Nilpotent Elements in Skew Polynomial Rings

M. Azimi and A. Moussavi*

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-134, Tehran, Islamic Republic of Iran

Received: 14 December 2015 / Revised: 3 May 2016 / Accepted: 15 February 2016

Abstract

Let R be a ring with an endomorphism α and an α -derivation δ . Antoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil- (α, δ) -compatible rings. The class of nil- (α, δ) -compatible rings are extended through various ring extensions and many classes of nil- (α, δ) -compatible rings are constructed. We also prove that, if R is nil- α -compatible and nil-Armendariz ring of power series type with nil(R) nilpotent, then $nil(R[[x;\alpha]]) = nil(R)[[x;\alpha]]$. We show that, if R is a nil-Armendariz ring of power series type, with nil(R) nilpotent and nil- (α, δ) -compatible ring, then $nil(R[x;\alpha,\delta]) = nil(R)[x;\alpha,\delta]$. As a consequence, several known results are unified and extended to the more general setting. Also examples are provided to illustrate our results.

Keywords: (α, δ) – compatible ring; Skew polynomial ring; Skew power series ring.

Introduction

Throughout this article, all rings are associative whit identity. Let R be a ring, α be an endomorphism and δ an α -derivation of R, that δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for all $a,b \in R$. We denote $R\left[x;\alpha,\delta\right]$ the Ore extension whose elements are the polynomials over R, the addition is defined as usual and the multiplication subject to the relation $xa = \alpha(a)x + \delta(a)$ for any $a \in R$. We also denote the skew power series ring $R[[x;\alpha]]$, whose elements are the power series over R, the addition is defined as usual and the multiplication subject to the

relation
$$xa = \alpha(a)x$$
 for any $a \in R$.

Recall that a ring R is *reduced* if R has no nonzero nilpotent elements. Another generalization of a reduced ring is an Armendariz ring. A ring R is said to be *Armendariz* if the product of two polynomials in R[x] is zero it implies that the products of their coefficients are zero. This definition was coined by Rege and Chhawchharia in [26] in recognition of Armendariz's proof in [4, Lemma 1] that reduced rings satisfy this condition.

According to Antoine [3], a ring R is called *nil-Armendariz*, if $f(x)g(x) \in nil(R)[x]$ implies $a_ib_j \in nil(R)$, for all

^{*} Corresponding author: Tel: +982182883446; Fax: +982182883493; Email: moussavi.a@gmail.com

$$f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{j=0}^{m} b_j x^j \in R[x].$$

When R is a 2-primal ring, then the polynomial ring R[x] and the Laurent polynomial ring $R[x,x^{-1}]$ are 2-primal and nil-Armendariz, and nil(R[x]) = nil(R)[x]. This condition is strongly connected to the question of whether or not a polynomial ring R[x] over a nil ring R is nil, which is related to a question of Amitsur [1]. This is true for any 2-primal ring R (i.e. the lower nil radical $Nil_*(R)$ coincides with nil(R)).

In [13], M. Habibi and A. Moussavi, say, a ring R with an endomorphism α is nil-Armendariz of skew power series type, if $f(x).g(x) \in nil(R)[[x;\alpha]]$ implies that $a_i\alpha^i(b_j) \in nil(R)$, for all i,j and for

all
$$f(x) = \sum_{i=0}^{\infty} a_i x^i, g(x) = \sum_{i=0}^{\infty} b_j x^j \in R[[x; \alpha]].$$

In this paper, we are concerned with nil-Armendariz rings of skew power series type, which is a generalization of nil-Armendariz rings.

According to Krempa [15], an endomorphism α of a ring R is called *rigid* if $a\alpha(a) = 0$ implies a = 0 for each $a \in R$. A ring R is called α -rigid if there exists a rigid endomorphism α of R.

In [9], E. Hashemi and A. Moussavi, say a ring R is α -compatible if for each a, $b \in R$, ab = 0 if and only if $a\alpha(b) = 0$. Moreover, R is said to be δ -compatible if for each a, $b \in R$, ab = 0 implies $a\delta(b) = 0$. If R is both α -compatible and δ -compatible, R is said to be (α, δ) -compatible. By [22], R is called weak α -compatible, if $ab \in nil(R)$ if and only if $a\alpha(b) \in nil(R)$ for each a, $b \in R$, and R is said to be weak δ -compatible if for each a, $b \in R$, $ab \in nil(R)$ implies $a\delta(b) \in nil(R)$.

Unifying and extending the above notions, we say R is a $nil-\alpha$ -compatible ring if for each $a, b \in R$, $aRb \subseteq nil(R)$ if and only if $aR\alpha(b) \subseteq nil(R)$. Moreover, we say R is $nil-\delta$ -compatible if for each $a,b \in R$, $aRb \subseteq nil(R)$ implies $aR\delta(b) \subseteq nil(R)$.

If R is both nil- α -compatible and nil- δ -compatible, we say that R is $nil-(\alpha, \delta)$ -compatible.

We extend the class of nil- (α, δ) -compatible rings through various ring extensions. We show that R is a nil- (α, δ) -compatible ring if and only if the ring of triangular matrix $T_n(R)$ is nil- $(\overline{\alpha}, \overline{\delta})$ -compatible,

where $\bar{\delta}$ is an $\bar{\alpha}$ -derivation of $T_n(R)$. If R is a nil-Armendariz ring of power series type and nil- (α, δ) -compatible then $R[x;\alpha]$ is a nil- $(\bar{\alpha}, \bar{\delta})$ -compatible ring, where $\bar{\delta}$ is an $\bar{\alpha}$ -derivation of $R[x;\alpha]$.

As a consequence, several properties of (α, δ) -compatible rings are generalized to a more general setting.

We show that if R is a nil- α -compatible and nil-Armendariz ring of power series type with nil(R) nilpotent, then $nil(R[[x;\alpha]]) = nil(R)[[x;\alpha]]$. We also show that, if R is nil-Armendariz ring of power series type and nil- (α,δ) -compatible, with nil(R) nilpotent, then $nil(R[x;\alpha,\delta]) = nil(R)[x;\alpha,\delta]$. Moreover we show that, when R is nil- (α,δ) -compatible, 2-primal, and either R is a right Goldie ring or R has the ascending chain condition (a.c.c.) on ideals or R has the a.c.c. on right and left annihilators or R is a ring with right Krull dimension, then $nil(R[x;\alpha,\delta]) = nil(R)[x;\alpha,\delta]$.

Results and Discussion

We first introduce the concept of a nil- (α, δ) -compatible ring and study its properties.

Definition 1.1. For an endomorphism α and an α -derivation δ , we say that R is nil- α -compatible if for each a, $b \in R$, $aRb \subseteq nil(R)$ if and only if $aR\alpha(b) \subseteq nil(R)$. Moreover, R is said to be nil- δ -compatible if for each a, $b \in R$, $aRb \subseteq nil(R)$ implies $aR\delta(b) \subseteq nil(R)$. If R is both nil- α -compatible and nil- δ -compatible, we say that R is nil- (α, δ) -compatible.

By [9], α -rigid rings are (α, δ) -compatible. Clearly every (α, δ) -compatible ring and hence every α -rigid

ring is also nil- (α, δ) -compatible. Although the set of (α, δ) -compatible rings is narrow, we show that nil- (α, δ) -compatible rings are ubiquitous.

By [11], a ring R is nil-Armendariz of power series type if $f(x).g(x) \in nil(R)[[x]]$ implies $a_ib_j \in nil(R)$, for all i,j and

$$f(x) = \sum_{i=0}^{n} a_i x^i, \ g(x) = \sum_{i=0}^{m} b_j x^i \in R[[x]].$$

Lemma 1.2. Let R be a nil- (α, δ) -compatible ring. Then

- (1) $aRb \subseteq nil(R)$ if and only if $aR \alpha^n(b) \subseteq nil(R)$, for each positive integer number n.
- (2) $aRb \subseteq nil(R)$ implies $aR\delta^m(b) \subseteq nil(R)$, for each positive integer number m.
- (3) If R is a nil-Armendariz of power series type and $aRb \subseteq nil(R)$ then $\alpha^n(a)R\delta^m(b) \subseteq nil(R)$, $\delta^p(a)R\alpha^q(b) \subseteq nil(R)$ when m,n,p,q are positive integer numbers.

Proof. (1) Since R is nil- (α, δ) -compatible, we have the following implications:

$$aRb \subseteq nil(R) \Rightarrow aR\alpha(b) \subseteq nil(R) \Rightarrow aR\alpha^2(b)$$

 $\Rightarrow \cdots aR\alpha^n(b) \subseteq nil(R)$. Conversely we have $aR\alpha^n(b) \subseteq nil(R) \Rightarrow aR\alpha(\alpha^{n-1}(b)) \subseteq nil(R)$
 $\Rightarrow aR\alpha^{n-1}(b) \subseteq nil(R) \Rightarrow \cdots \Rightarrow aRb \subseteq nil(R)$.

- (2) This is similar to (1).
- (3) $aRb \subseteq nil(R)$ implies $bRa \subseteq nil(R)$ because for $u \in bRa$ it implies that u = bra, for each $r \in R$, $u^2 = (bra)(bra) = br(ab)ra$. But $aRb \subseteq nil(R)$ then $ab \in nil(R)$ since R is nil-Armendariz of power series type, thus $u^2 \in nil(R)$ so $u \in nil(R)$ and $bRa \subseteq nil(R)$. We have $aRb \subseteq nil(R)$, so $aR\delta^m(b) \subseteq nil(R)$ by (2). Then we have $\delta^m(b)Ra \subseteq nil(R)$ so $\delta^m(b)R\alpha^n(a) \subseteq nil(R)$ and that $\alpha^n(a)R\delta^m(b)$ is contained in nil(R). We do the same for

 $\delta^p(b)R\alpha^q(a) \subseteq nil(R)$ with positive integers p,q.

Lemma 1.3. Each weak (α, δ) – compatible ring is nil- (α, δ) -compatible.

Proof. Suppose that $aRb \subseteq nil(R)$. So $arb \in nil(R)$ for each $r \in R$. Then $(ar)b \in nil(R)$ and so we have $(ar)\alpha(b) \in nil(R)$, by weak (α,δ) -compatibility. So $aR\alpha(b) \subseteq nil(R)$. Similarly, $(ar)b \in nil(R)$ for all $r \in R$ and by weak (α,δ) -compatibility we have $(ar)\delta(b) \in nil(R)$ and so $aR\delta(b) \subseteq nil(R)$. Next assume, $aR\alpha(b) \subseteq nil(R)$. Then $(ar)\alpha(b) \in nil(R)$ and by weak (α,δ) -compatibility, we have $(ar)b \in nil(R)$ for all $r \in R$, so $aRb \subseteq nil(R)$.

In the following, we will see that the converse is not true. Indeed, there exists a ring R, which is nil- (α, δ) -compatible but it is not weak (α, δ) -compatible. Thus a nil- (α, δ) -compatible ring is a true generalization of a weak (α, δ) -compatible ring (and hence (α, δ) -compatible ring). We then can find various classes of nil- (α, δ) -compatible rings which are not weak (α, δ) -compatible and hence are not (α, δ) -compatible.

Example 1.4. Let K be a field, and $S = K \langle x, y, z \rangle$. Let $R = \frac{S = K \langle x, y, z \rangle}{\langle yx \rangle}$.

Also assume that α is an endomorphism of S and α be an endomorphism of R, given by:

$$\alpha(k) = k, \alpha(x) = xz, \alpha(z) = x$$
.

$$\overline{\alpha}(\overline{k}) = \overline{k}, \overline{\alpha}(\overline{x}) = \overline{x}\overline{z}, \overline{\alpha}(\overline{z}) = \overline{x}.$$

We first show that α is well defined. To see this, let $\overline{f} = \overline{g}$ for some $\overline{f}, \overline{g} \in R$, so there exists $h \cdot f_i \cdot f_i' \in S$ such that $f = g + \sum_i f_i yx f_i'$. Thus $\alpha(f) = \alpha(g) + \sum_i \alpha(f_i)\alpha(y)\alpha(x)\alpha(f_i')$ = $\alpha(g) + \sum_i \alpha(f_i)yxz\alpha(f_i')$. So $\overline{\alpha(f)} = \overline{\alpha(g)}$, and α is well defined. Now, we determine the set of nilpotent elements of R. First, we find zero devisor monomials. Let $0 \neq f \in R$ be a zero devisor monomial.

We have $f=u_1f_1u_2, g=v_1g_1v_2$, with $u_1,u_2,v_1,v_2\in\{\overline{x},\overline{y},\overline{z}\}$, $f_1,g_1\in R$ such that fg=0, so $u_1f_1u_2v_1g_1v_2=0$. If $u_2v_1\neq\overline{y}\overline{x}$, then there exists $\overline{y}\overline{x}$ in one of u_1f_1 or f_1 or f_1u_2 or v_1g_1 or g_1 or g_1v_2 . But if one of these cases occurs, f=0 or g=0. So $u_2v_1=\overline{y}\overline{x}$, and $u_2=\overline{y}$, $v_1=\overline{x}$. Hence $0\neq f\in R$ is left (right) zero divisor if and only if $f=\overline{x}f_1$, $g=g_1\overline{y}$. If f is a nilpotent monomial of R, then $f=\overline{x}f_1\overline{y}$. Moreover $(\overline{x}f_1\overline{y})^2=\overline{0}$. So f is a nilpotent monomial, if and only if $f=\overline{x}f_1\overline{y}$, for some monomial $f_1\in R$.

Now we claim that, if is f a nilpotent polynomial and $f=\sum f_i$ where f_i is monomial for some i, then f_i is nilpotent in R (i.e. $f=\overline{x}f'\overline{y}$ for some polynomial $f'\in R$). Before proving the claim we have the following property:

The $\deg_z(\mathbf{f})$, where f is a monomial in the from $\mathbf{X}^{i_1} y^{j_1} z^{k_1} \mathbf{X}^{i_2} y^{j_2} z^{k_2} \cdots \mathbf{X}^{i_r} y^{j_r} z^{k_r}$, is $\sum_{t=1}^r k_t$. Similarly, $\deg_x(\mathbf{f}), \deg_y(\mathbf{f})$ are defined by $\sum_{t=1}^r j_t$ and $\sum_{t=1}^r i_t$ respectively. Also $\deg(f) = \sum_{t=1}^r (i_t + j_t + k_t)$.

Proof of the claim:

Let $A = \{f_i \mid \deg(f_i) \text{ is maximal and } f_i \text{ is not nilpotent}\}$. Assume that f', f'', $f''' \in A$ are the monomials such that \deg_x, \deg_y, \deg_z they have the largest. One can see that at least one of \deg_x, \deg_y, \deg_z is nonzero. Without loss of generality, let $\deg_x \neq 0$. Since f' is not nilpotent f' is not zero devisor, hence $(f')^n$ is not zero.

Also, it is worth to say that the monomial with largest \deg_x in f^n is $(f')^n$. So it can not be simplified and this means that f is not nilpotent. This contradiction shows that $\deg_x(f) = \deg_y(f) = \deg_z(f) = 0$. So f is nilpotent and constant which means that f = 0. Hence f is either zero or in the form xf_1y for some $xf_1 \in R$.

Now, let $fRg \subseteq nil(R)$. Suppose that $f = uf_1$,

 $g = g_1 v$ and $u, v \in \{\overline{x}, \overline{y}, \overline{z}\}$. If $u \neq \overline{x}, v \neq \overline{y}$, then $fzg \notin nil(R)$. So we have $f = \overline{x}f_1, g = g_1 \overline{y}$, hence $fR\alpha(g) = \overline{x}f_1R\alpha(g_1)\overline{y} \subseteq nil(R)$. It is obvious that $fR\alpha(g) \subseteq nil(R)$. Conversely let $fR\alpha(g) \subseteq nil(R)$, with $f = uf_1$, $g = g_1 v$ and $u, v \in \{\overline{x}, \overline{y}, \overline{z}\}$. Since $fR\alpha(g) \subseteq nil(R)$, $u = \overline{x}, \alpha(v) = v'\overline{y}$, so $v = \overline{y}$. Hence $fRg = \overline{x}f_1Rg_1\overline{y}$, which is obviously a subset of nil(R), which shows that R is a nil- α -compatible ring.

But it is easy to see that $\overline{yz} \notin nil(R)$, while $y\alpha(z) = \overline{yz} = 0 \in nil(R)$. Thus R is not weak α -compatible. Note that nil(R) is not an ideal of R. This is because $\overline{yzx} \in nil(R)$, $\overline{z} \in R$, but $\overline{zyzx} \notin nil(R)$, $\overline{yzxz} \notin nil(R)$.

Let δ be an α -derivation of R. The endomorphism α of R is extended to the endomorphism $\alpha:T_n(R)\to T_n(R)$ defined by $\alpha:T_n(a_{ij})=(\alpha(a_{ij}))$, also the $\alpha:T_n(R)\to T_n(R)$ defined by extended to the $\alpha:T_n(R)\to T_n(R)$ defined by $a:T_n(R)\to T_n(R)$ defined by $a:T_n(R)\to T_n(R)$. Then we have the following.

Theorem 1.5. A ring R is nil- (α, δ) -compatible if and only if the triangular ring $T_n(R)$ is nil- $(\overline{\alpha}, \overline{\delta})$ -compatible.

Proof. Suppose that R is a nil- (α, δ) -compatible ring and $A = (a_{ij}), B = (b_{ij}) \in T_n(R)$.

We show that $AT_n(R)B \subseteq nil(T_n(R))$ if and only if $AT_n(R)\overline{\alpha}(B) \subseteq nil(T_n(R))$. We observe that

$$nil(T_n(R)) = \begin{pmatrix} nil(R) & R & \cdots & R \\ 0 & nil(R) & \ddots & \vdots \\ \vdots & 0 & \ddots & R \\ 0 & \cdots & 0 & nil(R) \end{pmatrix}.$$

Then for $C = (\mathbf{r}_{ij}) \in T_n(R)$, we have $ACB \in nil(T_n(R)) \Leftrightarrow$

$$\begin{pmatrix} a_{11}r_{11}b_{11} & \cdots & * & \cdots & * \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_{ii}r_{ii}b_{ii} & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & a_{nn}r_{nn}b_{nn} \end{pmatrix} \in nil(T_n(R)) \Leftrightarrow \qquad T(R,n) = \begin{cases} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 0 & a_1 & \cdots & a_{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & a_1 \end{pmatrix} | a_i \in R \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & a_1 \end{pmatrix}$$

 $a_{ii}r_{ii}b_{ii} \in nil(R)$ for $1 \le i \le n$ $\Leftrightarrow a_{ii}r_{ii}\alpha(b_{ii}) \in nil(R)$, for $1 \le i \le n$, by $nil_{(\alpha,\delta)}$ compatibility \Leftrightarrow

$$\begin{pmatrix} a_{11}r_{11}\alpha(b_{11}) & \cdots & * & \cdots & * \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_{ii}r_{ii}\alpha(b_{ii}) & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & a_{nn}r_{nn}\alpha(b_{nn}) \end{pmatrix} \in nil(T_n(R)) \Leftrightarrow$$

 $AC\overline{\alpha}(B) \in nil(T_{\alpha}(R)) \Leftrightarrow AT_{\alpha}(R)\overline{\alpha}(B) \subset nil(T_{\alpha}(R))$.

The case nil- δ -compatibility is similar. Next suppose that $T_n(\mathbf{R})$ is a nil- (α, δ) -compatible ring and that $a,b,r \in R, A = (a)_{ij}, B = (b)_{ij}, C = (c)_{ij}$ are diagonal matrices in $T_n(R)$. Then we have $aRb \subseteq nil(R) \Leftrightarrow$

$$\begin{pmatrix} arb & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & arb & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & arb \end{pmatrix} \in nil(T_n(R)) \Leftrightarrow$$

 $ACB \in nil(T_n(R)) \Leftrightarrow AC\overline{\alpha(B)} \in nil(T_n(R))$, for all $r \in R$, by nil- $(\overline{\alpha}, \overline{\delta})$ -compatibility \Leftrightarrow

$$\begin{pmatrix} ar\alpha(b) & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & ar\alpha(b) & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & ar\alpha(b) \end{pmatrix} \in nil(T_n(R)) \Leftrightarrow$$

 $ar\alpha(b) \in nil(R)$ for all $r \in R \Leftrightarrow aR\alpha(b) \subseteq nil(R)$. The case nil- α -compatible is similar.

Let R be a ring and let

$$S_{n}(R) = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} | a, a_{ij} \in R \right\}$$
 and

$$T(R,n) = \left\{ \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 0 & a_1 & \cdots & a_{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & a_1 \end{pmatrix} \middle| a_i \in R \right\} \quad \text{with}$$

 $n \ge 2$, and let T (R, R) be the trivial extension of R by R . Any endomorphism α of R can be extended to an endomorphism $\overline{\alpha}$ of $S_n(R)$ or T(R,n) or T(R,R) defined by $\alpha((a_{ij})) = (\alpha(a_{ij}))$, and any α derivation δ can be extended to an lpha -derivation $\overline{\delta}$ of $S_n(R)$ (or T(R,n) or T(R,R)) defined by $\overline{\delta}((a_{ij})) = (\delta(a_{ij})).$

Theorem 1.6. Let lpha be an endomorphism and δ an α -derivation of R. Then the following conditions are equivalent:

- (1) R is nil- (α, δ) -compatible.
- (2) $S_n(R)$ is nil- $(\overline{\alpha}, \overline{\delta})$ -compatible.
- (3) T(R, n) is nil- $(\alpha, \overline{\delta})$ -compatible.
- (4) T(R,R) is nil- $(\overline{\alpha},\overline{\delta})$ -compatible.

Proof. Using the same method as in the proof of Theorem 1.5, the result follows.

By [22, Lemma 1.9], it is proved that, if R is 2primal then nil(R)[x] = nil(R[x]). An endomorphism α and α -derivation δ of a ring R are extended to R[x], given by $\overline{\alpha}:R[x]\to R[x]$ defined by $\overline{\alpha}$ $\sum_{i=0}^{m} a_i x^i = \sum_{i=0}^{m} \alpha(a_i) x^i, \quad \text{and} \quad \overline{\delta} : R[x] \to R[x]$ defined by $\overline{\delta}(\sum_{i=0}^{m} a_i x^i) = \sum_{i=0}^{m} \delta(a_i) x^i$. We can easily see that $\overline{\delta}$ is an α -derivation of the polynomial ring R[x].

Lemma 1.7 Let R be a nil-Armendariz ring of power series type, $nil-\alpha$ -compatible $\Delta_k = \sum_{i+j=k} a_i \alpha^i(b_j) \in nil(R), \quad a_i, b_j \in R, \quad \text{such}$

that $k=0,1,2,\cdots,n$. Then $a_i\,\alpha^i\,(b_j^{})\in nil\,(R^{})$ for all i+j=k .

Proof. We have the following system of equations:

$$\begin{split} & \Delta_0 = a_0 b_0 \in nil(R); \\ & \Delta_1 = a_0 b_1 + a_1 \alpha(b_0) \in nil(R); \\ & \vdots \\ & \Delta_s = a_0 b_s + a_1 \alpha(b_{s-1}) + a_2 \alpha^2(b_{s-2}) + \dots + a_s \alpha^s(b_0) \in nil(R). \end{split}$$

We will show that $a_i\alpha^i(b_j)\in nil(R)$ by induction on i+j. If i+j=0, then $a_0b_0\in nil(R)$, $b_0a_0\in nil(R)$. Now, suppose that s is a positive integer such that $a_i\alpha^i(b_j)\in nil(R)$, when i+j< s. We will show that $a_i\alpha^i(b_j)\in nil(R)$, when i+j=s. Multiplying equation (*) by b_0 from left, we have $b_0a_s\alpha^s(b_0)=b_0\Delta_s-b_0a_0b_s-b_0a_1\alpha(b_{s-1})-b_0a_2\alpha^2(b_{s-2})-\cdots-b_0a_{s-1}\alpha^{s-1}(b_0)$

By the induction hypothesis $a_i\alpha^i(b_0)\in nil(R)$, for each $i,0\leq i< s$. So $a_iR\alpha^i(b_0)\subseteq nil(R)$ by [11, Lemma 3], hence $a_iRb_0\subseteq nil(R)$, by nil-compatibility. Then $a_ib_0\in nil(R)$, $b_0a_i\subseteq nil(R)$, for each $i,0\leq i< s$. Thus $b_0a_s\alpha^s(b_0)\in nil(R)$ and so $b_0a_sR\alpha^s(b_0)\subseteq nil(R)$, so $b_0a_sRb_0\subseteq nil(R)$, and hence $a_s\alpha^s(b_0)\in nil(R)$. Multiplying equation (*) by b_1,b_2,\cdots,b_{s-1} from the left side respectively, yields $a_{s-1}\alpha^{s-1}(b_1)\in nil(R),a_{s-2}\alpha^{s-2}(b_2)\in nil(R),\cdots,a_0b_s\in nil(R)$, in turn. This mean that $a_i\alpha^i(b_j)\in nil(R)$, when i+j=s.

Theorem 1.8. If R is a 2-primal and nil- (α, δ) -compatible ring, then the polynomial ring R[x] is nil- $(\overline{\alpha}, \overline{\delta})$ -compatible.

Proof. Let $f(x)R[x]g(x) \subseteq nil(R[x])$, with $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^{-j} \in R[x]$. Then for all $r(x) = \sum_{j=0}^{n} r_j x^j \in R[x]$, we have

 $f(x)r(x)g(x) = \sum_{k=0}^{m+n+p} (\sum_{i+j+t=k} a_i r_i b_j) x^k \in nil\left(R\left[x\right]\right) = nil\left(R\right)\left[x\right]. \text{ Hence } \sum_{i+j+t=k} a_i r_i b_j \in nil\left(R\right) \text{ for } k = 0,1,2,...,m+n+p \text{ . But } R \text{ is 2-primal, so } a_i r_i b_j \in nil\left(R\right), \text{ by method of Lemma 1.7, and by } nil-(\alpha,\delta)\text{-compatibility we have } a_i r_i \alpha\left(b_j\right) \in nil\left(R\right) \text{ for all } i,j,t \text{ . Thus } \sum_{i+j+t=k} a_i r_i \alpha(b_j) \in nil\left(R\right). \text{ So we can conclude that } f\left(x\right)r\left(x\right)\overline{\alpha}(g\left(x\right)) = \sum_{k=0}^{m+n+p} (\sum_{i+j+t=k} a_i r_i \alpha(b_j) x^k \in nil\left(R\left[x\right]\right). \text{ Hence we get } f\left(x\right)R\left[x\right]\overline{\alpha}(g\left(x\right)) \subseteq nil\left(R\left[x\right]\right). \text{ Similarly, we can show that } f\left(x\right)R\left[x\right]\overline{\delta}\left(g\left(x\right)\right) \subseteq nil\left(R\left[x\right]\right). \text{ The converse is similar. Thus } R\left[x\right] \text{ is a nil-} (\overline{\alpha}, \overline{\delta})\text{-compatible ring.}$

Let δ be an α -derivation of R, and for integers i,j with $0 \le i \le j$, $f_i^{\ j} \in End\left(R,+\right)$, will denote the map which is the sum of all possible words in α , δ built with i letters α and j-i letters δ . For instance $f_0^0=1, f_j^j=\alpha^j, f_0^j=\delta^j \qquad \text{and} \qquad f_{j-1}^j=\alpha^{j-1}\delta+\alpha^{j-2}\delta\alpha+\cdots+\delta\alpha^{j-1}.$ The next lemma appears in [16].

Lemma 1.9. For any positive integer n and $r \in R$ we have $x^n r = \sum_{i=0}^n f_i^n(r) x^i$ in the ring $R[x; \alpha, \delta]$.

By [7], a ring R is nil-semicommutative if $ab \in nil(R)$ implies $aRb \subseteq nil(R)$, for all $a, b \in R$.

Lemma 1.10. Let R be a nil- (α, δ) -compatible ring and nil-Armendariz of power series type. If $aRb \subseteq nil(R)$ then $aRf_i^j(b) \subseteq nil(R)$ for all $0 \le i \le j$.

Proof. Using Lemma 1.2, the proof is trivial.

By [11, Lemma 3], if R is a nil-Armendariz ring of power series type then it is a nil-semicommutative ring.

Now we have:

Proposition 1.11. Let R be a nil- (α, δ) -compatible ring and nil-Armendariz of power series type. Then we have $nil(R[x;\alpha,\delta]) \subseteq nil(R)[x;\alpha,\delta]$.

Proof. Let
$$f(x) = \sum_{i=0}^{n} a_i x^i \in nil(R[x; \alpha, \delta])$$
.

There exists a positive integer \mathbf{m} such that $f^m(x) = 0$. Then we have $a_n \alpha^n(a_n) \alpha^{2n}(a_n) \dots \alpha^{(m-1)n}(a_n) x^{mn} + lower terms$ = 0. So $a_n \alpha^n(a_n) \alpha^{2n}(a_n) \dots \alpha^{(m-1)n}(a_n) \dots \alpha^{(m-1)n}(a_n) = 0$ $\in nil(R)$. Thus we have

 $a_n \alpha^n (a_n) \alpha^{2n} (a_n) \dots \alpha^{(m-2)n} (a_n) R \alpha^{(m-1)n} (a_n)$ $\subseteq nil(R)$, by [11, Lemma 3]. So we have $a_n \alpha^n (a_n) \alpha^{2n} (a_n) \dots \alpha^{(m-2)n} (a_n) R \alpha^{(m-2)n} (a_n)$

 \subseteq nil (R), by nil- (α, δ) -compatibility. It implies that

$$a_{n}\alpha^{n}(a_{n})\alpha^{2n}(a_{n})\dots\alpha^{(m-2)n}(a_{n})...\alpha^{(m-2)n}(a_{n}) \in nil(R),$$
then $a_{n}\alpha^{n}(a_{n})\alpha^{2n}(a_{n})\dots\alpha^{(m-3)n}(a_{n})$

 $R\alpha^{(m-2)n}(a_na_n)\subseteq nil(R)$, by [11, Lemma 3], so $a_n\alpha^n(a_n)\alpha^{2n}(a_n)...\alpha^{(m-3)n}(a_n).l\,a_na_n\in nil(R)$. By following this method, we have $a_n\in nil(R)$. Also $a_n=l\,a_n\grave{o}\,nil(R)$, then $lRa_n\subseteq nil(R)$. We

have $1Rf_i^j(a_n) \subseteq nil(R)$, by Lemma 1.10 . So $f_i^j(a_n) \in nil(R)$ for $0 \le i \le j$.

Now we fix $A = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$. Then $0 = f^m(x) = (A + a_n x^n)^m = A^m + \Delta$ with $\Delta \in R[x; \alpha, \delta]$. Note that the coefficients of Δ can be written as sums of monomials in a_i and $f_s^t(a_j)$, where $a_i, a_j \in \{a_0, a_1, \ldots, a_n\}$ and $t \geq s \geq 0$, are nonnegative integers and each monomial has a_n or $f_s^t(a_i)$. Because R is nil-Armendariz of power series type, we get that $\Delta \in nil(R)[x; \alpha, \delta]$. Now consider the term $A = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$, so we have

 $A^{m} \in nil\left(R\right)[x;\alpha,\delta], \text{ then }$ $A^{m} = a_{n-l}\alpha^{n-l}\left(a_{n-l}\right)...\alpha^{(m-l)(n-l)}\left(a_{n-l}\right)x^{m(n-l)}$ $+lower \qquad terms \qquad \in nil\left(R\right)[x;\alpha,\delta]. \qquad \text{Hence }$ $a_{n-l}\alpha^{n-l}\left(a_{n-l}\right)...\alpha^{(m-l)(n-l)}\left(a_{n-l}\right) \in nil\left(R\right). \qquad \text{As }$ the argument above, then we have $a_{n-l} \in nil\left(R\right)$.
By following this method we have $a_{i} \in nil\left(R\right)$ for $0 \le i \le n$. Hence $f\left(x\right) \in nil\left(R\right)[x;\alpha,\delta]$.

Corollary 1.12. If $\delta = 0$, then $nil(R[x;\alpha]) \subseteq nil(R)[x;\alpha]$.

Lemma 1.13. Let R be a nil- (α, δ) -compatible and nil-Armendariz ring of power series type ring. Then $\delta(nil(R)) \subseteq nil(R)$.

Proof. Let $u \in \delta(nil(R))$ so $u = \delta(a)$ with $a \in nil(R)$. Hence $\delta(a)Ra \subseteq nil(R)$, and by δ -compatibility we have $\delta(a)R\delta(a) \subseteq nil(R)$. So $\delta^2(a) \in nil(R)$, then $\delta(a) \in nil(R)$.

Theorem 1.14. Let R be a nil- (α, δ) -compatible, nil-Armendariz ring of power series type and nil(R) is nilpotent. Then $nil(R)[x;\alpha,\delta] \subseteq nil(R[x;\alpha,\delta])$.

Proof. Let
$$f(x) = \sum_{i=0}^{\infty} a_i x^i \in nil(R)[x;\alpha,\delta]$$
. For

 a_i any arbitrary coefficient of f, $\delta\left(a_i\right) \in nil\left(R\right)$. As α is an endomorphism, $\alpha\left(a_i\right) \in nil\left(R\right)$. Then there exists natural k such that $(nil\left(R\right))^k$ is zero. Now we consider $f^k\left(x\right) = \sum_{s=0}^{nk} \left(\sum_{i_1+\ldots+i_k=s} a_{i_1} f_{u_2}^{v_2}(a_{i_2}) \ldots f_{u_k}^{v_k}(a_{i_k})\right) x^s$. All coefficients of $f^k\left(x\right)$ are in the form of $a_i, f_{u_2}^{v_2}(a_{i_2}) \ldots f_{u_k}^{v_k}(a_{i_k})$, which is the product of k members of the $nil\left(R\right)$ by Lemma 1.10, so it should be equal to zero. Thus $f^k\left(x\right) = 0$ and hence $f \in nil\left(R\left[x; \alpha, \delta\right]\right)$.

Corollary 1.15. Let R be a nil- (α, δ) -compatible, nil-Armendariz ring of power series type and nil(R) is nilpotent. Then we have $nil(R[x;\alpha,\delta]) = nil(R)[x;\alpha,\delta]$.

Corollary 1.16. Let R be a nil- (α, δ) -compatible and 2-primal ring. Assume that either R is a right Goldie ring or R has the ascending chain condition (a.c.c.) on ideals or R has the a.c.c. on right and left annihilators or R is a ring with right Krull dimension. Then $nil(R[x;\alpha,\delta]) = nil(R)[x;\alpha,\delta]$.

Proof. If R has any of these chain conditions, the upper nilradical $Nil_*(R)$ of R is nilpotent. If R has the a.c.c. on ideals, $Nil_*(R)$ can be characterized as the maximal nilpotent ideal of R. If R has the a.c.c. on both left and right annihilators, $Nil_*(R)$ is nilpotent by a result of Herstein and Small [10, Theorem 1.34], while if R is right Goldie, $Nil_*(R)$ is nilpotent by a result of Lanski [18, Theorem 1]. Also, if R is a ring with right Krull dimension, then by [17], $Nil_*(R)$ is nilpotent. \Box

Corollary 1.17. If R is a nil-Armendariz ring of power series type and nil(R) is nilpotent and nil- α -compatible ring, then $nil(R[x;\alpha]) = nil(R)[x;\alpha]$.

Proof. By Corollary 1.15, if $\delta = 0$, then $nil(R[x;\alpha]) = nil(R)[x;\alpha]$.

Theorem 1.18. If R is a nil-Armendariz ring of power series type and nil- (α, δ) -compatible ring nil(R) is nilpotent, then $R[x;\alpha]$ is a nil- $(\overline{\alpha}, \overline{\delta})$ -compatible ring.

Proof. Assume that $f(x) = \sum_{i=0}^{n} a_{i} x^{i}, g(x) = \sum_{j=0}^{m} b_{j} x^{j} \in R[x;\alpha], \text{ and} \quad \text{let}$ $f(x) R[x;\alpha] \overline{\alpha}(g(x)) \subseteq nil(R[x;\alpha]). \quad \text{For all}$ $r(x) = \sum_{i=0}^{p} a_{i} x^{i} \in R[x;\alpha], \quad \text{we} \quad \text{have}$ $f(x) r(x) \overline{\alpha}(g(x)) \in nil(R[x;\alpha]). \quad \text{So} \quad \text{by}$ Corollary 1.17, we have $f(x) r(x) \overline{\alpha}(g(x))$

 $= \sum_{k=0}^{m+n-p} \left(\sum_{i+i,j,k=k} a_i \alpha^i(r_i) \alpha^{i+t+1}(b_j) \right) x^k \in nil\left(R\left[x;\alpha\right]\right)$ $\subseteq nil(R)[x;\alpha].$ $\sum_{i+j+t=k} a_i \alpha^i(r_t) \alpha^{i+t+1}(b_j) \in nil(R),$ k = 0, 1, 2, ..., m + n + p. But R is nil-Armendariz of power series type, ring $a_i \alpha^i(r_i) \alpha^{i+t+1}(b_i) \in nil(R)$, by Lemma 1.7, with $0 \le i \le n, 0 \le j \le m, \quad 0 \le t \le p$. As it is nilsemicommutative, so we get $a_i \alpha^i(r_i) R \alpha^{i+t+1}(b_i)$ $\subseteq nil(R)$, then $a_i\alpha^i(r_i)R\alpha^{i+t}(b_i)\subseteq nil(R)$, by Lemma 1.2. Then $a_i \alpha^i(r_i) \alpha^{i+t}(b_i) \in nil(R)$. Hence $\sum_{i+j+t=k} a_i \alpha^i(r_t) \alpha^{i+t}(b_j) \in nil(R)$. So we have $\sum_{k=0}^{m+n+p} \left(\sum_{i+i+t=k} a_i \alpha^i (r_t) \alpha^{i+t} (b_j) \right) x^k$ $\in nil(R)[x;\alpha] = nil(R[x;\alpha])$. Therefore we get $f(x)r(x)g(x) \in nil(R[x;\alpha]).$

Conversely assume $f(x)R[x;\alpha]g(x)$ $\subseteq nil(R[x;\alpha])$. So we have

 $f\left(x\right)r(x)g\left(x\right) = \sum_{k=0}^{m+n+p} \left(\sum_{i+j+t=k} a_{i}\alpha^{i}(r_{i})\alpha^{i+t}(b_{j})\right)x^{k} \in nil\left(R\right)\left[x;\alpha\right],$ for all $r\left(x\right) \in R\left[x;\alpha\right]$. Thus we have $\sum_{i+j+t=k} a_{i}\alpha^{i}(r_{t})\alpha^{i+t}(b_{j}) \in nil(R).$ Since R is nil-Armendariz ring of power series type, $a_{i}\alpha^{i}(r_{t})\alpha^{i+t}(b_{j}) \in nil(R),$ so $a_{i}\alpha^{i}\left(r_{t}\right)R\alpha^{i+t}\left(b_{j}\right) \subseteq nil\left(R\right).$ Hence $a_{i}\alpha^{i}\left(r_{t}\right)R\alpha^{i+t+1}(b_{j}) \subseteq nil\left(R\right),$ so $a_{i}\alpha^{i}\left(r_{t}\right)\alpha^{i+t+1}(b_{j}) \in nil(R).$ Then for all i,j,k, we have $\sum_{i+j+t=k} a_{i}\alpha^{i}\left(r_{t}\right)\alpha^{i+t+1}(b_{j}) \in nil(R).$ So $\sum_{k=0}^{m+n+p} \left(\sum_{i+j+t=k} a_{i}\alpha^{i}\left(r_{t}\right)\alpha^{i+t+1}(b_{j})\right)x^{k} \in nil\left(R\right)\left[x;\alpha\right],$ and hence $f\left(x\right)r\left(x\right)\overline{\alpha}\left(g\left(x\right)\right) \in nil\left(R\left[x;\alpha\right]\right),$ for

 $r(x) \in R[x;\alpha]$. Finally have $f(x)R[x;\alpha]\overline{\alpha}(g(x)) \subseteq nil(R[x;\alpha]).$ For the case of nil- $\overline{\delta}$ -compatibility, $f(x)R[x;\alpha]g(x) \subseteq nil(R[x;\alpha])$. Then we f(x)r(x)g(x) $=\sum_{i=0}^{m+n+p} (\sum_{i=0}^{m+n+p} (a_i \alpha^i(r_i) \alpha^{i+t}(b_j)) x^k \in nil(R)[x;\alpha],$ $r(x) \in R[x;\alpha]$ Hence $\sum_{i+i,t-k} a_i \alpha^i(r_t) \alpha^{i+t}(b_j) \in nil(R).$ Then $a_i \alpha^i(r_t) \alpha^{i+t}(b_i) \in nil(R)$ for $0 \le i \le n, 0 \le j \le m, 0 \le t \le p$. Based on the assumption we have $a_i \alpha^i(r_i) R \alpha^{i+t}(b_i)$ $\subseteq nil(R)$, so $a_i\alpha^i(r_i)Rb_i\subseteq nil(R)$ and that $a_i \alpha^i(r_i) R \delta(b_i) \subseteq nil(R)$. Hence $\sum_{i+l} a_i \alpha^i(r_i) \alpha^{i+l}(\delta(b_j)) \in nil(R),$ $\sum_{k=0}^{m+n+p} \left(\sum_{i+j+t=k} a_i \alpha^i(r_t) \alpha^{i+t}(\delta(b_j)) \right) x^k \in nil(R)[x;\alpha].$ $f(x)r(x)\overline{\delta}(g(x)) \in nil(R[x;\alpha]),$ for all $r(x) \in R[x;\alpha]$. Therefore we conclude that $f(x)R[x;\alpha]\overline{\delta}(g(x)) \subseteq nil(R[x;\alpha]).$

Now we consider the nilpotent elements in skew polynomial rings when R is a nil-Armendariz ring of power series type.

Theorem 1.19. Let R be a nil-Armendariz ring of power series type and nil- (α, δ) -compatible ring. Let

$$f(x) = \sum_{i=0}^{n} a_{i} x^{i}, g(x) = \sum_{j=0}^{m} b_{j} x^{j} \in R[x; \alpha, \delta].$$
If
$$f(x) R[x; \alpha, \delta] g(x) \subseteq nil(R[x; \alpha, \delta]),$$
then $a_{i} R b_{j} \subseteq nil(R)$ for $0 \le i \le n$, $0 \le j \le m$.

Proof. Let $a_i r b_j \in a_i R b_j$ for all $r \in R$, $0 \le i \le n$, $0 \le j \le m$. We have $r \in R[x;\alpha,\delta]$ so

$$f\left(x\right)rg\left(x\right)\in f\left(x\right)R\left[x;\alpha,\delta\right]g\left(x\right),$$
 hence we have
$$\left(\sum_{i=0}^{n}a_{i}x^{i}\right)r\left(\sum_{j=0}^{m}b_{j}x^{j}\right)$$

$$=\left(\sum_{i=0}^{n}a_{i}x^{i}\right)\left(\sum_{j=0}^{m}\left(rb_{j}\right)x^{j}\right)\in nil(R[x;\alpha,\delta]), \text{ so }$$

$$\left(\sum_{i=0}^{n}a_{i}x^{i}\right)\left(\sum_{j=0}^{m}\left(rb_{j}\right)x^{j}\right)\in nil(R)[x;\alpha,\delta] \text{ by }$$

$$Proposition \qquad 1.11. \qquad \text{Therefore }$$

$$\sum_{k=0}^{n+m}\left(\sum_{i+j=k}\left(a_{i}\sum f_{s}^{i}\left(rb_{j}\right)\right)\right)x^{k}$$

$$\in nil(R)[x;\alpha,\delta], \text{ with } t\leq s. \text{ Put }$$

$$\Delta_{k}=\sum_{i+j=k}\left(a_{i}\sum f_{s}^{i}\left(rb_{j}\right)\right), \ k=0,1,2,...,m+n,$$
 hence
$$\Delta_{k}\in nil(R). \text{ We have the following equation:}$$

$$\begin{split} & \Delta_{m+n} = a_m \alpha^m(rb_n) \in nil(R); \\ & \Delta_{m+n-1} = a_m \alpha^m(rb_{n-1}) + a_{m-1} \alpha^{m-1}(rb_n) + a_m f_{m-1}^m(rb_n) \in nil(R); \\ & \Delta_{m+n-2} = a_m \alpha^m(rb_{n-2}) + \sum_{i=m-1}^m a_i f_{m-1}^i(rb_{n-1}) + \sum_{i=m-2}^m a_i f_{m-2}^i(rb_n) \in nil(R); \\ & \vdots \\ & \Delta_k = \sum_{s+t-k} (\sum_{i=s}^m a_i f_s^i(rb_t)) \in nil(R). \end{split}$$

Then since R is nil-semicommutative by [11, Lemma 3], applying the method in the proof of [22, Theorem 2.14], we obtain $a_i(rb_j) \in nil(R)$, then $a_iRb_i \subseteq nil(R)$.

Theorem 1.20. Let R be a nil- (α, δ) -compatible and I be a nil ideal of R such that $\alpha(I) = I$, $\delta(I) = I$. Then $\overline{R} = \frac{R}{I}$ is a nil- (α, δ) -compatible ring.

Proof. We have to prove $\overline{aRb} \subseteq nil\left(\overline{R}\right)$ if and only if $\overline{aR}\alpha(\overline{b}) \subseteq nil\left(\overline{R}\right)$, for any $\overline{a},\overline{b} \in \overline{R}$, such that $\overline{a} = a + I$, $\overline{b} = b + I$. First assume $\overline{aRb} \subseteq nil\left(\overline{R}\right)$ and $\overline{r} \in \overline{R}$. Then $\overline{ar\alpha}\left(\overline{b}\right) \in \overline{aR\alpha}\left(\overline{b}\right)$, so $(a+I)(r+I)(\alpha(b)+I) \in \overline{aR\alpha}\left(\overline{b}\right)$. Then

 $ara(b)+I \in \overline{aR}\alpha(\overline{b})$. But $nil(\frac{R}{I}) = \frac{nil(R)}{I}$, so $(arb+I) \in \frac{nil(R)}{I}$, hence $arb \in nil(R)$. As R is $nil-(\alpha,\delta)$ -compatible, we have $ara(b) \in nil(R)$ so $ara(b)+I \in \frac{nil(R)}{I} = nil(\frac{R}{I})$.

Then $\overline{aR}\alpha(\overline{b}) \subseteq nil(\overline{R})$. The case compatible similar. Conversely assume $arb \in aRb$. $\overline{aR}\alpha(\overline{b}) \subseteq nil(\overline{R})$ and Then $(arb + I) \in \overline{aRb}$. Under the $\overline{ar}\alpha(\overline{b}) \in nil(\overline{R})$, hence $ar\alpha(b) \in nil(R)$. As R is nil- (α, δ) -compatible, $arb \in nil(R)$ for all $r \in R$, so we concluded that $\overline{aRb} \subseteq \frac{nil(R)}{I} = nil(\frac{R}{I}).$

Definition 1.21. [13] A ring R is said to be (α, δ) skew nil-Armendariz if whenever $f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{j=0}^{m} b_j x^j$ $\in R[x;\alpha,\delta] \quad \text{satisfy} \quad f(x).g(x) \in nil(R)[x,\alpha,\delta], \text{ then } a_i x^i b_j x^j \in nil(R)[x,\alpha,\delta], \text{ for any } i, j.$

Lemma 1.22. If R is a nil- (α, δ) -compatible and nil-Armendariz ring of power series type, then R is an (α, δ) -skew nil-Armendariz ring.

Proof. Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^j$ $\in R[x;\alpha,\delta]$ and $f(x).g(x) \in$ $nil(R)[x,\alpha,\delta]$. Therefore $\sum_{k=0}^{n+m} \left(\sum_{i+j=k} \left(a_i \sum f_s^t(b_j)\right)\right) x^k \in nil(R)[x;\alpha,\delta],$ with $t \leq s$. So $\sum_{s+t=k} \left(\sum_{i=s}^{m} a_i f_s^i(b_t)\right) \in nil(R)$, since R is nil-semicommutative by [11, Lemma 3], applying the method in the proof of [22, Theorem 2.14], we obtain $a_i f_s^i(b_t) \in nil(R)$ with $t \le s$. Then R is a (α, δ) -skew nil-Armendariz ring.

Proposition 1.23. Let R be a nil- (α, δ) -compatible and nil-Armendariz ring of power series type, then for each idempotent element $e \in R$, $\delta(e) \in nil(R)$ and $\alpha(e) = e + u$ such that $u \in nil(R)$.

Proof. We have $\delta(e) = \delta(e^2) = \alpha(e)\delta(e) + \delta(e)e$. By polynomials $f(x) = \delta(e) + \alpha(e)x$, g(x) = (e-1) + (e-1)x, f(x).g(x) = 0, which implies that $f(x),g(x) \in nil(R[x;\alpha,\delta]) \subseteq nil(R)[x;\alpha,\delta]$ by Proposition 1.11. $\delta(e)(e-1)=$ $\delta(e)e - \delta(e) \in nil(R)$. Now take $h(x) = \delta(e) - (1 - \alpha(e))x$, k(x) = e + ex. Then we have h(x)k(x)=0, so we get $\delta(e)e \in nil(R)$ $\delta(e) \in nil(R)$. Now take $p(x) = (1-e) + (1-e)\alpha(e)x$ and $q(x)=e+(e-1)\alpha(e)x \in R[x;\alpha,\delta].$ $p(x)q(x) = (1-e)\alpha(e)\delta(e) +$ $(1-e)\alpha(e)\delta(e)\alpha(e)x \in nil(R)[x;\alpha,\delta]$, since $\delta(e) \in nil(R)$ and R is nil-Armendariz ring of power series type. But R is (α, δ) -skew nil-Armendariz by Lemma $(1-e)\cdot(e-1)\alpha(e)=e\alpha(e)-\alpha(e)\in nil(R)$ (1). $t(x) = e + e(1 - \alpha(e))x$ take $s(x) = (1-e)-e(1-\alpha(e))x \in R[x;\alpha,\delta]$. Then $t(x)s(x) = -e(I-\alpha(e))\delta(e)$ $-e(1-\alpha(e))\delta(e)x + e(1-\alpha(e))\delta(e)\alpha(e)x$. As $\delta(e) \in nil(R), \quad t(x)s(x) \in nil(R)[x;\alpha,\delta].$

And so R is a (α, δ) -skew nil-Armendariz ring, thus $e e(1-\alpha(e)) = e - e\alpha(e) \in nil(R)$ (2). Now by (1) and (2) we obtain $u = e - \alpha(e) \in nil(R)$. Hence $\alpha(e) = e + u$ with $u \in nil(R)$.

Theorem 1.24. Let R be a nil- (α, δ) -compatible and nil-Armendariz ring of power series type. Then for each idempotent element $e \in R$ $a \in R$ ea = ae + u with $u \in nil(R)$.

Proof. According to the Proposition 1.23, $\alpha(e) = e + u$ with $u \in nil(R)$, $\delta(e) \in nil(R)$. Now take the polynomials f(x)=e-ea(1-e)x, g(x)=1-e+ea(1-e)x in $R[x;\alpha,\delta]$. Hence f(x).g(x) = ea(1-e)xe - ea(1-e)x.ea(1-e)x.On the other hand, $u \in nil(R)$, $\delta(e) \in nil(R)$ and R is nil-Armendariz ring of power series type. So we have

$$ea(1-e)xe = ea(1-e)\alpha(e)x + ea(1-e)\delta(e)$$

$$= ea(1-e)ux + eu(1-e)\delta(e) \in nil(R)[x;\alpha,\delta].$$

Similarly

 $ea(1-e)xea(1-e)x \in nil(R)[x;\alpha,\delta].$ $f(x)g(x) \in nil(R)[x;\alpha,\delta]$, hence we $eea(1-e) \in nil(R)$, and that $ea - ea e \in nil(R)$ (1). Let h(x) = 1 - e - (1 - e)aexk(x) = e + (1 - e)aex, according to an earlier state $(1-e)(1-e)ae \in nil(R)$. Hence $ae-eae \in nil(R)$ (2). Using (1), (2) we have $ea-ae \in nil(R)$, so ea = ae + uwith $u \in nil(R)$.

Definition 1.25. For an endomorphism α and an α -derivation δ , an ideal I is said to be nil- (α, δ) compatible provided that:

- 1) $aRb \subseteq nil(R) \Leftrightarrow aR\alpha(b) \subseteq nil(R)$. For all $a, b \in I$.
- 2) $aRb \subset nil(R) \Rightarrow aR\delta(b) \subseteq nil(R)$. For all $a, b \in I$.

Theorem 1.26. Let R be an abelian nil-Armendariz ring of power series type. Then the following statements are equivalent:

- 1) R is a nil- (α, δ) -compatible ring.
- 2) For each idempotent $e \in R$ with $\alpha(e) = e + u$, $\delta(e) \in nil(R)$, $u \in nil(R)$ and eR and (1-e)R are nil- (α, δ) -compatible ideals.

Proof. $1\Rightarrow 2$ is trivial. Let eR be a nil- (α, δ) compatible ideal and $aRb \subseteq nil(R)$ for each $arb \in nil(R)$, $a,b \in R$ hence $earb \in nil(R)$. Thus $(ea)r(eb) \in nil(R)$. But eR is a nil- (α, δ) -compatible ideal, hence we have $(ea)r\alpha(e)\alpha(b)=(ea)r(e+u)\alpha(b)$ that $=(ea)rea(b)+(ea)rua(b) \in nil(R).$ Since $u \in nil(R)$, we have $(ea)ru\alpha(b)$ $\in nil(R)$, so $(ea)rea(b) = (ea)ra(b) \in nil(R)$ (1). Now, according to the above argument for (1-e)R, we have $(1-e)ar\alpha(b) \in nil(R)$ (2). With (1) and (2) we obtain $ara(b) \in nil(R)$, for all $r \in R$ or $aRa(b) \subseteq nil(R)$. For the case of nil- δ -compatible, we do in a similar way. Conversely suppose that $aRa(b) \subseteq nil(R)$, then we get $ara(b) \subseteq nil(R)$, for each $r \in R$. But (ea)ra (eb)= (ea) $r\alpha$ (e) α (b)= (ea) r (e+u) α (b)= (ea) r e α (b)+ (ea) $ru\alpha$ (b) $= ea r\alpha(b) + (ea) ru\alpha(b)$ and that

Then

 $ear\alpha(b)$, $(ea)ru\alpha(b) \in nil(R)$.

Then $(ea)m(eb) \in nil(R)$, since eR is nil-(α,δ)-compatible ideal, thus we have $(ea)r(eb) = earb \in nil(R)$ (3). Similarly, we have $(1-e)arb \in nil(R)$ (4). Therefore (3),(4) implies $arb \in nil(R)$, for all $r \in R$. Hence $aRb \subseteq nil(R)$.

We continue to extend nil- α -compatible condition on $R\left[x,x^{-l}\right]$ and $R\left[x,x^{-l};\alpha\right]$. If $f\left(x\right)=\sum_{i=k}^{n}a_{i}x^{i}\in R\left[x,x^{-l}\right]$, we define α $\left(\sum_{i=k}^{n}a_{i}x^{i}\right)=\sum_{i=k}^{n}\alpha\left(a_{i}\right)x^{i}$, for each integer numbers k,n.

Theorem 1.27. If R is a 2-primal and nil- α -compatible ring, then $R\left[x, x^{-1}\right]$ is a nil- $\overline{\alpha}$ -compatible ring.

Proof. Let $\Delta = \{I, x, x^2, ...\} \subseteq R[x]$. Then we have $R[x, x^{-l}] = \Delta^{-l}R[x]$. Hence for $f(x) = \sum_{i=t}^{n} a_i x^i \in R[x, x^{-l}]$ with the integer number t, we have $x^t f(x) = \sum_{j=0}^{m} a_j x^j \in R[x] x^t$, hence $x^t f(x) = g(x) \in R[x]$, so $\overline{\alpha}(f(x)) = x^{-t} \overline{\alpha}(g(x))$. Now by Theorem 1.8, $R[x, x^{-l}]$ is an nil- $\overline{\alpha}$ -compatible ring. \square

Recall that a ring R is called of bounded index of nilpotency, if there exists a positive number n such that $x^n = 0$, for each $x \in nil(R)$.

Lemma 1.28. [11, Lemma 2] If R is a nil-Armendariz ring of power series type, then

 $nil(R[[x]]) \subset nil(R)[[x]]$.

Theorem 1.29. Let R be a nil-Armendariz ring of power series type and of bounded index. Then nil(R[[x]]) = nil(R)[[x]].

Proof. By Lemma 1.28 it is sufficient to prove that $nil(R)[[x]] \subseteq nil(R[[x]])$. Since R is nil-Armendariz of power series type, nil(R) is nil and of bounded index, as a ring, by [12, Theorem 2.5]. Then R[[x]] is a nil ring of bounded index. Hence we get $nil(R)[[x]] \subseteq nil(R[[x]])$.

Lemma 1.30. [11, Lemma1] Let R be a nil-Armendariz ring of power series type. Let $f_1, f_2, \ldots, f_n \in R[[x]]$ and $f_1 f_2 \ldots f_n \in nil(R)[[x]]$. Then $a_1 a_2 \ldots a_n \in nil(R)$, for all coefficients a_i of f_i .

Theorem 1.31. Let R be a nil- (α, δ) -compatible and nil-Armendariz of power series type ring with bounded index. Then R[[x]] is a nil- $(\overline{\alpha}, \overline{\delta})$ -compatible ring.

Proof. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i$, $g(x) = \sum_{j=0}^{\infty} b_j x^j$ $\in R[[x]]$ and assume that f(x)R[[x]]g(x) $\subseteq nil(R[[x]])$. For each $r(x) = \sum_{i=0}^{\infty} c_i x^i \in R[[x]]$ we have $f(x)r(x)g(x) \in nil(R[[x]])$. If u is an arbitrary element of $f(x)R[[x]]\overline{\alpha}(g(x))$, then $u = f(x)r(x)\overline{\alpha}(g(x))$, for all $r(x) \in R[[x]]$. Under the assumption we have $f(x)r(x)g(x) \in nil(R[[x]]) = nil(R)[[x]]$, since R is nil-Armendariz of power series type so $a_ic_ib_j \in nil(R)$ and since R is nil- (α,δ) -compatible $a_ic_i\alpha(b_j) \in nil(R)$ and

$$\sum_{i+t+j=k} a_i c_i \alpha(b_j) \in nil(R) \quad \text{for} \quad k = 0, 1, 2, \dots$$
Hence
$$\sum_{k=0}^{\infty} \left(\sum_{i+t+j=k} a_i c_i \alpha(b_j) \right) x^k \in nil(R)[[x]],$$

so we have $f(x)r(x)\overline{\alpha}(g(x)) \in nil(R)[[x]] = nil(R[[x]])$. And this means $f(x)R[[x]]\overline{\alpha}(g(x)) \subseteq nil(R[[x]])$. Conversely, we prove that $f(x)R[[x]]g(x) \subseteq nil(R[[x]])$. If $f(x)r(x)g(x) \in f(x)R[[x]]g(x)$, then by the assumption $f(x)r(x)\overline{\alpha}(g(x)) \in nil(R[[x]]) = nil(R)[[x]]$, and since R is nil-Armendariz of power series type, we have $a_ic_i\alpha(b_j) \in nil(R)$. Hence $a_ic_ib_j \in nil(R)$ and that $\sum_{i,k+j=k} a_ic_ib_j \in nil(R)$ for k=0,1,2,...

. So
$$\sum_{k=0}^{\infty} \left(\sum_{i+t+j=k}^{\infty} a_i c_t b_j \right) x^k \in nil(R)[[x]] = nil(R[[x]]).$$

And this means that $f(x)R[[x]]g(x) \subseteq nil(R[[x]])$. For the case of nil- $\overline{\delta}$ -compatible, we do in a similar method. Then R[[x]] is a nil- $(\overline{\alpha}, \overline{\delta})$ -compatible ring.

Definition 1.32. A ring R with an α endomorphism is *skew nil-Armendariz of power series type*, if whenever for all

$$f(x) = \sum_{i=0}^{\infty} a_i x^i, g(x) = \sum_{j=0}^{\infty} b_j x^j \in R[[x;\alpha]],$$

$$f(x).g(x) \in nil(R)[[x;\alpha]], \quad \text{then}$$

$$a_i \alpha^i (b_j) \in nil(R) \text{ for all } i, j.$$

Proposition 1.33. Let R be a nil- α -compatible and nil-Armendariz ring of power series type. Then R is skew nil-Armendariz ring of power series type.

Proof. Let
$$f(x) = \sum_{i=0}^{\infty} a_i x^i, g(x) = \sum_{j=0}^{\infty} b_j x^j \in R[[x; \alpha]],$$

 $f(x).g(x) \in nil(R)[[x; \alpha]],$ thus

$$\begin{split} &\sum_{k=0}^{\infty}(\sum_{i+j=k}a_{i}\alpha^{i}(b_{j}))x^{k}\in nil(R)[[x;\alpha]], \qquad \text{so} \\ &\sum_{i+j=k}a_{i}\alpha^{i}(b_{j})\in nil(R), \text{ thus } a_{i}\alpha^{i}(b_{j})\in nil(R), \\ &\text{for all } i,j \quad \text{by Lemma 1.7. Then } R \text{ is skew nil-} \\ &\text{Armendariz ring of power series type.} &\Box \end{split}$$

Lemma 1.34. Let R be a nil- (α, δ) -compatible and skew nil-Armendariz ring of power series type. Then R is nil-semicommutative.

Proof. Let $r \in R$ and $ab \in nil(R)$. Then $a(1-rx)(1+rx+(rx)^2+\cdots)b \in nil(R)[[x;\alpha]]$. So $ar\alpha(b) \in nil(R)$ and hence $arb \in nil(R)$.

Lemma 1.35. Let R be a skew nil-Armendariz ring of power series type and assume that $f_1f_2\cdots f_n\in nil(R)[[x;\alpha]]$. Then $(a_{i_1}x^{i_1})(a_{i_2}x^{i_2})\cdots (a_{i_n}x^{i_n})\in nil(R)[[x;\alpha]]$, for all coefficients \mathcal{A}_{i_j} of f_{i_j} .

Proof. We will show that $a_{i_1}\alpha^{i_1}(a_{i_2})\alpha^{i_1+i_2}(a_{i_3})\cdots\alpha^{i_1+i_2\cdots+i_{n-1}}(a_{i_n})\in nil(R)$ by induction on n. Suppose that $a_{i_1}\alpha^{j_1}(a_{i_2})\alpha^{j_1+i_2}(a_{i_3})\cdots\alpha^{j_1+i_2\cdots+i_{k-1}}(a_{i_k})\in nil(R)$ for k < n. Since $\alpha^{i_1+i_2\cdots+i_k}(a_{i_k})\in R$, we have $a_{i_1}\alpha^{j_1}(a_{i_2})\alpha^{j_1+i_2}(a_{i_3})\cdots\alpha^{j_1+i_2\cdots+i_{k-1}}(a_{i_k})\alpha^{j_1+i_2\cdots+i_k}(a_{i_{k+1}})\in nil(R)$. This is because, if $a\in nil(R)$, $b\in R$, we have $a(1-bx)(1+(bx)+(bx)^2+\cdots)=a$ $\in nil(R)[[x;\alpha]]$. So $ab\in nil(R)[[x;\alpha]]$. \square

Theorem 1.36. Let R be a nil- (α, δ) -compatible nil-Armendariz ring of power series type. Then $nil(R[[x;\alpha]]) \subseteq nil(R)[[x;\alpha]]$.

Proof. We show that $nil(R[[x;\alpha]]) \subseteq nil(R)[[x;\alpha]]$. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i$ $\in nil(R[[x;\alpha]])$. Then $f^k(x) = 0$ for some

positive integer k. So we have $0 = f^{k}(x) = \sum_{s=0}^{\infty} (\sum_{i_{1}+i_{2}+\cdots+i_{k}=s} a_{i_{1}} \alpha^{i_{1}}(a_{i_{2}}) \alpha^{i_{1}+i_{2}}(a_{i_{3}}) \cdots \alpha^{i_{1}+i_{2}}$

If a is an arbitrary member of coefficients of f, then $(ax^t)(ax^t)\dots(ax^t)\in nil(R)[[x;\alpha]]$ (k times). Hence we have $a\alpha^t(a)\alpha^{2t}(a)\dots\alpha^{(k-l)t}(a)\in nil(R)$. Then by Lemma 1.2, and Lemma 1.34, we have $d^k\in nil(R)$. Thus $a\in nil(R)$, and hence $f(x)\in nil(R)[[x;\alpha]]$.

Theorem 1.37. Let R be a nil- (α, δ) -compatible and nil-Armendariz ring of power series type and nil(R) be nilpotent.

Then $nil(R)[[x;\alpha]] \subseteq nil(R[[x;\alpha]])$.

Proof. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i \in nil(R)[[x;\alpha]]$. Then $a_i \in nil(R)$ and $\alpha^m(a_i) \in nil(R)$ for all i. Since nil(R) is nilpotent, there exists a positive integer k such that $(nil(R))^k = 0$ and any product of k elements from nil(R) is zero.

Now consider $f^{k}(x) = \sum_{s=0}^{\infty} (\sum_{i_{1}+i_{2}+\cdots+i_{k}=s} a_{i_{1}}\alpha^{i_{1}}(a_{i_{2}})\alpha^{i_{1}+i_{2}}(a_{i_{3}})\cdots\alpha^{i_{1}+i_{2}\cdots+i_{k-1}}(a_{i_{k}}))x^{s}$ $\in nil(R)[[x;\alpha]],$ so $a_{i_{1}}\alpha^{i_{1}}(a_{i_{2}})...\alpha^{i_{1}+...+i_{k-1}}(a_{i_{k}}) \in nil(R),$ then $a_{i_{1}}\alpha^{i_{1}}(a_{i_{2}})...\alpha^{i_{1}+...+i_{k-1}}(a_{i_{k}}) = 0$. Hence $f^{k}(x) = 0$ and that $f(x) \in nil(R[[x;\alpha]])$.

Corollary 1.38. Let R be a nil- (α, δ) -compatible nil-Armendariz ring of power series type and nil(R) be nilpotent. Then $nil(R)[[x;\alpha]] = nil(R[[x;\alpha]])$.

Theorem 1.39. Let R be a $\operatorname{nil-}(\alpha,\delta)$ -compatible, $\operatorname{nil-Armendariz}$ ring of power series type and $\operatorname{nil}(R)$ be impotent. Then $R[[x;\alpha]]$ is a $\operatorname{nil-}(\overline{\alpha},\overline{\delta})$ -compatible ring.

Proof. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i, g(x) = \sum_{j=0}^{\infty} b_j x^j \in R[[x;\alpha]]$ and $f(x).R[[x;\alpha]].g(x) \subseteq nil(R[[x;\alpha]]).$ Then for all $r(x) = \sum_{t=0}^{\infty} r_t x^t \in R[[x;\alpha]]$ we have $f(x).r(x).g(x) \in nil(R[[x;\alpha]]).$

If $\mathbf{u} \in f(x)R[[x;\alpha]] \ \overline{\alpha}(g(x))$ is an arbitrary element, then $u = f(x)r(x)\overline{\alpha}(g(x))$, for all $r(x) \in R[[x;\alpha]]$. Under the assumption we have $f(x).r(x).g(x) \in nil(R[[x;\alpha]]) = nil(R)[[x;\alpha]]$. Since R is skew nil-Armendariz of power series type, $a_i\alpha^i(r_i)\alpha^i(b_j) \in nil(R)$. Since R is nil- (α,δ) -compatible, $a_i\alpha^i(r_i)\alpha^{i+t+1}(b_j) \in nil(R)$ and $\sum_{i+t+j=k} a_i\alpha^i(r_i)\alpha^{i+t+1}(b_j) \in nil(R)$ for $k \ge 0$. Hence

 $\sum_{k=0}^{\infty} \left(\sum_{i+t+j=k} a_i \alpha^i(r_t) \alpha^{i+t+1}(b_j)\right) x^k \in nil(R)[[x;\alpha]].$

 $f(x).r(x).\alpha(g(x)) \in$

 $nil(R)[[x;\alpha]] = nil(R[[x;\alpha]])$. And this means that $f(x)R[[x;\alpha]]\overline{\alpha}(g(x)) \subseteq nil(R[[x;\alpha]])$. Conversely, we must prove that $f(x).R[[x;\alpha]].g(x) \subseteq nil(R[[x;\alpha]])$. If $u = f(x).r(x).g(x) \in f(x).[[x;\alpha]].g(x)$, then under the assumption $f(x)R[[x;\alpha]]\overline{\alpha}(g(x))$ $\subseteq nil(R[[x;\alpha]]) = nil(R)[[x;\alpha]]$, and since R is skew nil-Armendariz of power series type we have $a_i\alpha^i(r_i)\alpha^{i+t+1}(b_j) \in nil(R)$. Hence $a_i\alpha^i(r_i)\alpha^{i+t}(b_j) \in nil(R)$ and that $\sum_{i+t+j=k} a_i\alpha^i(r_i)\alpha^{i+t}(b_j) \in nil(R)$ for $k \ge 0$.

Then

Hence
$$\sum_{k=0}^{\infty} \left(\sum_{i+t+i=k} a_i \alpha^i(r_i) \alpha^{i+t}(b_j) \right) x^k$$

 $\in nil(R)[[x;\alpha]]$, for $k \ge 0$. And this means that $f(x).R[[x;\alpha]].g(x) \subseteq nil(R[[x;\alpha]])$. For the case of nil- $\overline{\delta}$ -compatibility, we can do in a similar way. Thus $R[[x;\alpha]]$ is a nil- (α,δ) -compatible ring. \Box

Theorem 1.40. Let R be a nil- (α, δ) -compatible and nil-Armendariz ring of power series type. If $f(x).g(x) \in nil(R)[[x;\alpha]],$ then $f(x).R[[x;\alpha]].g(x) \subseteq nil(R)[[x;\alpha]]$ all $f,g \in R[[x;\alpha]]$.

Proof. Let $f(x).g(x) \in nil(R)[[x;\alpha]]$, and for

 $r(x) = \sum_{t=0}^{\infty} c_t x^t \in R[[x; \alpha]],$ that $u = f(x)r(x)g(x) \in f(x)R[[x;\alpha]]g(x)$. $u = \sum_{k=0}^{\infty} \left(\sum_{\substack{i \neq k, i=k \\ j \neq k}} a_i \alpha^i(\mathbf{c}_i) \alpha^{i+t}(b_j) \right) x^k. \quad \text{But} \quad f(x).g(x) =$ $\sum_{k=0}^{\infty} (\sum_{i \neq i \neq k} a_i \alpha^i(b_j)) x^k \in nil(R)[[x;\alpha]], \text{ and } R \text{ is}$ skew nil-Armendariz of power series type, so $a_i \alpha^i(b_i) \in nil(R)$ for all i, j. By Lemma 1.34, nil-semicommutative, which yields $a_i R\alpha^i(b_i) \subseteq nil(R)$. By Lemma $a_i R \alpha^{i+t}(b_i) \subseteq nil(R)$. Thus $a_i \alpha^i(c_i) \alpha^{i+t}(b_i)$

 $\in nil(R)$ and hence $\sum_{i+t+j=k} a_i \alpha^i(\mathbf{c}_t) \alpha^{i+t}(b_j)$

 $\in nil(R)$, for all i, j, t, k,

$$\sum_{k=0}^{\infty} \left(\sum_{i+t+j=k} a_i \alpha^i (r_t) \alpha^{i+t} (b_j) \right) x^k$$

 $\in nil(R)[[x;\alpha]].$ have $f(x).R[[x;\alpha]].g(x) \subseteq nil(R)[[x;\alpha]].$

Corollary 1.41. Let R be a skew nil-Armendariz ring of power serieswise type, and nil- (α, δ) compatible. Then $R[[x;\alpha]]$ is a nil-semicommutative ring.

Proof. We prove if that, $f(x).g(x) \in nil(R[[x;\alpha]]),$ then all $f,g \in R[[x;\alpha]]$ we get $f(x).R[[x;\alpha]].g(x) \subseteq nil(R[[x;\alpha]])$. We $nil(R[[x;\alpha]]) \subseteq nil(R)[[x;\alpha]]$. Then $R[[x;\alpha]]$ is a nil-semicommutative ring by Lemma 1.34.

We remark that, the above results enable us to produce large classes of rings which satisfy the condition $nil(R[x;\alpha,\delta]) = nil(R)[x;\alpha,\delta]$.

References

- Amitsur A., Algebras Over Infinite Fields. Proc. Amer. Math. Soc. 7: 35-48 (1956).
- Alhevaz A., and Moussavi A., On Monoid Rings Over Nil-Armendariz Rings. Comm. Algebra 42: 1-21 (2014)
- Antoine R., Nilpotent Elements and Armendariz Rings. J. Algebra 319: 3128-3140 (2008).
- Armendariz E.P., A Note On Extensions of Baer and p.p.rings. J. Austral. Math. Soc. 18: 470-473 (1974).
- Birkenmeier G. F., Kim J. Y., and Park J. K., Right Primary and Nilary Rings and Ideals. J. Algebra 378: 133-152 (2013).
- Camillo V., Kwak T. K., Lee Y., Ideal- Symmetric and Semiprime Rings. Comm. Algebra 41: 4504-4519 (2013).
- Chen W., On Nil-semicommutative Rings. Thai J.Math. 9: 39-47 (2011).
- Habibi M., Moussavi A., Alhevaz A., The McCoy Condition on Ore Extensions, Comm. Algebra. 41(1): 124-141 (2013).
- Hashemi E., Moussavi A., Polynomial Extensions of Quasi-Baer Rings. Acta Math. Hungar. 107: 207-224 (2005).
- 10. Herstin I.N., Small L.W., Nil Rings Satisfying Certain Chain Conditions. Canad. J. Math. 16: 771-776 (1964).
- 11. Hizem S., A Note On Nil Power Serieswise Armendariz Rings. Rend. del Circ. Mat. Palermo. 59: 87-99 (2010).
- 12. Huh C., Kim C.O., Kim E.J., Kim H.K., Lee Y., Nil Radicals of Power Series Rings and Nill Power Series Rings. J. Korean Math. Soc. 42: 1003-1015 (2005).
- 13. Habibi M., Moussavi A., On Nil Skew Armendariz Rings. Asian-Eur. J. Math. 5: 1-16 (2012).
- 14. Kanwar P., A. Leroy A., Matczuk J., Idempotents in Ring Extensions. J. Algebra. 389: 128-136 (2013).
- Krempa J., Some Examples of Reduced Rings. Algebra Colloq. 3: 289-300 (1996).
- 16. Lam T.Y., Leroy A., Matczuk J., Primeness, Semiprimeness and Prime Radical of Ore Extensions. Comm. Algebra. 25: 2459-2506 (1997).
- 17. Lam T.Y. A First Course in Noncommutative Rings. Springer-Verlag, New York, 397 p. (1991).
- 18. Lanski C., Nil Subrings of Goldie Rings are Nilpotent. Canad. J. Math. 21: 904-907 (1969).
- 19. Letzter E. S., Wang L., Goldie Ranks of Skew Power Series Rings of Automorphic Type. Comm. Algebra

- **40**(6): 1911-1917 (2012).
- 20. Lunqun O., Jingwang L., Nil-Armendariz Rings Relative to a Monoid. *Arab. J. Math.* **2**(1): 81-90 (2013).
- 21. Lunqun O., Special Weak Properties of Generalized Power Series. *J. Korean Math. Soc.* 4: 687-701 (2012).
- 22. Lunqun O., Jingwang L., On Weak (α, δ) Compatible Rings. *International Journal of Algebra*. **5**: 1283–1296 (2011).
- 23. Majidinya A., Moussavi A., Paykan K., Rings in Which the Annihilator of and Ideal Is Pure. *Algebra Colloquium*. **22**: 948-968 (2015).
- Mazurek R., Nilsen P., Ziembowski M., The Upper Nilradical and Jacobson Radical of Semigroup Graded Rings. J. Pure Appl. Algebra 219: 1082-1094 (2015).
- Paykan K., Moussavi A., Zero Divisor Graphs of Skew Generalized Power Series Ring. Commun. Korean Math. Soc. 30: 363-377 (2015).
- 26. Rege M. B., Chhawchharia S., Armendariz Rings. *Proc. Japan Acad. Ser. A Math. Sci.* **73**: 14-17 (1997).
- 27. Wang Y., Ren Y., 2-good Rings and Their Extensions. *Bull. Korean Math. Soc.* **50**: 1711-1723 (2013).
- 28. Zhang W. R., Skew Nil-Armendariz Rings. *J. Math.* **34**: 345–352 (2014).