investigation when analyzed individually (Zamani 
& Khalili, 2006; Zamani et al., 2011, 2012). 
 
Results and Discussion 
An earthquake is a very complex process with 
several parameters. Knowing the most significant 
factors associated with earthquakes can help build 
predictive models. In this study, a numeric and 
updated catalogue of geological, geophysical and 
seismological data of Iran had been gathered. Then 
a rule extraction method was used to determine the 
combination of parameters that correlate well with 
earthquakes. In other words, almost all the possible 
factors and parameters that may have affected 
earthquake occurrences were collected and 
analyzed using the non-parametric data-driven 
method to forecast earthquakes.  

To this end, the earthquake records from 1900 up 
to the end 2006 (Fig. 2) were collected to build a 
predictive model. The target for the model was the 
number of earthquakes which were greater than 
mb≥4.5 (NEGMB). All the variables presented in 
Table 1 were used as potential predictor variables. 
Cross-validation was deployed to counter 
overfitting. Cross validation is a technique for 
assessing how the results of a statistical analysis 
will generalize an independent data set. It is used 
mainly in settings where the goal is prediction and 
where one wants to estimate how accurately a 
predictive model will perform in practice. As the 
input variables were mainly continuous (numeric), 
CART was run in the regression-tree mode. This 
method produced the decision tree diagram (Fig. 3) 
and the gain summery (Table 2).  

Nodes with index values greater than 100% 
indicate that a better chance exists of accurate 
prediction by selecting records from these nodes 
instead of random selection from the entire sample.  
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Table 1. Attributes used for constructing the Predictive Rule Based Seismicity Map (PRBSM), measured within 1º Quadrangles 

No. Attributes 
   

No. Attributes 
    

1 Maximum earthquake magnitude(mb), MXEMG 24 Minimum gravity anomaly (mgal), MIGRV 

2 
Number of earthquakes greater than mb≥4.5, 
NEGMB 

25 Range of  free air anomaly (mgal), RAFRA 
 

3 Maximum seismic energy released (j), MXSER 26 Average free air anomaly (mgal), AVFRA 
4 Fault length density (km-1), FLTLD 27 Maximum free  air anomaly (mgal), MXFRA 
5 Range of  isostatic anomaly (mgal), RA ISO 28 Minimum free air anomaly (mgal), MIFRA 
6 Average isostatic  anomaly (mgal), AVISO 29 Range of  magnetic intensity (gamma), RAMGI 
7 Maximum isostatic  anomaly (mgal), MXISO 30 Average magnetic intensity (gamma), AVMGI 
8 Minimum isostatic  anomaly (mgal), MIISO 31 Maximum magnetic intensity (gamma), MXMGI 
9 Range of regional Bouger anomaly (mgal), RAEGB 32 Minimum magnetic intensity (gamma), MIMGI 

10 Average regional Bouger  anomaly (mgal), AVREG 33 Average Moho depth (km), AVMOD 

11 
Maximum regional Bouger anomaly (mgal), 
MXREG 

34 Range of elevation (m), RAELV 
  

12 Minimum regional Bouger anomaly (mgal), MIREG 35 Average elevation (m), AVELV 
13 Range of residual Bouger  anomaly (mgal), RARES 36 Maximum elevation (m), MXELV 
14 Average residual Bouger  anomaly (mgal), AVRES 37 Minimum elevation (m), MIELV 

15 
Maximum residual Bouger  anomaly (mgal), 
MXRES 

38 
Relative area of surface 
unconsolidatedcover(%),RAUNR 

16 Minimum residual Bouger  anomaly (mgal), MIRES 39 Relative area of surface sedimentary rocks (%),RASER 

17 Range of  Bouger  anomaly (mgal), RABUG 40 
Relative area of surface metamorphic rocks 
(%),RAMER 

18 Average  Bouger  anomaly(mgal), AVBUG 41 Relative area of surface igneous rocks (%),RAIGR 

19 Maximum Bouger  anomaly(mgal), MXBUG 42 
Relative area of surface ophiolitic rocks 
(%),RAOPR  

20 Minimum Bouger anomaly(mgal), MIBUG 43 
Relative area of surface Cenozoic rocks 
(%),RACER

21 Range of gravity anomaly (mgal), RAGRV 44 
Relative area of surface Mesozoic rocks 
(%),RAMER  

22 Average gravity anomaly (mgal), AVGRV 45 
Relative area of surface Paleozoic rocks 
(%),RAPAR  

23 Maximum gravity anomaly (mgal), MXGRV 46 Relative area of surface Proterozoic rocks (%),RAPTR 
 

 
Figure 2 Seismicity map of IRAN (1900-2006) 
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Table 2. The Gains summery. Node Number: the number of node in the decision tree. Number of observations in node: The total 
number of records in each node. Node percentage: The percentage of all records in the dataset that fall into this node. Predicted values 
%: The percentage of predicted target for each node. Gains index value %: The Gains index measures how well a given node separates 
the attributes of the training examples according to their target classification.  

Rule No. Node Number 
Number of 

Observations in Node 

Node 

Percentage 

Predicted 

values % 

Gain Index 

value % 

1 12 7 3.6 71 452.3 

2 24 3 1.5 55.6 361 

3 14 2 1.3 48.1 311 

4 11 6 3.2 42 257.4 

5 23 7 4.1 38 249.2 

6 26 3 1.1 29 200.4 

7 22 4 2.2 24 144.4 

8 15 3 1.1 22 140.2 

9 30 2 1.7 16 118.3 

10 10 21 12.1 17 99.5 

11 29 2 1 14.4 94.1 

12 20 8 4.5 14.2 92.7 

13 25 7 4.1 13.1 85.5 

14 19 12 6.8 11.6 75.3 

15 21 5 2.9 9.1 59.1 

16 13 25 14.3 8.8 57.7 

17 32 41 23.4 5.7 36.9 

18 27 3 1.7 4.8 31.3 

19 31 14 8 3 19.9 

 

 
Figure 3. The CART binary decision tree. Nodes with gain index values greater than 100% are highlighted in the figure 
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The gain index percentage tells us how much 
greater the proportion of a given target at each node 
differs from the overall proportion. 

The index values in this paper show that node 12 
has the highest possible rate (a value of 452%) for 
the entire data. This node is thus almost 4.5 times 

more likely to get a hit with these records than 
using a random selection. The gain index values 
show that of the 19 nodes, 9 have index values 
greater than 100%. The rules of the top nine nodes 
are depicted in Table 3: 

 
Table. 3The nine most reliable nodes, with their associated rules. The number listed after each set of initials in Table 3, is its attribute 
in Table 1. 

Rule 
No. 

Node 
No. 

IF THEN NEGMB(4) 

1 12 RAISO(6) > 62.5   and   MIISO(9)  ≤ -43.5   and   RARES(14)  > 57.5 71% 

2 24 
RAISO(6) ≤ 62.5   and   RAMGI(30) ≤ 188.5   and   MIREG(13) ≤ -126.5   and   
AVISO(7)  > -23.2  and   MIBUG(21)  > - 11835 

55.6% 

3 14 RAISO(6) > 62.5  and  MIISO(9)  > -43.5  and  PAPTR(47) > 1.2 48.1% 

4 11 RAISO(6) > 62.5  and  MIISO(9)  ≤ -43.5  and  RARES(14)  ≤ 57.5 42% 

5 23 
RAISO(6) ≤ 62.5   and   RAMGI(30) ≤ 188.5   and   MIREG(13) ≤ -126.5   and   
AVISO(7)  > -23.2  and MIBUG(21)  ≤ -11835 

38% 

6 26 
RAISO(6) ≤ 62.5   and   RAMGI(30) ≤ 188.5   and   MIREG(13) > -126.5   and   
AVREG(11)  ≤ -40 and  MXBUG(20) > -5100 

29% 

7 22 
RAISO(6) > 62.5  and  MIISO(9) > -43.5  and  PAPTR(47) ≤ 1.2  and  
RAUNR(39) >23.05 

24% 

8 15 
RAISO(6) ≤ 62.5  and  RAMGI(30) ≤ 188.5  and  MIREG(13) ≤ -126.5  and  
AVISO(7)  ≤ -23.2 

22% 

9 30 
RAISO(6) ≤ 62.5  and  RAMGI(30) >188.5  and  MXEMG (3) ≤ 5.3  and  
AVREG(11)  ≤ -163.9  and  RAGRV(22)  > 144175 

16% 

 
Statistically, significant rules associated with the 

patterns of earthquakes were found. It is interesting 
that the results indicate that the isostatic anomaly is 
a very important parameter in seismic activity. 
Other important factors in decreasing the order of 
importance are: regional Bouger anomaly, Bouger 
anomaly and gravity anomaly respectively. In 
CART method, the decision tree was built to 
decrease the importance, that is, the most important 
of the parameters come first; the parameters for the 
next important come next, and so on.  

Our results have a good correlation with previous 
studies. Zamani and Hashemi, 2000, have reported 
positive correlations between seismicity and 
isostatic anomalies from the Iranian plateau. 
Vertical differential stress in Kachchh may be 
further accentuated due to large-scale deposition of 
sediments in the adjoining north Arabian Sea (Clift 
et al., 2000). Mishra et al., 2005, have 
demonstrated which presence of thick crustal roots 
give rise to buoyancy and may lead to the 
accumulation of local stress, especially at the 
periphery of the crustal roots. Wu et al., 2015, have 

explained that earthquakes in Mid-Yunnan and the 
surrounding area often occur at the maximum value 
of the gravity gradient zone and negative magnetic 
anomaly regions. Genti et al., 2016 have concluded 
that flexural rebound induced by surface processes 
(gravitational potential energy associated with 
topography and dense crustal blocks; isostatic 
compensation in response to denudation and/or 
sedimentation) is able to explain the seismicity in 
Central–Western Pyrenees. 

In this research, the PRBSM is defined as the map 
of regions with a high hazard of future earthquake 
occurrence (mb ≥4.5). Using the above-mentioned 
rules and attributes produced the PRBSM of Iran 
(Fig4). The map indicates that Bandar Abbas in 
southern Iran, parts of the Zagros simply folded belt, 
the Oman line (a limited area southern Iran) and the 
northern portion of the Lut block eastern Iran are 
regions of high hazards of future earthquakes mb ≥4.5. 
To assess the accuracy of the rules applied, the 
seismicity map of Iran based on earthquakes (mb 
≥4.5) that occurred from the year 2007 up to End of 
2015 was produced (Fig5).  

 

 



240 Khalili & Zamani        Geopersia, 6 (2), 2016 

 
Figure 4. The Predictive Rule Based Seismicity Map of Iran (PRBSM) 

 
Figure 5. The Seismicity map of Iran based on earthquakes (mb ≥4.5) from the years 2007 up to end of 2015. Nodes of figure 4 are 
highlighted in this map 
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The model has been validated by comparing the 
predicted nodes (regions) in the model (Fig4) with 
the observed seismicity map of Iran (Fig5) for the 
period of 2007 up to end of 2015. 

The evidence indicates that most of the 
earthquakes that occurred" between" 2007 to end of 
2015 in fact happened in the areas predicted by the 
PRBSM model. The results indicate that the model 
has high accuracy and the introduced approach is a 
reliable method for knowledge extraction from the 
seismicity pattern of Iran. This paper applies a new 
class of data-driven rule–based model to create 
online as well as offline interactive seismic hazard 
map that is flexible and readily automated. This 
model might be improved and refined by the 
collection of new geological and geophysical data. 
 
Conclusion 
This research applies a modern data analytical and 
sorting method to develop a useful new type of 
seismic hazard map. A numeric and updated 
catalogue of geological, geophysical and 
seismological data from Iran have been used to 
build a multivariate numerical database, and then 
based on a combination of major parameters rules 
governing high impact earthquakes were extracted. 
The rules extracted from among the attributes were 

significant statistically to assure that the mapped 
patterns are not random and in fact relate to 
earthquake locations. The map shows Bandar 
Abbas in southern Iran, the Zagros simply folded 
belt, the Oman line and the northern portion of Lut 
block in eastern Iran have high seismic hazards for 
future number of earthquakes occurring with 
mb≥4.5. Furthermore, the results indicate that the 
model has high accuracy. Therefore, it is a reliable 
method for knowledge extraction from the 
seismicity pattern of Iran to forecast future 
earthquake hazards. The analysis also shows that 
the isostatic anomaly correlates best with these 
earthquakes. A distinctive character of this paper is 
the predictive rule based model that can create map 
online as well as offline that is flexible and readily 
automated. Our approach to seismic hazard analysis 
is a starting point and is expected to be improved 
and refined by collecting new data. 
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