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Abstract

Let R be a ring with an endomorphism . and an . -derivation 5. Antoine studied the
structure of the set of nilpotent elements in Armendariz rings and introduced nil-
Armendariz rings. In this paper we introduce and investigate the notion of nil-(a,d)-

compatible rings. The class of nil-(«,d)-compatible rings are extended through various
ring extensions and many classes of nil-(«,d)-compatible rings are constructed. We
also prove that, if R is nil-« -compatible and nil-Armendariz ring of power series type
with nil (R) nilpotent, then nil(R[[x;a]]) =nil(R)[[x;a]]. We show that, if R is a nil-

Armendariz ring of power series type, with nil (R) nilpotent and nil-(«, §)-compatible

ring, then nil (R [x;a,5]) = nil (R)[x;@,5]. As a consequence, several known results are

unified and extended to the more general setting. Also examples are provided to

1llustrate our results.

Keywords: («,0)— compatible ring; Skew polynomial ring; Skew power series ring.

Introduction

Throughout this article, all rings are associative whit
identity. Let R be a ring, o be an endomorphism and
g an ¢ -derivation of R, that & is an additive map

such that 5(ab):§(a)b+a(a)5(b), for all a,beR.

We denote R [x;a, 5] the Ore extension whose
elements are the polynomials over R, the addition is
defined as usual and the multiplication subject to the
relation xaza(a)x +0 (a) for anya e R. We also
denote the skew power series ring R[[x;a]], whose

elements are the power series over R, the addition is
defined as usual and the multiplication subject to the

relation xa =« (a) x foranya € R.

Recall that a ring R is reduced if R has no
nonzero nilpotent elements. Another generalization of a
reduced ring is an Armendariz ring. A ring R is said to
be Armendariz if the product of two polynomials in
R[x] is zero it implies that the products of their

coefficients are zero. This definition was coined by
Rege and Chhawchharia in [26] in recognition of
Armendariz’s proof in [4, Lemma 1] that reduced rings
satisfy this condition.

According to Antoine [3], a ring R is called nil-

if f (x )g (x ) € nil (R)[x] implies
aibj enil(R), for all

Armendariz,
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f(x)=iaix[,g(x)=ibjx-’ eR[x] .

When R is a 2-primal ring, then the polynomial

ring R[ x] and the Laurent polynomial ring R [x,xil]
are 2-primal and nil-Armendariz, and nil (R[x]) =
nil (R )[x ]. This condition is strongly connected to
the question of whether or not a polynomial ring R[x ]
over a nil ring R 1is nil, which is related to a question of
Amitsur [1]. This is true for any 2-primal ring R (i.e.
the Nil.(R) with
nil(R)).
In [13], M. Habibi and A. Moussavi, say, a ring R

with an endomorphism a is nil-Armendariz of skew

power series type, if f (x).g(x) € nil(R)[[x;a]]
implies that a[ai (bj ) e nil (R ) , for all i,j and for

lower nil radical coincides

all f(x)= Zaixi,g(x) = ijxj € R[[x; a]].
i=0 J=0

In this paper, we are concerned with nil-Armendariz
rings of skew power series type, which is a
generalization of nil-Armendariz rings.

According to Krempa [15], an endomorphism & of a
ring R is called rigid if ac(a) =0 implies @ =0 for
each a€R . Aring R is called & -rigid if there exists
arigid endomorphism & of R.

In [9], E. Hashemi and A. Moussavi, say a ring R
is & -compatible if for each g, b e R, ab =0 ifand
only if aer(b) = 0. Moreover, R is said to be 0 -
compatible if for each a, b€ R, ab = 0 implies
ad(b) = 0. If R is both a—compatible and O -
compatible, R is said to be (&, d)-compatible. By [22],
R is called weak O —compatible, if ab €nil(R) if
and only if aar(b) enil(R) for each a, b e R, and

R is said to be weak O — compatible if for each
a, be R, ab enil(R) implies a5 (b) enil(R).
Unifying and extending the above notions, we say
R is a nil- & -compatible ring if for each a, b € R,
aRb cnil(R) if and only if aRa(b) cnil(R).
Moreover, we say R is nil- O -compatible if for each
a,b €R, aRbc nil(R) implies aR5(b) < nil (R).
If R is both nil- -compatible and nil-0 -
compatible, we say that R is nil- (@, 0) -compatible.

M. Azimi and A. Moussavi.
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We extend the class of nil- (&, ) -compatible rings
through various ring extensions. We show that R is a
nil- (@, d) -compatible ring if and only if the ring of

triangular matrix 7 (R) is nil-(,5)-compatible,

where O is an & -derivation of 7 (R) If R is anil-
Armendariz ring of power series type and nil-(a,0)-

compatible then R[x ;a]is a nil- (5, 5) -compatible ring,

where O is an & -derivation of R[x ;a].
As a consequence, several properties of (a,0)-

compatible rings are generalized to a more general
setting.
We show that if R is a nil-@-compatible and nil-

Armendariz ring of power series type with il (R)
nilpotent, then nil(R[[x;a]])=I’lil(R)[[x;a]]. We
also show that, if R is nil-Armendariz ring of power
series type and nil- (@, 8)-compatible, with #i/ (R)

nilpotent, then nil(R[x;a,&])z nil (R)[x;a.5].

is nil-(a,0)-
compatible, 2-primal, and either R is a right Goldie
ring or R has the ascending chain condition (a.c.c.) on

ideals or R has the a.c.c. on right and left annihilators
or R is a ring with right Krull dimension, then

nil (R [x;a,8]) = nil (R)[x:a,5].

Moreover we show that, when R

Results and Discussion

We first introduce the concept of a nil-(«,0)-
compatible ring and study its properties.

Definition 1.1. For an endomorphism & and an & -
derivation O, we say that R is nil- & -compatible if
aRbc nil(R) if and only if
aRa(b) c nil(R). Moreover, R is said to be nil-O -
compatible if for each a,bheR,aRb cnil (R)
implies  aRS(b)c nil(R). If R is both nil- -

compatible and nil- O -compatible, we say that R is
nil- (e, 0) -compatible.
By [9], & -rigid rings are (¢, 5)-compatible. Clearly

for each a, be R,

every (@,0)-compatible ring and hence every & -rigid



Nilpotent Elements in Skew Polynomial Rings

ring is also nil- (&, 0)-compatible. Although the set of
(a,0)-compatible rings is narrow, we show that nil-
(a,0) -compatible rings are ubiquitous.

By [11], a ring R is nil-Armendariz of power series
ope it f(x).g(x)enil(R)[x]] implies a.b,
e nil (R ), forall Z, ] and

f(x)= ia,-x", g(x)= ibjxf eR [[x]].

Lemma 1.2. Let R be a nil- (&, &) -compatible ring.
Then

(1) aRb < nil (R) if
aRa" (b) c nil (R), for each positive integer number
n.

and only if

(2) aRb c nil(R) implies aRS™(b) < nil(R),
for each positive integer number m.
(3) If R is a nil-Armendariz of power series type

aRb c nil(R) then o"(@RO"(b)cnil(R),
6" (@Ra’ (b)cnil(R) when m,n,p,q are positive

integer numbers.

and

Proof. (1) Since R
have the following implications:

aRb c il (R)=aR a(b) il (R) = aR & (b)
=-—aRa"(b)cnil(R).
aRa" (b) S nil (R) =aRa(a"™ (b)) c nil (R)
=aRa"'(b) cnil (R)= = aRb c nil(R)-

is nil-(a,d)-compatible, we

Conversely we have

(2) This is similar to (1).

3) aRbcnil(R) bRa c nil (R)
because for # € bRa it implies that U :bm, for
cach ¥ €R, u’ =(bra)(bra) =br(ab)ra . But
aRb c nil(R) then ab € nil (R) since R is nil-

implies

. . 2 .
Armendariz of power series type, thus U enil (R) SO

uenil(R) and bRacnil(R). We have
aRb cnil(R), so aRS" (b) < nil (R) by (2). Then
we have 0" (b)Ra c nil(R) SO

0" (b)Ra"(a) < nil(R) and that " (a)R 0™ (b)
< nil (R). Then we conclude that o (a)RS" (b) is

contained in nil(R). We do the same for
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87 (b)Ra’ (a) < nil (R) with positive integers p,q .

Lemma 1.3. Each weak (a,d)—compatible ring is
nil- (&, &) -compatible.

Proof. that aRb cnil(R). So
arb € nil (R) for each r € R. Then (ar)b € nil (R)
and so we have (ar)a(b)enil(R), by weak
(o, 6)—compatibility. So aRa(b) < nil (R). Similarly,
(ar)b € nil (R) forall » € R and by weak (a,d)—
compatibility we have (ar)s(b)enil(R)
aR 5(b) < nil (R ). Next assume, aR a(b) c nil (R).
Then (ar)a(b)enil(R) and by weak (&,0)-
compatibility, we have (ar)b € nil (R) forall r eR ,
so aRb c nil (R).

In the following, we will see that the converse is not
true. Indeed, there exists a ring R , which is nil-(ex, 0)

Suppose

and so

-compatible but it is not weak (&, o)-compatible. Thus
a nil- (@, 0) -compatible ring is a true generalization of
a weak (&,0)-compatible ring (and hence («,0)-

compatible ring). We then can find various classes of
nil- (o, &) -compatible rings which are not weak (e, )

-compatible and hence are not (e, d)-compatible.

Example 1.4. Let K be a field, and § = g (x,y,2)-
S =K (x ,V,Z > .

()
Also assume that & is an endomorphism of S and

Let g =

E be an endomorphism of R, given by:
alk)y=k,a(x)=xz,a(z)=x.

alk)=k,a(x)=xz,a(z)=x.

We first show that E is well defined. To see this, let
f_:g_ f_:EERa SO
h.f,.f'€S such that f—g + f,yxf,. Thus
a(f)=a(g)+ Y a(f)ay )alx)a(f)
—a(g)+ Y a(f, wrza(f))- So a(f)=a(g), and

for some there  exists

a is well defined. Now, we determine the set of

nilpotent elements of R . First, we find zero devisor
monomials. Let 0#f € R be a zero devisor monomial.
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We have [ =ufu,,g=v,gy,, with u,u,,v,,v, e
{;,)T,Z_}, f1,€, €R such that fg =0, so
ufu,v,gv,=0.1If uy, #yx, then there exists

yXx inoneof uf, or fior fu, orv,g, or g, or
gV, - But if one of these cases occurs, f =0 or g =0.

So uy, =)7;, and u, =)7, v, —x . Hence
0=f eR is left (right) zero divisor if and only if
f :;fl s g=gy - 1f fis a nilpotent monomial of R ,
then f =xf,y . Moreover (xf,y)*=0. So [ is a
nilpotent monomial, if and only if f :;f 1)7’ for some
monomial f R .

Now we claim that, if is  a nilpotent polynomial
and f =>"f where f; is monomial for some I , then

f, is nilpotent in R (ie. f=xf'y for some

polynomial /' e R ). Before proving the claim we have
the following property:

The deg_ (), where f is a monomial in the from

LY [y SR Y FYRIY SR PRy Sy . -
X' ylzi Xty lz Xt ylz sy
=1

Similarly, deg_ (f),deg, (f) are defined by Zr: j, and

t=1

ii, respectively. Also deg(f ) = Z(ir +j +k,)-

t=1 t=1

Proof of the claim:
Let 4 = {f ; | deg(f;) is maximal and f’; is not nilpotent} .

i i

Assume that f " f ", f "eA are the monomials
such that deg ,deg ,deg. they have the largest.

One can see that at least one of degx ,degy ,deg_ is
nonzero. Without loss of generality, let deg_# 0. Since
f" is not nilpotent f ' is not zero devisor, hence
(f")" is not zero.

Also, it is worth to say that the monomial with largest
deg_in f " is (f")" . So it can not be simplified and

this means that f is not nilpotent. This contradiction
shows that deg. (f)= degy (f)=deg.(f)=0- So fis
nilpotent and constant which means that f* =0 . Hence
f s either zero or in the form xf,y for some f eR.

Now, let fRg < nil(R). Suppose that f =uf |,

M. Azimi and A. Moussavi.

J. Sci. . R. Iran

g=gy and u,y e{;,;,z_}. If u ;t;,v ;t;, then

fzg ¢ nil (R). So we have f =;f1,g =g137, hence
JRa(g) =;f1R a(gl);g nil (R). It is obvious that
fRa(g)cnil(R). Conversely let fRa(g)cnil(R),
with f =uf,, g=gy and y,y e{;,;,z_}. Since
fRa(g)cnil(R), u =x,a()=v'y ,s0, = . Hence
fRg =xf,Rg,y » Which is obviously a subset of nil(R),
which shows that R is a nil- & -compatible ring.

But it is easy to see that yz gni/(R), while
ya(z)=yz=0enil(R). Thus R is not weak « -
compatible. Note that 7il (R ) is not an ideal of R.
This is because )72_; enil(R), zeR, but
zyzx enil(R), yzxz ¢nil(R).

Let o be an « -derivation of R. The
endomorphism & of R is extended to the

endomorphism 5 T,(R)—>T,(R) defined by

5((01[/ ) =(a(a;)), also the & -derivation s s

extended to the & -derivation SZTH (R)—>T,(R)
defined by §((a,))=(5(a,)), for each (a;)€T, (R).

Then we have the following.

Theorem 1.5. A ring R is nil- (¢, 5)-compatible if
and only if the triangular ring T, (R) is nil-(¢,5)-

compatible.

Proof. Suppose that R is a nil- (e, d)-compatible
ring and 4 =(al.j ),B :(bij) eT(R.

We show that AT (R)B cnil(T,(R)) if and only if
AT (R)ya(B) c nil(T (R))- We observe that

nil(Ry R - R
w0 M@
ni =
! : 0 “. R
0 0 nmil(R)
Then  for C=@,)el,(R), we  have

ACB enilT,(R)) &
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allrllbll * *
0 o aiiriibii * * € nil(]; (R)) =
O e O annrnnbrm

a,r,b, enil(R)forl <i < n

<a,r,ob,;)enil(R), for 1<i <n, by nil-(¢,5)-

i "

compatibility <>

allrlla(bll) * *
0 coagnaby) * e nil(T,(R)) <
0 o 0 a1, a(b,,)

ACa(B) enil (T, (R)) & AT, (R)a(B) < nil (T, (R))-

The case nil—g -compatibility is similar. Next suppose
that 7 (R) is a nil-(e,0)-compatible ring and that
Cl,b,”'ER,A :(a),'jaB :(b) C:(c)ij

matrices in 7 (R). Then we have  aRb c nil (R) =

i are diagonal

a’/’b e 0 e 0
0 - adb 0 0 |enil(T(R)<
o - 0 arb

AC B e nil(T,(R)) < ACa(B) e nil (T,(R)), for
all ¥ € R, by nil- (¢, 5)-compatibility <>

ara(b) - 0 e 0
0 -+ ara(b) 0 0 |enl(T(R) <=
0 e 0 - ara(b)

ara(b) e nil(R) for all reR < aRa(b)cnil(R).
The case nil- & -compatible is similar.
Let R be aring and let

a al2 aln
a cee a and
2
S (R)= ) "|la,a, € R
0 0 a

63

al a2 cee a

n

with

a
T'(R,n)= ":_1 la, e R

0 0 - aq
n>2,and let 7 (R,R) be the trivial extension of R by

R. Any endomorphism ¢ of R can be extended to
an endomorphism ¢ of Sn(R) or T(R,n) or

T (R,R) defined by a((al.j ) =(a(a;)), and any « -

derivation O can be extended to an O -derivation &
of S, (R) (or T(Rn) or T(R,R)) defined by

3((a,)) =(5(a,)).

Theorem 1.6. Let @ be an endomorphism and O
an & -derivation of R. Then the following conditions
are equivalent:

(1) R isnil-(a,0)-compatible.
) S, (R) is nil-(a,5)-compatible.
(3) T(R,n) is nil- (5, 5) -compatible.

(4) T(R,R) isnil-(a,5)-compatible.

Proof. Using the same method as in the proof of
Theorem 1.5, the result follows.

By [22, Lemma 1.9], it is proved that, if R is 2-
primal then pj7 (R )[x ] =nil (R [x ]) An endomorphism
o and o -derivation O of aring R are extended to
R[x], given by a:R[x] —R[x] defined by a(
Zaixi )=>a(a)x", and S:R[x]— R[x]
i=0 =0

defined by g(iaix" ):i §(al_)x" . We can easily
i=0 i=0

see that & is an « -derivation of the polynomial ring
R[x].

Lemma 1.7 Let R be a nil-Armendariz ring of
power series type, nil- o -compatible and
Ay, =D aa'(b,)enil(R), a.b,eR, such

i+j=k
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that k =0,1,2,---,n . Then aiai(bj)enil(R)
forall i +j =k .

Proof. We have the following system of equations:

Ay =ab, enil (R);
A, =apb, +aab,)enil(R);

A, =agh, +a1a(b\_,l)+a2a2(b>\,2)+---+axax (by) € nil (R).

We will show that a, ¢’ (b,) € nil (R) by induction on
[ +j.Ifi+j=0,then qpb, enil(R), by, €nil (R)
. Now, suppose that § is a positive integer such that
a,a' (b,)enil(R), when i +j <s. We will show
that g ' (b;) € nil (R), when i + j = . Multiplying
(*)y by b, left,
bya, @ (by) =boA, =byagh, —byaa(b, ) =bya,a’* (b, ;)= =bya, @ (b,)

equation from we  have

By the induction hypothesis a,a’ (b,) € nil (R), for
each ;,0<i<s. So aRa'(b,)cnil(R) by [11,
3], a.Rb, cnil(R), by
compatibility. Then a,b, € nil (R), ba, c nil (R) , for
each j,0<i <s. Thus b a'(b,)enil(R) and so
baRa' (b)) cnil(R), so b Rb,cnil(R), and
hence a o’ (b,) € nil (R) . Multiplying equation (*) by

Lemma hence nil-

b,b,,--,b,_, from the left side respectively, yields
a_ '\ (b)) enil (R),a,_,a'>(b,) € nil (R), - a,b, €nil (R) >
in turn. This mean that a,a'(b,)enil(R), when

I+j=s5.

Theorem 1.8. If R
compatible ring, then the polynomial ring R [x ] is

is a 2-primal and nil-(¢,§)-

nil- (¢, 5)-compatible.

Proof. Let with

£ (<) R[]z (x) < nit(R[x])-

f(x)=>ax, g(x)zib/xj € R[x]. Then for all
i=0 j=0

r(x)= ir,x’ € R[x], we have

t=0

M. Azimi and A. Moussavi.
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m+n+

1 ()=

nil (R)[x]. Hence

(Y anpet enil (R[x])=

=0 i+j+t=k

> arb, e nil (R) for
i+j+t=k

k=0,1,2,....m+n+p. But
a, I’tbj enil(R), by method of Lemma 1.7, and by

R is 2-primal, so
nil- (@, 0) -compatibility we  have
enil(R) for all i,j,t. Thus » ara®,)

i+j+t=k

a;ra;)

So we can conclude that

enil(R).
m+n+p

f(x)r(x)g(g(x )): Z ( z al.rta(bj.)xk

k=0 i+j+=k

€ nil (R [x ]) : Hence we get
/ (x)R[x]a(g (x))cnil (R[x]). Similarly, we can
show that /" (x )R [x ]g(g (x )) c nil (R [x ]) The
converse is similar. Thus R [x ] is a nil- (&,5)-

compatible ring.

Let O bean O -derivation of R , and for integers
i,j with 0<i<j,f’ e End(R,+), will denote
the map which is the sum of all possible words in & ,
O built with i letters X and j —i letters 0. For

jr()():l,ff:aja]%jzé‘j

,-j,l =a/'S+a’?Sa+---+0a’™" . The next lemma

instance and

appears in [16].

Lemma 1.9. For any positive integer # and 7 € R

we have x "r :ifl_” (r)x' inthe ring R [x;a,5].
=0

By [7], a ring R is
ab € nil (R) implies aRb cnil (R), for all
a, beR.

Lemma 1.10. Let R be a nil—(a,5 ) -compatible ring
and nil-Armendariz of power series type. If
aRb c nil (R) then aRf/(b) < nil (R) for all
0<i<y.

nil-semicommutative if

Proof. Using Lemma 1.2, the proof is trivial.

By [11, Lemma 3], if R is a nil-Armendariz ring of
power series type then it is a nil-semicommutative ring.
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Now we have:

Proposition 1.11. Let R be a nil- (&, 0) -compatible
ring and nil-Armendariz of power series type. Then we

have nil (R [x ;a,5]) c nil(R)[x ;a,5].

Proof. Let f(x)=ia,.x" enil(R[x;a,0)).

i=0

There exists a positive integer 1M such that
fr (x ) =0. Then we have
a,a" (a,)a” (a,)... o (a,)x™ +lower terms

=0. So a,a”(a,)a” (a,)..a" " (a
€ nil (R ) Thus we have

a(a,)a” (a,)..o (m =2)n (a,)Ra (m =L (a,)
nil (R), by [11, Lemma 3]. So we have
2 (a,)e (a,)... o (m=2)n (@,)R o (m=2)n (@,)
cnil (R), by nil-(cr, 5)-compatibility. It implies
that

)=0

n

<

n

IN

S

an"(a,)a”(a,)... a" " (a,)1. almr (a,)enil (R),

a(m—j’)n (an)
Ra (") (anan ) c nil (R ) , by [11, Lemma 3], so
ao” (an )az” (an ) a3 (an ),I.anan e nil (R )

By following this method, we have a, € nil (R )

then a,a" (a, )o” (a,)...

Also a, =1.a,0nil (R ),then IRa, cnil (R) We
have IRfl.j(an)gnil(R), by Lemma 1.10 .
1/ (an)enil(R) for 0<i< ).

So

Now we fix A =a,+ax +...+a, x " Then
0=f"(x)=(4+ax")" =4"+A Wwith AeR[x;a,5].
Note that the coefficients of A can be written as sums
and f St (Cl] ) , Where

}andl‘ZS > 0, are

of monomials in &;

a,a; e {a(), a, ...,a

n

nonnegative integers and each monomial has &, or

f'(a). Because R is nil-Armendariz of power series

type, we get that A € nil (R)[x;a, 5]. Now consider

n

the term 4 =a, +a,x +...+a, ,x ' so we have
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A" enil (R)[x;0,0 ], then
A" :an_1an_l (an_] )...a(m#)(”*]) (an_l )x m(n=I)

+lower enil (R)[x;0.,6].

a, 0" (a,,)...a" """ (a, ) enil (R).

the argument above, then we have d, ; € nil (R) .

terms Hence

As

By following this method we have &; enil (R) for
0<i<n.Hence f (x)e nil (R)[x;a,5].

Corollary 1.12. If then

nil (R[x ;a]) < nil (R )[x ;]

0=0,

Lemma 1.13. Let R be a nil- (&, d)-compatible and
nil-Armendariz ring of power series type ring. Then
S(nil (R))cnil (R).

Proof. Let y e5(m'l (R )) SO u =5(a) with
aecnil(R). Hence 5(a)Ragnil(R), and by o-
compatibility we have O (a)R5(a) cnil(R). So
5% (a) enil(R), then 5(a) € nil(R).

Theorem 1.14. Let R be a nil-(a,0)-compatible,

nil-Armendariz ring of power series type and nil (R )

is nilpotent. Then i/ (R) [x;a,0] cnil(R[x;a,0)).

Proof. Letf(x):iaixi enil (R)[x;a,é]. For

i=0
a; any arbitrary coefficient of f, 6 (al. ) enil (R)
As 0 is an endomorphism, (x(al.)enil (R) Then

there exists natural K such that (il (R))k is zero. Now

we consider f k (x ) =
ik“( z ai,.f;zvz(aiz)"'.fukvk(ai,()]'xs' All coefficients
§=0 \_ij+...+ip=s

k . v Vi
of f (x) are in the form of aifuz z(al.2 )"fuk g (aik ),
which is the product of k  members of the il (R) by

Lemma 1.10, so it should be equal to zero. Thus

f"(x):O and hence f* € nil (R[x ;0,0 ]).
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Corollary 1.15. Let R be a nil- (&, d)-compatible,
nil-Armendariz ring of power series type and ni/ (R )

is nilpotent. Then

nil(R[x;a, 81) = nil (R) [x; 2, 5].

we have

Corollary 1.16. Let R be a nil-(&,0)-compatible

and 2-primal ring. Assume that either R is a right
Goldie ring or R has the ascending chain condition
(a.c.c.) on ideals or R has the a.c.c. on right and left
annihilators or R is a ring with right Krull dimension.

Then nil (R[x;,0]) =nil (R )[x ;a,0].

Proof. If R has any of these chain conditions, the
upper nilradical MI,(R) of R is nilpotent. If R has
the a.c.c. on ideals, Mi/,(R) can be characterized as the
maximal nilpotent ideal of R. If R has the a.c.c. on
both left and right annihilators, Ni/,(R) is nilpotent by
a result of Herstein and Small [10, Theorem 1.34], while
if R is right Goldie, MVl (R) is nilpotent by a result of
Lanski [18, Theorem 1]. Also, if R is a ring with right
Krull dimension, then by [17], Nil,(R) is nilpotent. O

Corollary 1.17. If R is a nil-Armendariz ring of
power series type and 7i/ (R ) is nilpotent and nil- & -

compatible ring, then nil(R[x;a]) = nil (R)[x;«].

Proof. By Corollary 1.15, then

nil(R[x;a]) = nil(R)[x;a].

if 6=0,

Theorem 1.18. If R is a nil-Armendariz ring of
power series type and nil-(a,0)-compatible ring

nil (R) is nilpotent, then R[x;a] is a nil- (5,5)—

compatible ring.

Proof. Assume that

S(x)= iaixi,g(x) = ibjxf eR[x;a],and et
i=0 j=0

f(x)R [x;a]a(g (x ) cnil (R [x ;a]). For all

r(x)zia,x’ eR[x ;06], we have
f(x)r(x)a_(g(x))enil(R[x;a]). So by
Corollary 1.17, we have f(x)r(x )E(g (x)
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m+n+p
= > (Y ad @)a™b)x" enil (R[x;a)
k=0 i+j+t=k
cnil (R)[x;a).
Then
> a,a'(r)a't"(b;)enil(R), for
i+j+t=k
k=0,1,2,...,m+n+ p. But R is nil-Armendariz
ring of power series type, SO
aiai (l’})OliHJrl(bj)Enl'l(R), by Lemma 1.7, with

0<i<n,0<j<m, 0<¢t<p. As it is nil-
semicommutative, so we get &, o (I; )RO!HPrl ® j)
cnil (R), then aa (r;)Ra’"(b,) c nil (R), by

Lemma 1.2. Then a[a[(lf,)a[+t(bj)enil(R).

Hence > a,a'(r,)a'"(b;) € nil(R). So
i+j+t=k
m+n+p . .
we have Z ( Z aa (r)a' " (b,)x"
k=0 i+j+t=k

e nil (R )[x;a]=nil (R [x;a]). Therefore we get
S (x)r(x)g (x )€ nit (R [x:a])-
f(x)R[x;a]g (x)

Conversely assume

C nil (R [x ;a]). So we have

m+n+p

f(x)r(x)g(x)= z ( Z a,.a"(;;)a"”(bj))x"enil(R)[x;a],

k=0 i+j+t=k

for all r (x ) eR [x 0 ] . Thus we have
Z a, al (r, Yo' ! (b,-) S nil(R). Since R is nil-
i+j+t=k

Armendariz ring of power series type, a,a' (1,)a'" (b,)
€ nil(R), so a,a’ (r,)Ra'" (b,) < nil(R).
aa (r)Ra™""(b;) c nil(R),  so
a,a' (r,)a' " (b;) e nil(R).

Hence

Then for all

i,j,k, we have > ad ()" 0b,)
i+j+t=k

e nil(R). So

m+n+p

(Y ad @)a"B,)x" enil (R)[x;a], and

k=0 i+j+t=k

hence f (x )r(x )E(g (x )) € nil (R [x ;0 ]) for
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al r(x)eR[x;a].  Finally we have
f(x)R[x ;a]a(g (x ) € nil (R [x;OC]). For
the  case  of  nil-o -compatibility, let

f(x)R[x:alg(x)< nil(R [x;a]), Then we
f(x)r(x)g(x)
:’”f”( > aa (r)a'" (b,)x " enil(R)[x;al,

have

k=0 i+j+t=k
for ol r(x)eR[x;a]. Hence
> aa (n)a"(b;) enil(R). Then
i+j+t=k
ad ()" (b)) € nil (R) for
0<i<n0<;<m0<t<p. Based on the

assumption we have

a,a' (r)Ra'™" (b))
< nil(R), so aia[(I;)ij c nil (R) and that

aiai(i;)Ré'(b_l.) cnil(R). Hence
> ad ()" (5b,)) €nil(R),  and  that

i+j+=k

sz( > aal (r)a " (Sb,)))x " enil (R)[x;al.

Tk};:s o implies

f(x)r(x)(g(x)) e nil (R [x;a]), for all

r(x) eR[x ;oc]. Therefore we  conclude that

f(x)R[x ;oc]o_"(g (x) < nil(R[x;a]).

Now we consider the nilpotent elements in skew
polynomial rings when R is a nil-Armendariz ring of
power series type.

Theorem 1.19. Let R be a nil-Armendariz ring of

power series type and nil—(OC, 5) -compatible ring. Let
n m

f)=Yax",gx)=Ybx’' eR[xad]
i=0 j=0

it f(x)R[x;ed]g(x)c nil(R[x;a,é]),

then ¢;,Rb, c nil (R) for 0<i<n, 0< j<m.

Proof. Let a;7b, €a,Rb, for all reR,

0<i<n, 0<j<m. We have FGR[X;OC,é] )
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f(x)rg(x)ef (x)R [x;a,é]g (x),
X ax ) bx )

= (> ax' )3 (b, )57y € nil(R[x;@,8]), 5o

hence we have

(S ax (S (rb)x 'y €NL(R)X;0,8] by

Proposition 1.11. Therefore
n+m t k

Zk:o (Zi+/:k (ai Zfs (rbj )))x

enil(R)[x;a,0], with t<s. Put

A=Y (@ fiob)). k=012, .m+n,

hence A, € nil(R). We have the following

equation:

A,., =a,0"(rb,) e nil(R);

m+n

A, =a,d"(rb_ )+ am—la"H (rb)+a,, £, (rb,) € nil(R);
A,...=a,a"(rb )+ z a; ni—1 (rb, )+ z aifni—z(r b,) enil(R);
i=m-1 i=m-2

A= S af (b)) enil(R).

s+t=k i=s

Then since R is nil-semicommutative by [11,
Lemma 3], applying the method in the proof of [22,

Theorem 2.14], we obtain &,; (I”bj ) € nil (R ) , then
a;Rb, c nil(R).

Theorem 1.20. Let R be a nil-(&,d)-compatible

I bve a ideal of R such that

06(])=], 5(1)=I. Then g =X is a nil- (e, 0)-
1

and nil

compatible ring.

Proof. We have to prove aRb C nil (E) if and
only if c_zﬁa(g) c nil (E), for any L_Z,[; S E, such
that 5=a+1, b =b+1. First assume aRb cnil (13)
and 7 € R . Then a_r_a’(b_) caR (b_) , SO

(a+1)(r+l)(a(b)+l) caRa (ZT) . Then
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am(b)+] € 5Ea(5) But nil(%) - nil](R ) , S0

(arb+1)e@, hence arb e nil (R) As R is
nil- (o, &) -compatible, we have arox (b) enil (R ) S0
ma(b)+[ e mil (R )_ il(ﬁ)-

1 1
The nil-o -
assume

Then

Then aRa(b)C nil (E).
compatible is
aRa(b) c nil (1?)
(arb +1) caRb.
ara(b)e nil (R_) , hence ara(b) e nil (R)
As R is

case

similar. Conversely

arb caRb .

and

Under the assumption

nil- (o, &) -compatible, we  have

arb € nil (R ) for all 7 €R , so we concluded that

Definition 1.21. [13] Aring R is said to be (ot,5)-

skew nil-Armendariz if whenever
fx)=Yax',g(x)=>bx’

i=0 j=0
eR [x;oc,5 ] satisfy f(x)g(x)e

nil (R)[x,a,8], then axbx’ enil (R)[x,.],
forany i, j.

Lemma 1.22. If R is a nil-(@,d)-compatible and
nil-Armendariz ring of power series type, then R is an
(a ,0 ) -skew nil-Armendariz ring.

Proof. Let f(x)zzn:aixi,g(x)zibjxj
i=0 Jj=0

ER[)C;(Z,&] and f(x)g(x)e

nil (R)[X,OC 5]. Therefore

(X @ X @)t el R)lx;ed)
with £<s. So Y (Zaifsi (b,)) e nil (R), since

s+t=k i=s
R is nil-semicommutative by [11, Lemma 3], applying
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the method in the proof of [22, Theorem 2.14], we
obtain @,f (b,) € nil (R) with ¢t <s. Then R isa

(0! ,0 ) -skew nil-Armendariz ring.

Proposition 1.23. Let R be a nil- (e, 0)-compatible
and nil-Armendariz ring of power series type, then for

each idempotent element ¢ €R , O (6) enil (R) and

0!(8)28 +u such that y enil (R)

Proof. We have 5(6 )_ ( ): (€)5(e)+5(e)e. By
taking polynomials ( )= ( ) ( )x,
g (x ) =(e —1)+(e -1 )x , we see that
f(x).g (x) =0, which implies that

f(x).g(x)emni (R [x;a,5 ]) cnil (R)[x ;a,5]
5(6)(6 —1)=

take

by Proposition 1.11.

5(e)e—5(e)enil(R).
h(x)=5(e)—(—a(e)yx, k(X)=e+ex. Then we
have h(x )k (X):O , SO we get 5(8)6 El’lll(R)

Now

and S0 o (e ) enil (R) Now take
p(x)=(-e)+(I-e)a(e)x and
q(x)=e+(e—1)a(e)x eR[x;a,d]. Then

p(x)q(x)= (1=eafe)s(e)+
(1-¢)a(e)d(e (e €nil (R)[x;0.,0], since
) (e)enil (R) and R is nil-Armendariz ring of

power series type. But R s (0(,5)-skew nil-
by Lemma 1.22, so

a(e)en(e)-a ()enil @) o
take t(x)=e+e(I-a(e))x,
e)—e(l-a(e))x eR[x;0,0]. Then

()3 () =<l - (e )
—(—-a(e))s(e)x + e(I-a(e))d(e)a(e)x. As
5(e)eniZ(R), t(x)s(x)enil(R)[x;a,é]_

Armendariz
(1-e).(e-

Now

s(x)=(1~

we have
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Andso R isa (a, o ) -skew nil-Armendariz ring, thus
ee(l—a(e))=e—ca(e)enil(R) (2). Now
by (1) and (2) we obtain U =e—a(e)enil (R)

Hence a(e) =e+U with U € l’lll (R ) .0

Theorem 1.24. Let R be a nil- (&, d)-compatible
and nil-Armendariz ring of power series type. Then for

each idempotent eclement e €R and a€R,
ea = ae +u with u € nil(R).
Proof. According to the Proposition 1.23,

ale)=e+u with u € nil (R), 5(e)enil(R),
Now take the polynomials f° (x)=e—ea(] —e)x,
g(x)z]—e+ea(]—e)x in R[x;a,ﬁ].

Hence

f(x).g(x)=ea(I-e)xe—ea(l—e)xea(l—e)x.

On the other hand, u €nil(R), 5(e)enil (R) and

R is nil-Armendariz ring of power series type. So we
have

ea(] —e)xe =ea(l —e)a(e)x +ea(l —e)s(e)

ea(]—e)ux+eu(]—e)5(e)enil(R)[x;a,é].
Similarly

ea(l —e)xea(] —e)x enil (R)[x ;0,0 ] Then
f(x)g(x)enil (R)[x;a,0], hence we
eea(l —e)enil (R),
ea—eaeenil(R)

h(x)=1-e—(I-e)aex,
k(x)=e+(/—e)aex, according to an earlier state
(I—e)(]—e)aeenil(R).

and that

(D).

get

Let

we  have Hence

ae—eaeenil(R) (). Using (1), (2) we have

ea—aeenil(R), so ea=ae+u  with

u enil(R).
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Definition 1.25. For an endomorphism & and an &

-derivation & , an ideal [ is said to be nil-(,0)-
compatible provided that:

1) aRb gnil(R)@aRa(b) gnil(R).
Forall a,bel.

2) aRb gnil(R):aRé‘(b) gnil(R). For
all a,be].

Theorem 1.26. Let R be an abelian nil-Armendariz
ring of power series type. Then the following statements
are equivalent :

1) R isanil-(a,d)-compatible ring.

2) For each idempotent € € R with a(e)=e+u,
5(6) enil(R),

(1 - e) R are nil- (a, §) -compatible ideals.

u € nil(R) eR and

and

Proof. 1=2 is trivial. Let eR be a nil-(a,0)-
compatible ideal and aRb C nil (R) for each

a,b eR arb e nil(R) ,
earb € nil (R ). Thus (ea)r(eb) e nil(R). But
eR is a nil- (e, &)-compatible ideal, hence we have
(ea)rox(e)ox(b) =(ea)r (e +u)a(b)
=(ea)rea (b )+ (ea)rua (b ) enil (R).
Since u e nil(R), we have (ea)rua (b)
enil (R), so (ea)ren(b) =(ea)ra(b)enil(R)
(1). Now, according to the above argument for
(1-e)R, we have (I—e)am(b)enil (R) ().

With (1) and (2) we obtain are. (b ) € nil (R '), for

) hence

that

all 7€R or aRa (b )g nil (R ) . For the case of

nil- 0 -compatible, we do in a similar way. Conversely
suppose that aRo (b)g nil (R), then we get

aro (b)gml (R), for each ¥€R. But (ea)a

(eb)= (ea) ra (e)a (b)= (ea) r (et+u) a (b)=(ea) r e a (b)+
(ea) rua (b) =eara(b)+(ea)rua(b) and that
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ea roc(b) ,(ea)moc (b) enil (R)

Then (ea)ra (eb) enil (R ), since eR is nil-
(a,0)-compatible ~ ideal,  thus  we  have
(ea)r(eb)=earb enil (R) (3). Similarly, we
have (/—e)arbenil(R) ). Therefore (3),(4)
implies dr benil (R), for all 7€R. Hence
aRb c nil (R ) .

We continue to extend nil- & -compatible condition

R[x,x’lJ R[x,x’l;a]. If

n
f(x):Zaixi € R[x,x_lj, we define &
i=k

on and

n n

(Zaix ' ):Za(ai )Xl , for each integer numbers
i=k i =k

k,n.

Theorem 1.27. If R is a 2-primal and nil-¢ -
compatible ring, then R [x,x_]] is a nil-c-

compatible ring.

Proof. Let A={ ],x,xz,...} C R[x]. Then we
R[x,x’l]:A’IR [x]

have Hence for

f(x):ial.xi eRI:x,x _’] with the integer
i=t
x'f (x)=

ia}x’ eR[x ]x', hence ' f(x)=g(x)eR[x].
7=0

number t, we have

s0 El(f (x ))fota(g (x )) Now by Theorem 1.8,
R [x x } is an nil- & -compatible ring.o

Recall that a ring R is called of bounded index of
nilpotency, if there exists a positive number n  such

that x " ZO,foreach X El’lil(R),

Lemma 1.28. [11, Lemma 2] If R is a nil-
Armendariz ring of power series type, then
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nil(R[[x]]) < nil (R)[[x]].

Theorem 1.29. Let R be a nil-Armendariz ring of
power series type and of bounded index. Then

nil(R{[x]]) = nil (R)[[x]].

Proof. By Lemma 1.28 it is sufficient to prove that
nil(R)[[x]] < nil(R[[x]]) - R is

Armendariz of power series type, #il (R) is nil and of

Since nil-

bounded index, as a ring, by [12, Theorem 2.5]. Then
R[[x]] is a nil ring of bounded index. Hence we get

nil(R)[[x]] < nil(R[[x]]).

Lemma 1.30. [11, Lemmal] Let R be a nil-
Armendariz ring of power series type. Let
fis,]pza--'af;; ER[[X]] and
NSa---f, €nil(R)[[x]]. Then

a,a, ...a, € nil(R), for all coefficients d; of
i

Theorem 1.31. Let R be a nil-(a,d)-compatible
and nil-Armendariz of power series type ring with
bounded index. Then R[[x]] is a nil-(a,d)-
compatible ring.

Proof. Let f(x)= iaix fLe(x)= ibjx /
€R[[x]] and assume that f(x)R[[x]]g(x)
C nil(R[[x]]). For each r(x) = i cx' € R[[x]]

we have f (x)r(x)g(x)e nil(:R[[x]]) dfu

is an arbitrary element of f(x)R[[x]]E(g(x)),
u =f(x)r(x)gc(g(x ))
r (X) ER[[X]]. Under the assumption we have

f(x)r(x)g(x) € nil(R[[x]]) = nil(R)[[x]].

since R is nil-Armendariz of power series type so
aictbj € nil (R) and since R is nil-(@,0)-
a,c,a(b;)enil (R)

then for all

compatible and
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Z acab,)enil(R) for k=0,1,2,....

i+t+j=k

Hence 30 Y ac,a(b,)) x* enil(R)[x]].

) we have

f(x)r(x)a(g(x)) enil(R)[[x]] = nil(R[[x]]).

And this
£ (x)R[x]le((g (x)) cmil(R[[x]]). Conversely,
we prove that f (x)R[[x]]g( ) nil(R[[x]]). 1f
f (x)r(x) g(x) ef (x) [[x]]g(x), then by the

mecans

assumption f(x)r(x )gc(g (x )) €
nil(R[[x]])=nil(R)[[x]], and since R is nil-
Armendariz  of power series type, we have

a.c,ab;) enil (R). Hence acb; enil (R)
and that z aictb_]. enil(R) for k =0,1,2,...

i+t+j=k

. So i( D acb,) ¥t enil(R)[x]]=nil(R[[x])).

And thi_s meaﬁ; that f (x)R[[x]]g(x) cnil(R[[x]]).

For the case of nil- & -compatible, we do in a similar

method. Then R[[x]] is a nil-(a,5)-compatible
ring.
Definition 1.32. A ring R with an «

endomorphism is skew nil-Armendariz of power series
type, if whenever for all

(=Y ax g =Y b’ < Rilxall.

fegoe  mil®xall,
ad( )eml(R) forall 7, j.

then

Proposition 1.33. Let R be a nil- & -compatible
and nil-Armendariz ring of power series type. Then R
is skew nil-Armendariz ring of power series type.

Proof. Let f(x)= i“:’xi’g(x) = ib/.xj e R[[x;x]]>

i=0 Jj=0

f(x).g(x) e nil(R)[[x;a],

thus
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S a6t enil(Rxall. o

k=0 i+j=k

D aa'(b,)enil(R), thus aa' (b,)enil(R).
i+j=k

for all 7,7 by Lemma 1.7. Then R is skew nil-
Armendariz ring of power series type.O

Lemma 1.34. Let R be a nil- (&, &) -compatible and
skew nil-Armendariz ring of power series type. Then
R s nil-semicommutative.

Proof. Let ¥€R and abe m'l(R). Then
a(l=rx)(1+rx+ (rx)* +--)b e nil(R)[[x;]] .
So ara(b)enil (R) and hence arb e nil (R).

Lemma 1.35. Let R be a skew nil-Armendariz ring

of power series type and assume that ff,---f

e nil(R)[[x;]]. Then (ai]xi1 Xa, x iz)---(al.’]x"”)e

nil(R)[[x; «]], for all coefficients al-j of f,-/ .

Proof. We will show that
ailafl (aiz )ai1+i2 (ai3)' g T (ai” )e nil (R) by
induction on n. Suppose that
al,ldl (al.z)of‘”2 @) o (@ )enil(R) for
k<n. Since o™ (@ )eR, we have

Lkl

a0 (@ )o@ )+ @ )l a ) enil (R).
This is because, if @€nil (R), beR , we have
a(l=bx )(1+(bx )+ (Bx ) ++-) =a
enil(R)[[x;]]. So ab € nil (R) and hence
(ailxi‘ )(al.zxiz)‘ . -(aik+lxik*‘) enil(R)[[x;a]]. o

Theorem 1.36. Let R be a nil-(a,d)-compatible

nil-Armendariz ring of power series type. Then
nil(R[[x; a]]) < nil(R)[[x;a]].
Proof. We show that

nil(R[[x;a1]) < nil(R)[[x;e]]- Let f (x )= iaix !
e nil(R[[x;]]). Then fk (x ) =0 for some
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integer k. So have

DXEDIE

§=0 G +iy+ i =s

positive we

If A is an arbitrary member of coefficients of f , then
(ax’)(ax’)... (ax’) enil(R)[[x;a]] ¢
k times). Hence we have
ao' (a)a™ (a)...a(k’l)t (a)enil (R). Then by
Lemma 1.2, and Lemma 1.34, we have @ €nil (R),
Thus @ €nil (R), and hence f (x) €nil (R)[[x;c]].
Theorem 1.37. Let R be a nil-(a,5)-compatible

and nil-Armendariz ring of power series type and
nil (R)be nilpotent.

Then nil(R)[[x;a]] < nil(R[[x;]]) -

Proof. Let f (x) = Ya,x’ €nil(R)[[x;a]]. Then

i=0
a, €nil (R) and " (a,)enil (R) for all 1.
Since nil (R) is nilpotent, there exists a positive
integer k such that (l’lll (R ))k =0 and any

product of K elements from il (R) is zero.

fH(x)=

@, a (aiz )OlilJri2 (ai3 ) o (ai,( Nx’

Now consider

€ nlilz(R)k[[x;a]], 50
a,a"(a)..a""(a, ) enil (R), then
a,a'(@)..a" " (@, ) =0 Hence f* (x)=
and that f(x) € nil(R[[x;ct]]) .

Corollary 1.38. Let R be a nil- (&, ) -compatible

nil-Armendariz ring of power series type and nil (R)
be nilpotent. Then nil(R)[[x;c]]=nil(R[[x;x]]).
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Theorem 1.39. Let R be a nil-(a,0)-compatible,
nil-Armendariz ring of power series type and nil (R)

be ni‘lgc))tent Then R[[x;x]] is a nil- (a,§)

compatible ring.

Proof. Let r(y)= Zax,g(x) be e R[[x;a]]
S (x).R[[x;]].g(x) = ml(R[[x, a]]).

Then for all r(x)ZZrtxt € R[[x;x]] we have

t=0

S (x).r(x).g(x) € nil (R[[x; ]]).-

If uef( ) [[x;]] gz(g(x)) is an arbitrary

clement, then © =f (x )I”(X )E(g (X )) , for all
r(x) € R[[x;]]. Under the assumption we have

J(x).r(x).g(x) e il (R[[x; ]]) = nil (R)[ [ x; x]].

Since R is skew nil-Armendariz of power series type,
ac (1) (b;) €nil (R). Since R is nil-(,5)-
ad ()™ (b,) enil (R)  and
> ad )ad"b,) enil (R) for k >0.

i+ +j=k

Hence

ST aa (e (B )1* enil(R)[xall

Then  we £ e)re)a(gx)) e
nil(R)[[x;a]]=nil(R[[x;x]]). And this means
that f(x)R[[x;a]]a(g(x)) cnil(R[[x;a]]).

Conversely, we must prove that
J(0)-R[[x;]].g(x) < nil (R[[x; ex]]) . If
u=f(x)r(x).g(x) € f(x).[[xall-g(x),
then under the assumption f(x)R[[x; a]]a(g(x))
cnil(R[[x;]]) =nil(R)[[x;]], and since R is
skew nil-Armendariz of power series type we have
ad (r)od (b)) enil (R).
ac (r)o" (b,) enil (R) and
> ad ()a"®,) enil(R) for k0.

i+t+j=k

and

compatible,

get

Hence

that
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SCY ad ()" b)) x*

k=0 i+t+j=k
enil(R)[[x;x]], for k >0. And this means that
S (x).Rl[x;a]].g(x) c nil (R[[x;]]).
case of nil-o -compatibility, we can do in a similar

way. Thus R[[x; Ol]] is a nil- (&,5) -compatible ring. O

Hence

For the

Theorem 1.40. Let R be a nil- (&, d)-compatible
and nil-Armendariz ring of power series type. If

f(x).g(x)enil(R)[[x;c]], then
S (x).R[[x;]].g(x) < nil (R)[[x; ex]] all
f.g €R[[x;a]].

for

Proof. Let f(x).g(x)e€nil(R)[[x;a]], and for

r(x)= ic,x’ € R[[x;]], assume that
u :f(x)r(x)g(x) ef(x)R[[x; a]]g(x). Then

u=Y( Y ade)a b, But f(x)g(x)=
S(Y aa' (b)) enil(R)Lx:all, and R i
k=0 i+j=k

skew nil-Armendariz of power series type, so
a, a' (bj ) enil (R) for all i, j. By Lemma 1.34,
R is which
al.Rai(bj)gnil (R) By
a.Ra"" (b,) cnil (R). Thus @&’ (c,)e’ ™ (b))

Enil(R) and  hence Z aiai(c,)am(b_,-)

yields
1.2,

nil-semicommutative,

Lemma

i+t+j=k
enil(R), for all i,j,t,k, which yields
Y aad ()a b))
k=0 i+t+j=k
enil (R)[[x ;all. Therefore we have

SO0)-RIxe]lglx) cnil (R)[[xa]l.

Corollary 1.41. Let R be a skew nil-Armendariz
ring of power serieswise type, and nil-(&,0)-

compatible. Then R[[X;Ol]] is a nil-semicommutative
ring.
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Proof. We prove that, if
f(x).g(x)enl(R[[x;a]]), then  for all
f.g €R[[x;]] we get
f(x).Rl[x;]).g(x) cnil(R[[x;c]]). We have

nil(R([x;]]) S nil(R)[[x;a]]. Then Rl[x;e]]

is a nil-semicommutative ring by Lemma 1.34.

We remark that, the above results enable us to
produce large classes of rings which satisfy the

condition nil (R[x;a,0]) =nil (R )[x ;a,0].
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