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Abstract 

On the onset of triple-diffusive convection in a horizontal layer of nanofluid heated from below and salted from above 
and below is studied both analytically and numerically. The effects of thermophoresis and Brownian diffusion 
parameters are also introduced through Buongiorno model in the governing equations. By using linear stability analysis 
based on perturbation theory and applying normal modes analysis method, the dispersion relation accounting for the 
effect of various parameters is derived. The influences of solute-Rayleigh number, analogous solute-Rayleigh number, 
thermo-nanofluid Lewis number, modified diffusivity ratio and nanoparticle Rayleigh number on the stability of 
stationary convection are presented analytically and graphically. The solute Rayleigh number and analogous solute 
Rayleigh number have stabilizing effects on the onset of stationary convection for both top-heavy and bottom-heavy 
arrangements. The thermo-nanofluid Lewis number and diffusivity ratio have stabilizing effects on the onset of 
stationary convection while nanoparticle Rayleigh number has destabilizing effect on the onset of stationary 
convection. The necessary conditions for the existence of oscillatory modes are also obtained. A very good agreement 
is found between the results of present paper and earlier published results. 
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1.   Introduction 

Double-diffusive convection is a natural phenomenon 
that has various applications in different areas such as 
geophysics, soil sciences, food processing, oil 
reservoir modeling, oceanography, limnology and 
engineering, among others. Double-diffusive 

 Corresponding Author. Email Address: drgcrana15@gmail.com  

convection is a mixing process of two fluid 
components which diffuse at different rates. Brakke 
[1] explained a double-diffusive instability that occurs 
when a solution of a slowly diffusing protein is layered 
over a denser solution of more rapidly diffusing 
sucrose. Double-diffusive convection problems related 
to different types of fluids and geometric 
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configurations have been extensively studied [2-11].   

All the above researchers have considered only two 
fluid component systems. However, there are many 
situations in which more than two fluid components 
involved. Examples of such multiple diffusive 
convection fluid systems include the solidification of 
molten alloys, geothermally heated lakes and sea water 
etc. Griffiths [12], Turner [13], Pearlstein et al. [14] 
and Lopez [15] studied the triply diffusive convection 
fluid (where the density depends on three 
independently diffusing agencies with different 
diffusivities). These researchers found that small 
concentrations of a third component with a smaller 
diffusivity can have a significant effect upon the nature 
of diffusive instabilities and ‘oscillatory’ and direct 
‘salt finger’ modes are simultaneously unstable under 
a wide range of conditions, when the density gradients 
due to components with the greatest and smallest 
diffusivity are of the same signs. Some fundamental 
differences between the double and triple diffusive 
convection are noticed by these researchers. The 
presence of more than one chemical dissolved in fluid 
mixtures is very often requested for describing natural 
phenomena (contaminant transport, underground 
water flow, acid rain effects, worming of stratosphere) 
(see, Rionero [16]). Recently, Chand [17] studied 
Linear stability of triple-diffusive convection in 
micropolar ferromagnetic fluid saturating porous 
medium while triple-diffusive convection in Walters’ 
(model B’) fluid with varying gravity field saturating a 
porous medium studied by Kango et al. [18]. 

In recent years, much research has focused on the 
study of nanofluids with a view to applications in 
several industries such as the automotive, 
pharmaceutical and energy supply industries. A 
nanofluid is a colloidal suspension of nano sized 
particles. Common fluids such as water, ethanol or 
engine oils are typically used as base fluids in 
nanofluids. Among the variety of nanoparticles that 
have been used in nanofluids, it can be found oxide 
ceramics such as Al2 O3 or CuO, nitride ceramics like 
AlN or SiN, and several metals such as Al or Cu. Choi 
[19] was first who coined the term nanofluid. 
Nanofluids are being looked upon as great coolants 
due to their enhanced thermal conductivities, and 
suspensions of nanoparticles are being developed 
medical applications including cancer therapy. 
Buongiorno [20] proposed that the absolute 
nanoparticle velocity can be viewed as the sum of the 
base fluid velocity and a relative slip velocity. Thus, 
convection of nanofluids based on Buongiorno’s 
model has attracted great interest. 

A considerable number of double-diffusive 
convection problems in a horizontal layer saturated by 

a nanofluid have also been numerically and 
analytically investigated [21-27]. In this paper, the 
study is extended to triple-diffusive convection in a 
layer of nanofluid heated from below and salted from 
above and below by salt S' and S'',  respectively. To the 
best of researchers knowledge, this original study has 
not been published yet. 

2.   Mathematical Model and formulation 

We consider an infinite horizontal layer of nanofluid 
of thickness d, bounded by the planes z = 0 and z = d 
heated from below and salted from above and below 
by salt S' and S''  respectively as shown in Figure 1. 
Each boundary wall is assumed to be impermeable and 
perfectly thermal conducting. The layer is acted upon 
by a gravity force g = (0, 0, -g) aligned in the z 
direction. The temperature T, concentrations C', C'' 
and the volumetric fraction of nanoparticles  at the 
lower (upper) boundary is assumed to take constant 

values T0, 
'
0C , 

''
0C  and 0 (T1, 

'
1C , 

''
1C  and 1), 

respectively. 

g = g(0,0,-g)

Heated from below and soluted from 
below by salt S’ and above by salt S’’

X

Y

Z

Z = 0

Z = d

O

Nanofluid
Layer

T ,C’ , 1 1 1C’’ , 1

T ,C’ , 0 0 0C’’ , 0

Figure 1. Physical configuration 

2.1.    Governing Equations 

Let p,,  and q (u, v, w), denote respectively, the 
density, viscosity, pressure and Darcy velocity vector. 
Then, the governing equations of conservation of mass 
and momentum for nanofluid (Boungiorno [20], Nield 
and Kuznetsov [21], Chand [17],   Kango et al. [18] 
and Rana and Chand [27]) in a triple-diffusive 
convection are    

0,=q                                 (1) 

' ''

2

0

' ' '' ''
0 0

1
1 ,

f

T

p f

C C

d = p +
dt

T T

C C C C

q q

g

(2)



Vol. 47, No. 1, June 2016 

69 
 

where q1
tdt

d  stands for convection 

derivative,  is the volume fraction of nano particles, p 
is the density of nano particles and f  is the density of 
base fluid, T

 is the uniform temperature gradient , 

'C
 and ''C

 uniform solute gradients and we 

approximate the density of nanofluid by that of base 
fluid (i.e., )f  (Boungiorno [20], Nield and 
Kuznetsov [21], Sheu [22], and Rana and Chand [27]).  

The researchers approximate the density of the 
nanofluid by that of the base fluid that is to be 
considered f  (Boungiorno [20], Nield and 
Kuznetsov [21], Sheu [22], and Rana and Chand [27]).  

The continuity equation for the nanoparticles 
(Buongiorno [20] ) is 

.. 2

1

2 T
T
D+D=+

t
T

Bq                 (3) 

The thermal energy equation for a nanofluid is 

2

T
Bp

Tc . T T
t

Dc D . T T. T
T

q
,          (4) 

where ( c) is heat capacity of  fluid, ( c )p is heat 
capacity of  nano particles.  

The conservation equation for solute 
concentrations (Kuznetsov and Nield[21]) are 

.. '2'
'

' CD=C+
t

C
Sq                            (5) 

.. ''2''
''

'' CD=C+
t

C
Sq                              (6) 

where 'SD  and ''SD  are the solute diffusivities.  

The boundary conditions  
' '

0, 0   0

2
'' ''

0 1 2

w 0,    T T     , C  C  , 

wC  C , 0 at    z 0,
z

w
z

        (7) 

' ' '' ''
1, 1 1

2

1   2 2

w 0,    T T   C  C  , C  C  

w , 0  at    z 1.
z

w
z

        (8)
 

We introduce non-dimensional variables as  

,
d

zy,x,)z*,y*,(x*,

d,wv,u,) w*,v*,(u*,
m

,
d
t

t* 2
f

,pdp*
f

2

,*
01

0

,
TT
TTT*

10

0 ,
C
C*C '

1
'
0

'
0

'

C
C

,
C
C*C ''

1
''
0

''
0

''

C
C

cf
 

There after dropping the dashes ( * ) for convenience. 

Eqs. (1)-(6) in non-dimensional form can be 
written as  

0,. =q                                           (9) 

'

''

2

'

'

''

''

1

ˆ ˆ ˆ ˆ

ˆ

r

S
z z z z

S
z

= p
P t

R C
Rm e + RaT e Rn  e e

Le
R C

e ,
Le

q q q q

             (10) 

T,
Ln
N+

Ln
=+

t
A 221.q          (11) 

2. .

.

B

A B

NT + T = T + T +
t Ln

N N T T,
Ln

q

            
(12) 

.1. '2
'

'
'

C
Le

=C+
t

C q                         (13) 

.1. ''2
''

''
''

C
Le

=C+
t

C q                        (14) 

where we have dimensionless parameters as: 
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Prandtl number   ; Pr
f

=                          (15) 

Thermosolutal Lewis number   ; 
'

'

S

f

D
=Le     16) 

Analogous thermosolutal Lewis number

  ; 
''

''

S

f

D
=Le                                                    (17) 

Thermo-nanofluid Lewis number
  ; 

B

f

D
=Ln

   (18) 

Thermal Rayleigh Number 

  ; 
g 10

3
T

f

TTd
=Ra                         (19) 

Solute Rayleigh Number   ; 
g

'

'
'
1

'
0C'

SD
CC

=Rs
                           

(20) 

Analogous solute Rayleigh Number 

  ; 
g

''

''
''

1
''

0C''

SD
CC

=Rs
                       (21) 

Density Rayleigh number 

  ; 
gd-1

R
f

3
00p

m

          (22)
  

Nanoparticle Rayleigh number

  ; 
gd-

R 
f

3
01pn

           (23) 

 

Modified diffusivity ratio 
  ; 

011

10

TD
TTD

=N
B

T
A

 
(24) 

Modified particle- density ratio

  ; 
c

-c
N 

f

01p
B

                                (25) 

The dimensionless boundary conditions are  

' ''

2

1 2

0,    T 1 , C  1, C  1,
w 0,   0    at    z 0
z

w= =
w = =

z

         (26) 

' ''

2

1 2

0,  0, C  0, C  0,
w 0, 1  at  1.
z

w = T =
w = z =

z

           (27) 

2.2.   2.2. Basic Solutions 

Following Nield and Kuznetsov [21], Sheu [22], Rana 
et al. [25, 26] and Rana and Chand [27].  

We assume a quiescent basic state that verifies 
' '

b

'' ''
b

0, , C C z , 

C C z , , .
b

b b

u = v = w = p = p z

T = T z = z
     

(28) 
Therefore, when the basic state defined in (28) is 

substituted into Eqs. (9) – (14), we get 

' ''
' ''

' ''

0

, 

b
D b

b b b

dp z
= Rm + R T z

dz
Rs RsC z C z Rn z
Le Le

          (29) 

0,
22

=
dz

zTd
N+

dz
zd

2
b

A2
b                        (30) 

2

2

0,

b b bB
2

bA B

d T z d z dT zN+ +
dz Ln dz dz

dT zN N
Le dz

               (31) 

0,1 '2

' =
dz

zCd
Le 2

b                                          (32) 

0,1 ''2

'' =
dz

zCd
Le 2

b                                        (33) 

Using boundary conditions given in Eqs. (26), and 
(27) in the Eqs. (29) – (33), the solution is given by 

' ''
b b

, (z) 1-z, 

C (z) 1-z,C (z) 1-z.
b bz = z T

                            (34) 

    According to Buongiorno ( 2 0 0 6 ) , for most 

nanofluid investigated so far 0/nL  is large, 
of order 105-106 and since the nanoparticle fraction 
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decrement  01  in not smaller than 10-3 

which means nL  is large. Typical value of NA is 
not greater than about 10. Then, the ex pon en t s  in  
equa t ion  (35 ) are small. Using boundary conditions 
given in Eqs. (26), and (27) in the Eqs. (29) – (33), by 
expanding and retaining up to the first order is 
negligible and so to a good approximation for the 
solution 

' ''
b b

, (z) 1-z, 

C (z) 1-z,C (z) 1-z.
b bz = z T

                                (35) 

These results are identical with the results obtained 
by Nield and Kuznetsov [21], Sheu [22], Rana et al. 
[25, 26] and Rana and Chand [27]. 

 

2.3.   Perturbation Solutions 

To study the stability of the system, the researchers 
superimposed infinitesimal perturbations on the basic 
state, so that  

' '
b

'' ''
b

0 ,

 1 , C 1

,C 1 ,

, .b

u,v,w = +q u,v,w

T = z +T z C

z C

= z+ p = p + p

q

        (36)                    
Using Eq. (36) into Eqs. (9) – (14), linearizing the 

resulting equations by neglecting nonlinear terms that 
are product of prime quantities and dropping the 
primes ( ) for convenience, the following equations 
are obtained, as follows:  

 0,=q                                                           (37) 

'

''

2
D

'

'

''

''

1 ˆR T 
Pr

ˆ ˆ ˆRn  

ˆ

z

S
z z z

S
z

q = p + e
t

R CRs Ce e e
Le Le

R C
e ,

Le

q

             (38) 

T,
Ln
N+

Ln
=w+

t
A 221                     (39) 

2

2N .

B

A B

NT Tw = T +
t Ln z z

N T
Ln z

             (40) 

.1 '2
'

'

C
Le

=w
t

C
                                (41) 

.1 ''2
''

''

C
Le

=w
t

C
                            (42) 

Boundary conditions for Eqs. (37) - (42) are  
' ''

2

1 2

0,    T 0 , C  0, C  0
w, 0,   0    at  z 0
z

w = =
w = =

z

 , (43) 

' ''

2

1 2

0,  0, C  0, C  0
w, 0,  0  at  1.
z

w = T =
w = z =

z

          (44) 

The parameter Rm is not involved in Eqs. (37)-(42), 
it is just a measure of the basic static pressure gradient.  

The eight unknown’s u, v, w, p, T, C', C'' and 
 can be reduced to five by operating Eq. (38) with 

curl, .curlze which yields  

2 4 2

' ''
2 2 ' 2 ''

' ''

1
Pr D H

H H H

w w R T
t

Rs RsRn C C ,
Le Le

                 (45) 

where .22
2

y
+

x
=H  is the two-dimensional 

Laplace operator on the horizontal plane and  
qcurle z .ˆ is the z-component of vorticity. 

3.   Normal Modes Analysis Method 

The disturbances into normal modes of the form are 
expressed as 

 
' '', ,C ,C , 

, , z , ( ), exp

w T =

W z z z z ilx+imy+ t ,
 (46) 

where l,, m are the wave numbers in the x and y 
direction, respectively, and  is the growth rate of the 
disturbances. 

Substituting Eq. (46) into Eqs. (45) and (39)-(42), 
we obtain the following eigen value problem 
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22 2 2 2

'
2 2

'

'
2

'

Pr

0,

2
D

D a W D a W

Rsa R a Rn a
Le

Rs a =
Le

            (47) 

0,1 22
' =aD

Le
+W               (48) 

0,1 22
'' =aD

Le
+W            (49) 

2

2

2

0,

B A B

B

N N ND D D
W Ln Ln

a
N D =
Ln

         (50) 

2 2

2 2

1

1 0,

ANW D a
Ln

D a =
Ln

                      (51) 

20,    D 0, 0, 0,
 0, 0 at    z 0     and
W = W =

= = =
              (52) 

20, 0, 0, 0,
0, 0 at 1.

W = D W =
= = z =

                 (53) 

where 
dz
d=D and a2 = l2+ m2 

 is the dimensionless 

horizontal wave number. 

4.   Linear Stability Analysis and Dispersion 
Relation 

Considering solutions W, , ,  and  of the form 

0

0

sin  , sin , 

sin ,

sin , sin  . 

0 0

0

W = W z = z

z

z = z
         (54) 

Substituting (54) into Eqs. (47) – (51) and integrating 
each equation from z = 0 to z = 1, the researchers 
obtain the dispersion relation  

2
2 2

2

' ''
2

' 2 '' 2

2 2

2

PrJ .
Pr

JRa= J
a

Rs RsJ
Le J Le J

J Ln NaJ
Rn

Ln J

             (55)                               

Eq. (56) is the required dispersion relation 
accounting for the effect of Prandtl number, thermo-
solutal Lewis number, analogous thermo-solutal Lewis 
number, thermo-nanofluid Lewis number, solute 
Rayleigh Number, analogous solute Rayleigh Number, 
nanoparticle Rayleigh number, and modified 
diffusivity ratio on the onset of triple diffusive 
convection in a layer of nanofluid.  

     To examine the stability of the system, the real part 

of is set to zero and we take ii in Eq. (56), 
then we obtain 

2

2

2 4 2 4 2 '
'

2 4 2 '

4 2 24 2 ''
''

4 2 24 2 ''

1

Pr
Pr

,

i i

i

A ii

ii

i

J J J LeRa= Rs
a J Le

J Ln N LnJ Le Rs
J LnJ Le

i

   (56) 

where  

2

2

2 '4
'

1 2 4 2 '

2 '' 2
''

4 2 24 2 ''

1Pr 1
Pr

1 1
.

i

A

ii

J LeJ
= Rs

a J Le

J Le J Ln N Ln
Rs Rn

J LnJ Le

 (57) 

Ra must be real as it is a physical quantity. Thus, it 

follows from Eq. (57) that either 0i  (exchange 

of stabilities, steady state) or �������� 0i , 
overstability or oscillatory onset). 

5.   The Stationary Convection  

For stationary convection, putting i = 0 in equation 
(56), we obtain 

32 2
'

2

''
A

Rs

Rs - Ln N Rn.

s

a
Ra =

a                (58) 
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Eq. (58) expresses the thermal Rayleigh number as 
a function of the dimensionless resultant wave number 

a and the parameters ,,, ''' LnRsRs  Rn, NA. Eq. (58) 
is identical to that obtained by Nield and Kuznetsov 
[21], Sheu [22], Rana et al. [25, 26] and Rana and 
Chand [27] . Also, in Eq. (58) the particle increment 
parameter NB does not appear, and the diffusivity ratio 
parameter NA  appears only in association with the 
nanoparticle Rayleigh number Rn. This implies that 
the nanofluid cross-diffusion terms approach to be 
dominated by the regular cross-diffusion term. 

In the absence of the solute gradient parameter Rs'', 
Eq. (58) reduces to 

32 2
'

2

,

s

A

a
Ra Rs

a
Ln N Rn

                           (59) 

Equation (59) is the same as the results derived by 
Nield and Kuznetsov [21], Sheu [22], Rana et al. [25, 
26] and Rana and Chand [27]. 

The critical cell size at the onset of instability is 
obtained by minimizing Ra  with respect to a. Thus, 
the critical cell size must satisfy 

0,=
a

Ra

ca=a

 

Equation (58) which gives   

2ca .              (60)   

And the corresponding critical thermal Rayleigh 

number cRa  on the onset of stationary convection is 
given by 

4
'

''
A

27 Rs
4

Rs - Ln N Rn.

c
Ra =

                                 (61) 

It is noted that if Rn is positive then Ra is 
minimized by a stationary convection.  The result 
given in equation (61) is a good agreement with the 
result derived by Sheu [22] and Rana and Chand [27]. 

In order to study the effect of solute Rayleigh 
number ( 'Rs ), analogous solute Rayleigh number  

( ''Rs ), thermo-nanofluid Lewis number (Ln), 
diffusivity ratio ( AN ) and nanoparticle Rayleigh 

number ( Rn ) on the stationary convection, the 

behaviour of 
'Rs

Ra s , 
''Rs

Ra s , 
Ln
Ra s , 

A

s

N
Ra

and 
Rn
Ra s  analytically are examined by the 

researchers. 

From Eq. (58), we obtain 

,1' =
Rs
Ra s          (62) 

which is positive; therefore, solute Rayleigh number (
'Rs ) inhibits the onset of triple-diffusive stationary 

convection implying thereby solute Rayleigh number (
'Rs )  has stabilizing effect on the system which is an 

agreement with the results derived by Nield and 
Kuznetsov [21], Sheu [22], Rana et al. [25, 26] and 
Rana and Chand [27]. 

Figure 2. Variation of stationary thermal Rayleigh number 
sRa
 
 with the wave number a fordifferent values of solute 

Rayleigh number ( 'Rs ) 

As shown in Figure 2, the stationary thermal 

Rayleigh number sRa   is plotted against 
dimensionless wave number a different values of 
solute Rayleigh number ( 'Rs ).  This shows that as 

'Rs  increases, the stationary thermal Rayleigh 

number sRa)(   also increases. Thus, solute Rayleigh 

number ( 'Rs ) has stabilizing effect on stationary 
convection which is in good agreement with the result 
obtained analytically from Eq. (62).   

It is evident from Eq. (58) that 

,1'' =
Rs
Ra s                                         (63) 

which is positive; therefore, analogous solute Rayleigh 
number ( ''Rs ) inhibits the onset of triple-diffusive 
stationary convection implying thereby solute 
Rayleigh number ( ''Rs )  has stabilizing effect on the 
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system which is an agreement with the results derived 
by Chand [17] and Kango et al. [18]. 

Figure 3. Variation of stationary thermal Rayleigh number 
sRa
 
 with the wave number a fordifferent values of 

analogous solute Rayleigh number ( ''Rs ) 

Figure 3 depicts that the stationary thermal 

Rayleigh number sRa   is plotted against 
dimensionless wave number a different values of 
solute Rayleigh number ( ''Rs ).  This shows that as 

'Rs  increases, the thermal Rayleigh number sRa)(
also increases. Thus, solute Rayleigh number ( ''Rs ) 
has stabilizing effect on stationary convection which is 
in good agreement with the result obtained analytically 
from Eq. (63).   

From Eq. (58), we obtain 

,Rn=
Ln
Ra s           (64) 

implying thereby thermo-nanofluid Lewis number (
Ln) inhibits the onset of triple-diffusive stationary 
convection. Thus, thermo-nanofluid Lewis number (
Ln) has stabilizing effect on the system if Rn < 0 (i.e., 
bottom heavy arrangement) which is a good agreement 
with the results derived by Nield and Kuznetsov [21], 
Sheu [22], Rana et al. [25, 26] and Rana and Chand 
[27]. 

As shown in Figure 4, the stationary thermal 

Rayleigh number sRa   is plotted against 
dimensionless wave number a different values of 
thermo-nanofluid Lewis number (Ln).  This shows 
that as Ln increases, the thermal Rayleigh number 

sRa   also increases for bottom-heavy arrangements. 

Thus, of thermo-nanofluid Lewis number (Ln) has 
stabilizing effect on stationary convection which is in 
good agreement with the result obtained analytically 
from Eq. (64).   

Figure 4. Variation of stationary thermal Rayleigh number 
sRa
 
 with the wave number a fordifferent values of 
thermo-nanofluid Lewis number ( Ln) 

From Eq. (58), we obtain 

,Rn=
N
Ra

A

s    (65) 

implying thereby diffusivity ratio ( AN ) inhibits 
the onset of triple-diffusive stationary convection. 
Thus, diffusivity ratio ( AN ) has stabilizing effect on 
the system if Rn < 0 (i.e., bottom heavy arrangement) 
which is a good agreement with the results derived by 
Nield and Kuznetsov [21] , Sheu [22], Rana et al.  
[25,26]  and Rana and Chand[27] 

 

Figure 5. Variation of stationary thermal Rayleigh number 
sRa
 
 with the wave number a fordifferent values of 

diffusivity ratio ( AN ) 

In Figure 5, the stationary thermal Rayleigh 

number sRa   is plotted against dimensionless wave 
number a different values of diffusivity ratio ( AN ) as 
shown.  This shows that as Ln increases slightly, the 

thermal Rayleigh number sRa   also increases for 
bottom-heavy arrangements. Thus, diffusivity ratio (

AN ) has low stabilizing effect on stationary 
convection which is in good agreement with the result 
obtained analytically from Eq. (65).   

NA = 9
NA = 1
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It is evident from Eq. (58) that 

,A
s NLn=

Rn
Ra            (66) 

which is negative implying thereby nanoparticle 
Rayleigh number ( Rn ) hastens the triple-diffusive 
convection implying thereby nanoparticle Rayleigh 
number ( Rn ) has destabilizing effect on the system 
which is a good agreement with the results derived by 
Nield and Kuznetsov [21], Sheu [22], Rana et al. [25, 
26] and Rana and Chand [27]. 

Figure 6. Variation of stationary thermal Rayleigh number 
sRa

 
 with the wave number a for different values of 
nanoparticle Rayleigh number ( Rn ) 

Figure 6 shows, the stationary thermal Rayleigh 

number sRa   is plotted against dimensionless wave 
number a for different values of nanoparticle Rayleigh 
number ( Rn ).  This shows that as Ln increases, the 

thermal Rayleigh number sRa    decreases for 
bottom-heavy arrangements. Thus, nanoparticle 
Rayleigh number ( Rn ) has destabilizing effect on 
stationary convection which is in good agreement with 
the result obtained analytically from Eq. (66).   

6.   OSCILLATORY CONVECTION 
The oscillatory Rayleigh number is given by 

2 2

2 4 2

2

4 2 ' 4 2 ''
' ''

4 2 ' 4 2 ''

4 2 2

4 2 2

Pr
Pr

.

D osc

A

J J
R =

a
J Le J LeRs Rs
J Le J Le

J Ln N Ln
J Ln

      (67) 
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where
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'222'''22''2'322
222
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,Pr1Pr1

Pr11Pr1Pr

2''2'22''2'''2'2''

'2''2'
'2''2'222''2'322

2

RnLeLeLnaLeLeLnNRsLeaLe
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A

22''2'22
3 LnLeLeaa .

Since Ln is of order 32 1010 , 101 AN  
and so 01 LnN A . Thus, Eq. (68) does not 

admit positive value of 
2
i  if 1, ''' LeLe  . Hence, 

the necessary conditions for the occurrence of 

oscillatory convection are 1, ''' LeLe .  

7.   Conclusions 

Triple-diffusive convection in a layer of Nanofluid 
heated from below, and soluted from below and above 
is investigated by using a linear stability analysis 
method. The main conclusions are as follows: 

 The solute Rayleigh number ( 'Rs ) and 
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analogous solute Rayleigh number ( ''Rs ) have 
stabilizing effects on the onset of stationary 
convection for both top-heavy and bottom-heavy 
arrangements as shown in figures 2 and 3, 
respectively.  

 The thermo-nanofluid Lewis number (Ln) and 
diffusivity ratio ( AN ) have stabilizing effects on 
the onset of stationary convection for bottom-
heavy arrangements as shown in figures 4 and 5, 
respectively.   

 Nanoparticle Rayleigh number ( Rn ) has 
destabilizing effect on the onset of stationary 
convection as shown in figure 6.  

 Necessary conditions for the occurrence of 
oscillatory convection are obtained and are given 

by 1, ''' LeLe .  
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