تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,397 |
تعداد دریافت فایل اصل مقاله | 97,206,055 |
بررسی و آنالیز مدل آسیبپذیری آبخوان با استفاده از توابع متعامد تجربی و تحلیل خوشهای | ||
تحقیقات آب و خاک ایران | ||
مقاله 20، دوره 47، شماره 3، آبان 1395، صفحه 637-647 اصل مقاله (1.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2016.59333 | ||
نویسندگان | ||
عمار حبیبی کندبن* 1؛ رزگار عرب زاده2؛ افشین اشرف زاده3 | ||
1دانشجوی دانشگاه تهران | ||
2دانشجو | ||
3عضو هیئت علمی | ||
چکیده | ||
یکی از مدلهای متداول در برآورد میزان آسیبپذیری آبخوان، مدل DRASTIC است. این مدل شامل هفت پارامتر، عمق تا سطح ایستابی، تغذیه خالص به آبخوان، زمینشناسی ناحیه اشباع، قشر خاک سطحی، شیب، اثر ناحیه غیراشباع و هدایت هیدرولیکی آبخوان است. در این مقاله پارامتر این مدل استخراج گردیده و درازای استفاده از ترکیب خطی لایهها جهت تقریب میزان آسیبپذیری از تحلیل مؤلفهها اساسی (PCA) بهعنوان روش جایگزین استفاده شده است. مزیت این روش برآورد اوزان مناسب و اصلاحشده لایهها و تخمین مناسب میزان آسیبپذیری با توجه به در نظر گرفتن واریانس حداکثری مؤلفههای مدل آسیبپذیری است. در مطالعه صورت گرفته مدل آسیبپذیری آبخوان دشت قروه-دهگلان با استفاده از روش تحلیل مؤلفههای اساسی استخراج و بهوسیله متدهای تحلیل خوشهای (CA) تفکیک گردید. درنهایت نیز با استفاده از روش ارزیابی، کارایی خوشهبندی Dunn، اقسام خوشهبندیهای صورت گرفته مورد آزمون قرار گرفت و بهترین روش نیز معرفی گردید. در این مطالعه مؤلفه اول 5/72 درصد از واریانس کل دادهها را توجیه نموده و روش خوشهبندی Single نیز بهعنوان بهترین روش برای کاربردی کردن نتایج حاصل از این تحقیق معرفی گردید. | ||
کلیدواژهها | ||
آبخوان؛ آسیبپذیری؛ PCA؛ CA؛ قروه-دهگلان | ||
عنوان مقاله [English] | ||
Evaluation and Analysis of Groundwater Vulnerability Using Empirical Orthogonal Functions and Cluster Analysis | ||
نویسندگان [English] | ||
Ammar Habibi kandbon1؛ Rezgar Arabzadeh2؛ Afshin Ashrafzadeh3 | ||
چکیده [English] | ||
DRASTIC is known as the most prototype models of groundwater vulnerability assessment. The DRASTIC constitutes from seven schematic parameters consisting: Depth to groundwater, Recharge to aquifer, Aquifer geology, and surface Soil texture, Impact of vadoze zone and hydraulic Conductivity. In this study the models parameters were extracted by the main schematic maps of model. Instead using the linear combinations of parameters by the proposed weights of model, a principal component analysis (PCA) also known as empirical orthogonal function, was taken into account for assessing a more reasonable and accurate value for aquifer vulnerability. The advantage of this approach is accurate derivation of model weights and consideration of the maximum model parameters variances affecting groundwater system vulnerability. In the current study the models parameters evaluated for Qorveh-Dehgolan aquifer and the groundwater vulnerability of this site assessed using PCA. Eventually the first component (PC1) scores clustered using different Clustering Analysis (CA) and the best method delineated by Dunn cluster validation technique. PCA Results showed a large value of variance justification by PC1 equal to 72.5 percent. Also Dunn validation technique delineated the Single method as the best clustering manner. | ||
کلیدواژهها [English] | ||
Groundwater, vulnerability, PCA, CA, Qorveh-Dehgolan | ||
مراجع | ||
Ahmadi, F. Ranjbar, H. (2012). Dehgolan Aquifer's water table declination assessment using GIS, 31th national geoscience. (In Farsi) Al – Adamat, R. Foster, I. and Baban, S. (2003). Groundwater vulnerability and risk mapping for the basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Applied Geography, 23,303-324 Aller, L. Benet, T. Lehr, J. Petty, R. and Hacket, G. (1987). Drastic: A standardized system for hydrogeologic settings (EPA- 60012-87-035) US EPA, Washington DC Atiqur, R. (2008). A GIS based DRASTIC model for assessing groundwatervulnerability in shallow aquifer in Aligarh, India. Applied Geography. Almasari, M.N. (2008). Assessment of intrinsic vulnerability to contamination for Gaza Coastal aquifer, Palestine Babiker, S. Mohamad, A. Hiyama, T. and Kato, K. (2005). A GIS- based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Height, Gifu Prefecture, Central Japan. Science of the Total Environment, 345, 127-140 Bazrafshan, J. Hejabi, S. and Rahimi, J. (2014). Drought monitoring using the multivariate standardized precipitation index (MSPI). Water Resour Manage. 28, 1045-1060. Babaei, Gholamreza, Feyzi, Avat. (2005). Classification of provinces based on population and health indicators by using fuzzy clustering statistical techniques, Hakim journal, No: 4, Tehran. Evans, B.M. and Myers, W.L. (1990). A CIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. Journal of Soil and Water Conservation. 242-245. Fritch, T.G. Mcknight, C.L. Yelderman, J.C. and Arnold, J.G. (2000). An aquifer vulnerability assessment of the paluxy aquifer, Central Texas, USA, Using GIS and a modified DRASTIC approach. Environment Management, 25, 337-345. Hutcheson, G. and Nick, S. (1999). The multivariate social scientist: Introductory statistics using generalized linear models, thousand oaks, CA: sage publications. Khodaei, K. (2003). Intrinsic groundwater vulnerability mapping with concerning pollutants in Jovin plane using DRASTIC and GODS models. Khorasan Water Resources Company. (In Farsi) Khodaei, k. Shahsavari, B. and Etebari, B. (2007). Aquifer vulnerability assessment methods, GOD and DRASTIC, Iran. J. Geol. 4, 73-87. (In Farsi) Kovacs, F. Legany, C. and Babos, A. (2005). Clast validity measurement techniques. In 6th international symposium of Hungarian Researchers on Computational Intelligence . Citeseer. McCoy, J. Johnston, K, (2002). Using ArcGIS Spatial Analyst. Esri Tutorial Help. Mohades, F. (2010). Principal component analysis method and factor analysis, a case study: dereviation of capital costs index and its effects on inflation. Economics research series, www.cbi.ir, 41. (In Farsi) Mahmodi, S. Fathi, P. Ebrahimi, M. (2010). Intelligent prediction of Dehgolan aquifer salinity using artificial neural networks. 4th national conference of water resources management. (In Farsi) Nasir, M.F.M. Samsudin, M.S. Mohamad, I. Awaluddin, M.R.A. Mansour, M.A. Juahir, H. Ramli,N. (2011). River water quality modeling using combined principle component analysis (PCA) and multiple linear regressions (MLR): A case study at Klang River, Malaysia. World Applied Sciencss Journal, 73-82. National Academies Press. (1993). Ground Water Vulnerability Assessment. Piscopo, G. (2001). Groundwater vulnerability map, explanatory note, Castlereagh Catchment, NEW, Department of Land and Water Conservation. Australia. Rahman, A. (2008). A GIS based DRASTIC for assessing ground water vulnerability in shallow aquifer in Aligarh, India, Applied Geography, 28, 32-53. Secunda, S. Collin, M. and Mellou, A.J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive land use. Environmental Management, 54, 39-57. Thareja, S. Choudhury, S. and Trivedi, P. (2011). Assessment of water quality of Ganga River in Kanpur by using principal components analysis, 2(5), 84-91. Wang, Y. wang, P. Bai, Y. Tian, Z. Li, J. Shao, X. Mustavich, L.F. Li, B.L. (2013). Assessment of surface water quality via multivariate statistical techniques: A case study of the Songhua River Harbin region, China, Journal of Hydro-environment Reaearch, 7, 30-40.
| ||
آمار تعداد مشاهده مقاله: 1,149 تعداد دریافت فایل اصل مقاله: 976 |