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ABSTRACT: Large water distribution systems can be highly vulnerable to penetration of 

contaminant factors caused by different means including deliberate contamination 

injections. As contaminants quickly spread into a water distribution network, rapid 

characterization of the pollution source has a high measure of importance for early warning 

assessment and disaster management. In this paper, a methodology based on Probabilistic 

Support Vector Machines (PSVMs) is proposed for identifying the contamination source 

location in drinking water distribution systems. To obtain the required data for training the 

PSVMs, several computer simulations have been performed over multiple combinations of 

possible contamination source locations and initial mass injections for a conservative 

solute. Then the trained probabilistic SVMs have been effectively utilized to identify the 

upstream zones that are more likely to have the positive detection results. In addition, the 

results of this method were compared and contrasted with Bayesian Networks (BNs) and 

Probabilistic Neural Networks (PNNs). The efficiency and versatility of the proposed 

methodology were examined using the available data and information from water 

distribution network of the City of Arak in the western part of Iran. 

 

Keywords: Bayesian Networks (BNs), Probabilistic Neural Networks (PNNs), Support 

Vector Machines (SVMs), Water Contamination, Water Distribution Infrastructure 

Systems. 

 

 

INTRODUCTION 

 

Public awareness has increased profoundly 

respecting water supply systems security 

after September 11, 2001, attacks. 

Historically monitoring drinking water 

quality has been focused on the water 

treatment plant or reservoirs and supply 

systems, even though the distribution system 

presents many security challenges (Murphy 

and Kirmeyer, 2005). As water distribution 

networks are extensively scattered spatially, 

they are intrinsically susceptible to 

contamination or injection of toxicants. As 

suggested by Ostfeld (2006), to reduce the 

risk of this hazard, the physical security of 

the system should be improved and the 

existing water quality monitoring and early 

warning systems should be enhanced. 
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The distribution network is one of the 

most vulnerable parts of a water supply 

system, and there are many opportunities to 

breach into the water network (Gupta and 

Sayyed, 2013). Deliberate injection of a 

contaminant into the water network can be 

easily accomplished by a small pump. Over 

the past decade, significant amount of 

research work have been conducted in the 

field of optimal design of sensor placement 

for water quality monitoring and water 

quality data analysis in water distribution 

systems (e.g., Kessler et al., 1998; Ostfeld 

and Salomons, 2004; Berry et al., 2005, 

2006; Isovitsch and VanBriesen, 2008; Aral 

et al., 2010, Shen and McBean, 2010; Davis 

et al., 2013 and Rathi and Gupta, 2015). 

Storey et al. (2011) reviewed advances and 

new emerging technologies in online 

drinking water quality monitoring. They 

concluded that despite recent improvements, 

there is no universal monitoring method for 

contaminant detection and water quality 

monitoring; moreover, there is a need to 

have platforms that can benefit from 

automated meter readings and wireless 

technologies. Hart and Murray (2010) 

explored the state of the art sensor placement 

in water distribution infrastructure systems, 

surveying a broad range of strategies 

including sensor characteristics, 

methodologies in sensor placement 

objectives, optimization approaches and 

scalability, simulations quality and solution 

features. They concluded that there is not a 

robust method that can be used in a large-

scale water distribution system by an end-

user. In addition, they suggested that the 

quality of input data including water 

demands, population estimates, seasonal 

operational rules as well as inherited 

uncertainties in data could increase the 

robustness of sensor placement designs. 

Moreover, they advised for improvement of 

decision support systems, as selecting high-

quality sensor locations are significantly 

dependent on decision-making strategies in 

the water industry sector. Rathi et al. (2015) 

built on the review work of Hart and Murray 

(2010) suggesting several methodologies for 

sensor placement in water distribution 

networks. Rathi and Gupta (2016) compared 

results of two methods for finding the 

optimal location of sensors considering two 

objectives namely demand coverage and 

detection likelihood using hydraulic 

analyses. They used Genetic Algorithm 

(GA) to optimize the sensors’ places for 

small water distribution networks and 

suggested to use Simple method for large 

and complicated water distribution systems 

due to its computational efficiency.  

Islam at al. (1997) proposed an inverse 

model for calculating the chlorine 

concentrations needed at the network 

sources for meeting a specific chlorine 

concentration at a particular node in a water 

distribution system with unsteady flow 

conditions. Shang et al. (2002) presented an 

input-output model for providing 

information about the relationships between 

water quality at input and output locations 

by tracking water parcels along their paths. 

Laird et al. (2005) developed a non-linear 

origin-tracking algorithm for solving the 

inverse problem of contamination source 

identification. Preis and Ostfeld (2006) 

proposed a methodology for contaminant 

source identification in water distribution 

systems using a hybrid trees-linear 

programming algorithm. Guan et al. (2006) 

proposed a simulation-optimization method 

to solve nonlinear contaminant source 

identification in a complex water distribution 

system. Di Cristo and Leopardi (2008) 

formulated a methodology for identifying 

the source location of an accidental 

contamination in a water distribution 

network. In their methodology, among all 

candidate nodes, the site of origin was 

identified, minimizing the differences 

between simulated and measured 
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concentrations. Guidorzi et al. (2009) 

proposed a procedure for detecting the 

presence of a contaminant in a water 

distribution system and implementing 

actions to isolate and/or expel it rapidly. The 

process consists of two consecutive 

optimization processes, both of them 

performed off-line assuming a specific 24-

hour water demand sequence in each 

network node, whereas the 

accidental/intentional injection of 

contaminant could occur in any node and at 

any hour of the day. De Sanctis et al. (2009) 

used Particle Backtracking Algorithm (PBA) 

to identify the possible sources of 

contamination. They suggested that this 

algorithm is more suitable for real-time 

applications and can identify the area of the 

network that contamination had been 

originated. Yusta et al. (2011) 

comprehensively studied various 

applications and new methodologies in 

security and risk assessment of critical 

infrastructures including water supply 

systems. They showed that among different 

infrastructure sectors, water supply systems 

only had received 13% attention in 

referenced employed methodologies. 

Zechman (2011) used an agent-based 

modeling framework, which combined 

different exposure and managerial scenarios 

to simulate contamination events in a mid-

size water distribution network. It was 

concluded in this study that consumers’ 

behavior could alter the overall impacts of 

contamination events through changes in the 

hydraulics of the water distribution system. 

Perelman and Ostfeld (2013) used Bayesian 

Networks (BN) to estimate the likelihood of 

contaminant location. They used this 

methodology for two water distribution 

systems. They grouped the nodes of the 

network into clusters and tried to identify 

clusters that are the sources of 

contamination. Che and Liu (2014) applied 

eight detection parameters on a pilot-scale 

system using two different test 

contaminants. They showed that the results 

vary based on the type of the contaminant as 

well as contaminant’s concentration. Wang 

and Harrison (2014) coupled Markov Chain 

Monte Carlo (MCMC) methods with 

Support Vector Regression (SVR) to identify 

the spatial and temporal properties of a 

contaminant. Eliades et al. (2014) 

investigated a model-based approach to 

detect contamination events using chlorine 

measurements. They used Monte-Carlo 

simulations in parallel with a real system 

that can produce expected range of chlorine 

concentration at selected sensor locations. 

Then, they compared the sensory 

measurements with estimated ranges along 

with event logic rules. If the measurements 

fall outside the defined ranges, an alarm flag 

will rise notifying that a contamination event 

has occurred.  

In this paper, a new methodology is 

proposed for identifying pollution source in 

contamination events in water distribution 

systems by utilizing Probabilistic Support 

Vector Machines (PSVM), Bayesian Belief 

Networks (BNs) and Probabilistic Neural 

Network (PNN). The inputs of these 

probabilistic simulation models are 

concentrations and temporal variations of the 

concentrations of a water pollutant at 

designated monitoring points in a water 

distribution system. To evaluate the 

applicability and accuracy of the 

methodology, it was applied to a water 

distribution system in City of Arak, Iran. 

 

METHODOLOGY 

 

Figure 1 illustrates the flowchart of the 

proposed methodology. As it is shown in 

this figure, at first, required data and 

information regarding the physical 

characteristics of the water distributions 

systems and water demands should be 

gathered. In the next step, an indicator of 
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pollutant was selected. Then, an EPANET 

simulation model was calibrated for 

simulating the flow and water quality in the 

water distribution system. EPANET has the 

capability of providing the spatial and 

temporal variations of the water quality 

indicators in water distribution systems.  

To calculate the statistical characteristics 

of the concentrations of water quality 

indicators at chosen nodes, a Monte Carlo 

analysis was performed considering the 

probability distribution functions of 

uncertain primary inputs of the EPANET, 

namely the pollutant injection zone and the 

mass of the injected pollutant. To facilitate 

the Monte Carlo analysis, EPANET software 

and EPANET-Toolkit were merged in 

Visual Basic environment. EPANET-Toolkit 

is a dynamic link library (DLL) of functions 

that allows customizing EPANET's 

computational engine for specific needs 

including executing EPANET software for 

water quality simulations. Then, PSVM, 

BNs, and PNNs models were trained using 

the results of the Monte Carlo analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the proposed methodology 

START 

Gathering data and information about 

water distribution system and water 

demands 

Developing EPANET-based hydraulic 

and water quality simulation models 

Selecting a water quality indicator 

END 

Selecting a water quality indicator 

Classifying study area zones 

Determining stochastic inputs of 

simulation models, namely the zone of 

injection and the amount of injected 

pollutant, and estimating their statistical 

characteristics 

Generating random values for stochastic 

variables using their probability 

distribution functions (PDFs) 

Setting EPANET-Toolkit and running 

the EPANET simulation models using 

the generated values for stochastic 

models 

Are the total number of 

simulations enough to 

assess the PDF of the 

water quality metrics at 

nodes? 

Training and verifying the 

probabilistic simulation models (i.e. 

BNs, PSVMs and PNNs) 

Real time contaminant Source 

Identification using the trained 

probabilistic simulation models 

No 
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The inputs of these probabilistic 

simulation models were the concentrations 

and the temporal variations of the 

concentrations of the water quality indicators 

at selected monitoring points in the water 

distribution system. In the proposed method, 

the goal is to identify the zone of 

contamination injection. In real-time water 

quality monitoring, the trained probabilistic 

simulation models can provide the 

probability of injected contamination in each 

zone based on the observed water quality 

data. The main parts of the proposed 

methodology are described in the following 

sections: 

 

Support Vector Machines (SVMs)  

Support vector machines (SVMs), which 

was introduced by Vapnik (1995), is a 

supervised pattern recognition method 

mostly used for classification and regression. 

SVMs have been used in different fields of 

water engineering such as in groundwater 

monitoring (Asefa et al., 2004; Bashi-

Azghadi and Kerachian, 2010; Bashi-

Azghadi et al., 2010), in wave height 

prediction (Malekmohamadi et al., 2011), in 

water quality zoning (Nikoo and Mahjouri, 

2013), and in rainfall-runoff modeling 

(Hosseini and Mahjouri, 2016). 

 In data classification, SVMs separate 

dataset linearly into two distinct sets with 

constructing hyperplanes to maximize the 

margin between the two data sets. The best 

hyperplanes have the largest margin of 

support vectors (samples at the edges of the 

margins) and minimal empirical 

classification error (Figure 2).  

Whenever the decision function is not a 

linear function of the data, kernels can be 

used for mapping out the data onto a higher-

dimensional feature space where the data 

can be linearly separable. Several well-

known kernels are linear, polynomial, radial 

basis function (RBF) and sigmoid. 

Multiclass categorization problems are 

usually solved by reformulating the 

multiclass problem with M classes into a set 

of binary classification problems. A widely 

used method for multiclass categorization is 

one-against-one, which constructs 2/)1( k  

classifiers each one trained on data from two 

classes. After all, 2/)1( k
 
classifiers were 

developed, and a voting approach was 

utilized. In max-wins voting strategy, each 

classifier assigns the instance to one of the 

two classes, and eventually the class with 

most votes determines the instance 

classification. 

A probabilistic version of the SVM can 

be used to measure the prediction 

confidence. The probability of membership 

in class y , }1,1{ y  is given by (Wu et al., 

2004): 

 

 
Fig. 2. Linear separating hyperplanes for the separable case. The support vectors are circled (Burges, 1998) 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Kernel_trick
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where A  and B  are estimated by 

minimizing the negative log-likelihood 

function using known training data and their 

decision values f̂ . As labels and decision 

values should be independent, the 

parameters A  and B  were fitted using 

cross-validation on the data sets as the 

classifier has been trained on. For more 

details, please see Chang and Lin (2001) and 

Wu et al. (2004). 

 

Bayesian Networks (BNs) 

Pearl (1988) proposed BNs to represent 

knowledge based on Bayes’ theorem. A 

Bayesian network is a graphical 

representation of a probabilistic dependency 

model and consists of a set of interconnected 

nodes, where each node represents a 

variable, and the connecting arcs represent 

the causal relationships among variables. 

By receiving a new evidence, the belief in 

the state of the evidence node changes, 

causing shifts in the belief of all nodes. In 

BNs, the belief in hypothesis h  in response 

to evidence  is updated using the Bayes’ 

theorem: 
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The relationships among nodes and the 

conditional probability table are learned 

from a training data set. Learning BNs 

include two different processes: structure 

learning and parameter learning. Structure 

learning provides the best graph structures 

considering the relationships suggested by 

the training data. The conditional probability 

distributions are estimated in the parameter 

learning process. The values of parameters 

are usually defined by maximizing the 

likelihood of the training data (Buntine, 

1996). A review of applications of BNs in 

water engineering can be found in 

Malekmohammadi et al. (2009), Mesbah et 

al. (2009), and Bashi-Azghadi -Azghadi et 

al. (2016). 

 

Probabilistic Neural Networks (PNNs) 

Artificial neural networks have received 

lots of attention over the past two decades. 

They have been used in the areas of 

prediction and classification, also in areas 

where regression models and other related 

statistical techniques have traditionally been 

used. PNNs are nonlinear, nonparametric 

pattern recognition modeling techniques that 

were originally introduced by Specht (1990). 

They train quickly and do not need a 

validation data set (i.e., wasted cases) to 

search for over-fitting. Therefore, all 

available data can be used for training of the 

model. 

PNNs used in this paper have a 4-layer, 

feed-forward, one pass structure, which can 

classify data by estimating the probability 

density functions (PDFs) of the different 

classes. Unlike other ANNs, it is based on 

Bayes’ decision strategy and non-parametric 

kernel based on estimators of probability 

density functions. Figure 3 shows the 

architecture of a typical PNN. The input 

layer unit simply distributes the input to the 

neurons in the pattern layer. On receiving a 

pattern x  from the input layer, the neuron 

 of the pattern layer computes its output 

(Hunter, 2000): 
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where d : denotes the dimension of the 

pattern vector ,x : is the smoothing 

parameter and ijx : is the neuron vector. 

Each neuron in the summation layer 

computes the maximum likelihood of pattern 

x  being classified into class iC  by 

summarizing and averaging the output of all 

e

ijx
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neurons that belong to the same class 

(Hunter, 2000): 
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where iN : denotes the total number of 

samples in class iC . PNNs: are used for 

classification problems where the objective 

is to assign cases to one of a number of 

discrete classes  

 

CASE STUDY 

 

The efficiency of the proposed methodology 

is evaluated using available data from a real 

water distribution network. This network is a  

part of water distribution system of the City 

of Arak in the western part of Iran. The main 

characteristics of the network are shown in 

Table 1. The simulation model which is used 

in this paper has been borrowed from Water 

and Wastewater Company of the Markazi 

Province and has been calibrated by experts 

of that company for basic operating 

conditions considering pressure and flow 

rate variables.  

In the first step, the network was divided 

into three zones, and four sensors were 

placed in critical nodes in a way that they 

can provide data regarding the quality of 

water in different parts of the network. Zone 

1 is in an upstream of all four sensors, zone 

2 is in an upstream of sensors 1 and 2, and 

zone 3 in is upstream of sensor 2. An effort 

was made to maximize the sensors’ 

upstream coverage, by engineering 

judgment; however, no rigorous 

mathematical optimization was performed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A schematic illustration of a PNN (Adopted from Hunter, 2000) 
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Fig. 4. Part of water distribution network of the City of Arak and the location of the water quality monitoring sensors 

 

To simulate the flow and contaminant 

transport, the EPANET software (Rossman, 

2000) was used. The Libsvm (Lin, 2008), 

Hugin® (Hugin  Expert A/S, 2007) and PNN 

toolbox (MATLAB version R2007b) were 

used for developing the SVM, BN, and 

PNN-based probabilistic simulation models. 

EPANET in this setting serves for 

simulating contamination injection 

scenarios, and the trained probabilistic 

simulation models provide probabilistic 

estimations for the location of a pollutant 

injection using the water monitoring data.  

 

RESULTS 

 

The contaminant intrusion was modeled as a 

single injection of a pure conservative solute 

for 2 minutes using mass booster option in 

EPANET. To evaluate the efficiency of the 

proposed methodology, three distinct 

injection zones were considered and it was 

assumed that each contamination injection 

can occur in each node of any zone. The 

selected zones are shown in Figure 5. Each 

contamination injection in these three zones 

can be detected at least by one of the 

sensors. The pollutant transport in 

distribution network was simulated 

considering different contaminant injection 

locations in each zone. In these simulations, 

the injected mass was assumed to vary from 

0 to 6000 grs and injection can take place at 

any time during a day. The upper limit of the 

injected mass reflects practical 

considerations for likely intentional 

intrusions. In this regard, the injection time 

was also assumed to be two minutes. The 

selected nodes for pollutant injection in each 

zone are presented in Table 2. 
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In each water quality simulation, the 

solute concentrations were measured by the 

sensors during a 60-minute simulation. This 

duration was chosen to make sure that the 

simulation would acquire the topmost 

concentration at each sensor. Each time step 

in simulating water quality was assumed to 

be one minute. Therefore, the sensors 

measure the quality of water in every minute 

during the simulation period. 
 

Table 1. The main characteristics of pipes in the distribution network 
Pipe Number The First Node Number The Second Node Number Length (m) Diameter (cm) Roughness 

100 101 102 40 150 105 

200 101 102 40 350 115 

101 102 103 71 100 105 

201 102 103 71 200 115 

102 102 114 13 150 105 

502 102 114 13 250 115 

103 113 114 19 300 115 

104 113 115 105 300 115 

105 115 116 19 100 115 

106 114 116 105 150 105 

107 115 118 155 400 105 

108 112 118 101 150 115 

109 110 118 233 400 105 

110 110 111 103 100 105 

510 110 111 103 150 115 

111 109 110 19 100 105 

511 109 110 19 150 115 

112 109 119 176 150 105 

113 108 109 130 100 105 

213 108 109 130 150 115 

114 107 108 11 100 105 

214 107 108 11 150 115 

115 106 107 46 100 105 

215 106 107 46 150 115 

116 105 106 462 100 115 

117 104 105 200 150 115 

118 103 104 256 200 115 

119 104 120 86 100 115 

120 117 120 141 100 105 

121 119 124 137 100 105 

122 122 124 53 300 110 

123 106 123 118 100 105 

124 120 121 57 100 105 

125 121 123 53 100 105 

126 108 124 162 300 110 

127 111 112 235 100 115 

128 112 113 368 100 115 

140 100 135 166 350 120 

241 99 135 330 350 120 

142 123 124 11 100 115 

143 117 119 111 150 105 

144 116 117 81 150 105 

145 136 137 263 100 115 

146 111 136 187 100 115 

406 121 122 11 100 105 
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Table 2. Location of injection nodes in each zone as well as the location of sensors 

Sensor Location (Node) 
Injection Nodes 

Zone 1 Zone 2 Zone 3 

106 102 108 113 

111 104 109 118 

119 117 119 - 

120 120 122 - 

- - 124 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The selected contaminant injection zones in the study area 

 

 To consider the real capability of the 

sensors, it was assumed that they can 

measure the concentrations more than 0.01 

mg/L of the pollutant. For simulating the 

contamination injection scenarios, the 

EPANET and EPANET-Toolkit are linked 

in Visual Basic environment. The EPANET-

Toolkit is a dynamic link library (DLL) that 

allows customizing EPANET's 

computational engine for specific needs 

including running EPANET for chemical 

and mass transport analyses. Considering the 

range of the injected pollutant mass and the 

injection nodes, 110 contamination scenarios 

are developed and simulated in this study.  

The inputs of the probabilistic simulation 

models are the concentration and 

concentration gradient of the pollutant 

measured by the four sensors, and the 

outputs of the simulation models are the 

probability of membership of the pollution 

source in each zone. Therefore, each 

probabilistic simulation model has eight 

inputs and three outputs. The simulated 

scenarios provided 385 input-output data, 

which could be used for training and testing 

the probabilistic simulation models. 70% of 

the generated data were selected for training 

the models, and the trained models were 

tested using the rest of data. Most of the 

classifiers are known to be sensitive to the 

way features are scaled. As a result, it is 

essential to normalize either the data or the 

kernel itself. Normalization can be 

performed at the level of the input features 

or the level of the kernel (normalization in 

feature space) (Patki and Kelkarm, 2013). In 

this study, the input and output data was 

scaled to the range of [-1, 1].  
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In training phase of PSVM, Cross 

Validation (CV) via parallel grid search was 

performed for kernel and parameter 

selection. As shown in Table 3, Polynomial 

kernel function provides the best 10-fold 

cross-validation accuracy. Then, all grid 

points of (C; γ) were examined to identify 

the highest cross-validation accuracy. Table 

4 presents sample results of n-fold cross 

validation for training PSVM with 

polynomial kernel function 

As shown in Table 4, the best results 

were obtained using a 15-fold cross 

validation for a probabilistic SVM with 
610 and 510C . Figure 6 shows the results 

of verified trained PSVM in estimating the 

zone of pollutant injection. As depicted in 

this figure, the trained PSVM can be 

effectively used for estimating pollutant 

injection zone. 

The generated input-output data was also 

used for training a BN for identifying 

pollutant source location. Figure 7 shows the 

structure of developed BN. The probabilities 

presented in this figure, have been estimated 

using the training data set. As it can be seen 

in this figure, each input variables has been 

classified into 5 or 6 classes, and 3 classes 

have been considered for the output variable. 

Each class of the output variable is 

corresponding to a pollutant injection zone. 

In Figure 7, attributes number 1, 3, 5 and 7 

shows the concentration of the pollutant 

measured by sensors 1 to 4, respectively. 

The gradients of the concentration of the 

pollutant in sensors 1 to 4 are also presented 

by attributes 2, 4, 6 and 8, respectively. 

Training of the BN was carried out using the 

Hugin® software based on the Estimation-

Maximization (EM) method. Figure 8 shows 

the result of using the trained BN for a 

sample input data set. The verification 

accuracy of the train BN in estimating the 

location of an unknown contaminant 

injection is presented Table 5. The training 

data set also has been used for training the 

PNN. Table 6 presents the verification 

accuracy of the train PNN in estimating the 

location of an unknown contaminant 

injection. In Table 7 estimated location of an 

unknown contaminant injection using PSVM 

has been presented. Figure 9 shows a 

comparison of the accuracy of the 

probabilistic simulation models in the 

verification process. As shown in this figure, 

the PSVM can provide more reliable results 

in estimating the location of an unknown 

contaminant injection. 

 

Table 3. Cross-validation accuracy obtained using PSVM with different kernel functions 

Kernel Type Linear Polynomial Tangent hyperbolic Radial Basis Function (RBF) 

Accuracy (%) 56 82 56 22 

 

Table 4. Sample results of n-fold cross validation for training PSVM with polynomial kernel function 

Probabilistic Estimates Deterministic Estimates 
Number of Folds in Cross-

Validation 
Parameters

 
Accuracy 

(%) 

Run Time 

(sec) 

Accuracy 

(%) 

Run Time 

(sec) 

55.9 3.  1  51.9 0.7 5 
0.07  

1C  

55.2 3.5 52.4 2.3 10 

55.2 3.9 52.4 3.3 15 

55.2 5 52.4 3.9 20 

51.8 3.9 63.4 3.5 5 
210  

510C  

61.5 4.9 65.9 3.6 10 

71.3 9.2 79.9 4.2 15 

79.9 13.5 82 6.2 20 

86.4 6.4 84.3 2.8 5 
610  

510C  

87.8 7.2 87.1 3.2 10 

88.6 7.8 87.5 4.9 15 

87.1 12.3 87.5 5.2 20 
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Fig. 6. The results of verified trained PSVM in estimating the zone of pollutant injection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. The structure of the developed Bayesian Network for identifying pollutant source location in water 

distribution networks 
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Fig. 8. The result of using the trained BN for a sample input data set. The BN has accurately identified the location 

of a contaminant injection (zone 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 

 
 

 
 

Fig. 9. Comparison the results of the probabilistic simulation models in the verification process 
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Table 5. Verification accuracy of trained BN in estimating the location of an unknown contaminant injection 

Probabilistic Location of Contamination Injection in Percentage Total 

Accuracy Zone 1 Zone 2 Zone 3 

69.70 94.12 61.29 75.03 

 

Table 6. Verification accuracy of trained PNN in estimating the location of an unknown contaminant injection 

Probabilistic Location of Contamination Injection in Percentage Total 

Accuracy Zone 1 Zone 2 Zone 3 

66.67 86.27 12.90 55.28 

 

Table 7. Verification accuracy of trained PSVM in estimating the location of an unknown contaminant injection 

Probabilistic Location of Contamination Injection in Percentage Total 

Accuracy Zone 1 Zone 2 Zone 3 

84.85 72.55 100.00 83.48 

 

CONCLUSIONS  
 

After the events of September 11, 2001, 

intentional contamination intrusions to water 

distribution networks are considered as one 

of the most important menaces to public 

health. Online contamination monitoring can 

play an important role in improving water 

distribution infrastructures’ security by 

providing early warnings for intentional 

contaminant injections. This paper presents a 

new methodology for contamination source 

identification in drinking water 

infrastructure distribution systems using 

three probabilistic simulation models, 

namely PSVM, BN and PNN. The efficiency 

and accuracy of the proposed methodologies 

were demonstrated using the existing data 

from the water distribution system of the 

City of Arak in Iran. The results showed that 

in this case study, the PSVM could provide 

more reliable results in estimating the 

location of an unknown contaminant 

injection.  

 

ACKNOWLEDGMENTS 

The technical contribution made by Dr. 

Babak N. Aaraabi, Associate Professor at the 

School of Electrical and Computer 

Engineering, University of Tehran, is hereby 

acknowledged.  

   

 

 

REFERENCES 
 

Aral, M. M., Guan, J. and Maslia, M. L. (2009). 

“Optimal design of sensor placement in water 

distribution networks”, Journal of Water 

Resources Planning and Management, 136(1), 5-

18. 

Asefa, T., Kemblowski, M. W., Urroz, G., McKee, 

M. and Khalil, A. (2004). “Support vectors–based 

groundwater head observation networks design”, 

Water Resources Research, 40(11), W11509. 

Bashi-Azghadi, S.N. and Kerachian, R. (2010). 

“Locating monitoring wells in groundwater 

systems using embedded optimization and 

simulation models”, Science of the Total 

Environment, 408(10), 2189-2198. 

Bashi-Azghadi, S.N., Kerachian, R., Bazargan-Lari, 

M.R. and Solouki, K. (2010). “Characterizing an 

unknown pollution source in groundwater 

resources systems using PSVM and PNN”, Expert 

Systems with Applications, 37(10), 7154-7161. 

Bashi-Azghadi, S.N., Kerachian, R., Bazargan-Lari, 

M.R. and Nikoo, M.R. (2016). “Pollution source 

identification in groundwater systems: 

Application of Regret Theory and Bayesian 

Networks”, Iranian Journal of Science and 

Technology - Transaction of Civil Engineering, 

40(3), 241-249. 

Berry, J.W., Fleischer, L., Hart, W.E., Phillips, C.A. 

and Watson, J.P. (2005). “Sensor placement in 

municipal water networks”, Journal of Water 

Resources Planning and Management, ASCE, 

131(3), 237-243. 

Berry, J., Hart, W.E., Phillips, C.A., Uber, J.G. and 

Watson, J.P. (2006). “Sensor placement in 

municipal water networks with temporal integer 

programming models”, Journal of Water 

Resources Planning and Management, 132(4), 

218-224.  

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&citation_for_view=LQQfyFsAAAAJ:8k81kl-MbHgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&citation_for_view=LQQfyFsAAAAJ:8k81kl-MbHgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&citation_for_view=LQQfyFsAAAAJ:8k81kl-MbHgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&sortby=pubdate&citation_for_view=LQQfyFsAAAAJ:Z5m8FVwuT1cC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&sortby=pubdate&citation_for_view=LQQfyFsAAAAJ:Z5m8FVwuT1cC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&sortby=pubdate&citation_for_view=LQQfyFsAAAAJ:Z5m8FVwuT1cC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&sortby=pubdate&citation_for_view=LQQfyFsAAAAJ:Z5m8FVwuT1cC


Civil Engineering Infrastructures Journal, 49(2): 311 – 326, December 2016 

 

325 
 

Buntine, W. (1996). “A guide to the literature on 

learning graphical models”, IEEE Transactions on 

Knowledge and Data Engineering, 8(2), 195-210. 

Burges, C.J. (1998). “A tutorial on support vector 

machines for pattern recognition”, Data Mining 

and Knowledge Discovery, 2(2), 121-167.  

Chang, C.C., and Lin, C.L. (2001). “LIBSVM: a 

library for support vector machines”, Software 

available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

Che, H. and Liu, S. (2014). “Contaminant detection 

using multiple conventional water quality sensors 

in an early warning system”, 16th Conference on 

Water Distribution System Analysis, WDSA, Bari, 

Italy.  

Davis, M.J., Janke, R. and Phillips, C.A. (2013). 

“Robustness of designs for drinking water 

contamination warning systems under uncertain 

conditions”, Journal of Water Resources Planning 

and Management, 140(10), 04014028. 

Di Cristo, C. and Leopardi, A. (2008). “Pollution 

source identification of accidental contamination 

in water distribution networks”, Journal of Water 

Resources Planning and Management, ASCE, 

134(2), 197–202. 

De Sanctis, A.E., Shang, F. and Uber, J.G. (2009). 

“Real-time identification of possible 

contamination sources using network 

backtracking methods”, Journal of Water 

Resources Planning and Management, 136(4), 

444-453. 

Eliades, D.G., Lambrou, T.P., Panayiotou, C.G. and 

Polycarpou, M.M. (2014). “Contamination event 

detection in water distribution systems using a 

model-based approach”, 16th Conference on Water 

Distribution System Analysis, WDSA, Bari, Italy.  

Guan, J., Aral, M.M., Maslia, M.L., Maslia, and 

Grayman, W.M. (2006). “Identification of 

contaminant sources in water distribution systems 

using simulation–optimization method: Case 

study”, Journal of Water Resources Planning and 

Management, 132(4), 252-262.  

Guidorzi, M., Franchini, M., and Alvisi, S. (2009). “A 

multi-objective approach for detecting and 

responding to accidental and intentional 

contamination events in water distribution 

systems”, Urban Water Journal, 6(2), 115-135. 

Gupta, R. and Sayyed, M.A.H.A. (2013). “Predicting 

deficient condition performance of water 

distribution networks”, Civil Engineering 

Infrastructures Journal, 46(2), 161-173. 

Hart, W.E. and Murray, R. (2010). “Review of sensor 

placement strategies for contamination warning 

systems in drinking water distribution systems”, 

Journal of Water Resources Planning and 

Management, 136(6), 611-619.  

Hosseini, S.M. and Mahjouri, N. (2016). “Integrating 

support vector regression and a geomorphologic 

artificial neural network for daily rainfall-runoff 

modeling”, Applied Soft Computing, 38, 329-345. 

Hugin  Expert A/S (2007). Hugin® Software, 

Aalborg, Denmark. 

Islam, M.R., Chandhry, M.H., and Clark, R.M. 

(1997). “Inverse modelling of chlorine 

concentration in pipe networks under dynamic 

condition”, Journal of Environmental 

Engineering, 123(10), 1033-1040. 

Isovitsch, S. L., and VanBriesen, J. M. (2008). 

“Sensor placement and optimization criteria 

dependencies in a water distribution system”, 

Journal of Water Resources Planning and 

Management, ASCE, 134(2), 186-196. 

Kessler, A., Ostfeld, A., and Sinai, G. (1998). 

“Detecting accidental contaminations in municipal 

water networks”, Journal of Water Resources 

Planning and Management, ASCE, 124(4), 192-

198. 

Laird, C.D., Biegler, L.T., van Bloemen Waanders, 

B.G. and Bartlett, R.A. (2005). “Contamination 

source determination for water networks”, Journal 

of Water Resources Planning and Management, 

131(2), 125-134. 

Lin, C. (2008). “A library for Support Vector 

Machines-LIBSVM”, 

(http://www.csie.ntu.edu.tw/~cjlin). 

Malekmohamadi, I, Bazargan-Lari, M.R., Kerachian, 

R., Nikoo, M.R., (2011). “Evaluating the efficacy 

of SVMs, BNs, ANNs and ANFIS in wave height 

prediction”, Ocean Engineering, 38(2), 487-497. 

Malekmohammadi, B., Kerachian R., & Zahraie, B. 

(2009). “Developing monthly operating rules for a 

cascade system of reservoirs: Application of 

Bayesian Networks”, Environmental Modelling & 

Software, 24(12), 1420-1432. 

Mesbah, S.M., Kerachian, R. and Nikoo, M.R. 

(2009). “Developing real time operating rules for 

trading discharge permits in rivers: application of 

Bayesian Networks”, Environmental Modelling & 

Software, 24(2), 238-246. 

Murphy, B.M., and Kirmeyer, G.J. (2005). 

“Developing a phased distribution system, 

security enhancement program”, Journal of 

American Water Works Association., 97(7), 93-

103. 

Nikoo, M.R. and Mahjouri, N. (2013). “Water quality 

zoning using probabilistic support vector 

machines and self-organizing maps”, Water 

Resources Management, 27 (7), 2577-2594.  

Ostfeld, A., and Salomons, E. (2004). “Optimal 

layout of early warning detection stations for 

water distribution systems security”, Journal of 

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CCD2ejonJP6G2npPG3&name=Di%20Cristo%20C&ut=000253466700012&pos=1
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CCD2ejonJP6G2npPG3&name=Leopardi%20A&ut=000253466700012&pos=2
http://www.scopus.com/search/submit/author.url?author=Guidorzi%2c+M.&authorId=35765037700&origin=recordpage
http://www.scopus.com/search/submit/author.url?author=Franchini%2c+M.&authorId=35239771000&origin=recordpage
http://www.scopus.com/search/submit/author.url?author=Alvisi%2c+S.&authorId=6503941450&origin=recordpage
http://www.scopus.com/source/sourceInfo.url?sourceId=4500151528&origin=recordpage
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BeusG0IAAAAJ&sortby=pubdate&citation_for_view=BeusG0IAAAAJ:3fE2CSJIrl8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BeusG0IAAAAJ&sortby=pubdate&citation_for_view=BeusG0IAAAAJ:3fE2CSJIrl8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BeusG0IAAAAJ&sortby=pubdate&citation_for_view=BeusG0IAAAAJ:3fE2CSJIrl8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BeusG0IAAAAJ&sortby=pubdate&citation_for_view=BeusG0IAAAAJ:3fE2CSJIrl8C
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VHC-4XP3C1S-3&_user=1400009&_coverDate=04%2F30%2F2010&_alid=1302724706&_rdoc=5&_orig=search&_cdi=6063&_sort=r&_docanchor=&view=c&_ct=244&_acct=C000052577&_version=1&_urlVersion=0&_userid=1400009&_fmt=full&_pii=S1364815209002679&_issn=13648152&md5=a9d027f4d9e5ba7067816c87da4f8eee#bbib59
http://www.csie.ntu.edu.tw/~cjlin
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&citation_for_view=LQQfyFsAAAAJ:Zph67rFs4hoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&citation_for_view=LQQfyFsAAAAJ:Zph67rFs4hoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LQQfyFsAAAAJ&citation_for_view=LQQfyFsAAAAJ:Zph67rFs4hoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BeusG0IAAAAJ&sortby=pubdate&citation_for_view=BeusG0IAAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BeusG0IAAAAJ&sortby=pubdate&citation_for_view=BeusG0IAAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BeusG0IAAAAJ&sortby=pubdate&citation_for_view=BeusG0IAAAAJ:zYLM7Y9cAGgC


Barandouzi, M. and Kerachian, R. 

 

326 
 

Water Resources Planning and Management, 

ASCE, 130(5), 377-385. 

Patki, P.S., and Kelkar, V.V. (2013). “Classification 

using different normalization techniques in 

Support Vector Machine”, International 

Conference on Communication Technology, 17-19 

November, Guilin, China. 

Pearl, J. (1988). Probabilistic reasoning in intelligent 

systems: Networks of plausible inference, Morgan 

Kaufmann Publishers, San Francisco, CA, USA. 

Preis, A., and Ostfeld, A. (2006). “Contamination 

source identification in water systems: A hybrid 

model trees–linear programming scheme”, 

Journal of Water Resources Planning and 

Management, ASCE, 132(4), 263-273. 

Rathi, S., and Gupta, R. (2015). “Optimal sensor 

locations for contamination detection in pressure-

deficient water distribution networks using 

genetic algorithm”, Urban Water Journal, Oct., 1-

13. 

Rathi, S., Gupta, R., and Ormsbee, L. (2015). “A 

review of sensor placement objective metrics for 

contamination detection in water distribution 

networks”, Water Science and Technology: Water 

Supply, 15(5), 898-917. 

Rathi, S., Gupta, R. (2016). “A simple sensor 

placement approach for regular monitoring and 

contamination detection in water distribution 

networks”, KSCE Journal of Civil Engineering, 

20(2), 597-608. 

Rossman, L.A. (2000). EPANET2 user’s manual, 

U.S. Environmental Protection Agency, 

Washington, D.C. 

(http://www.epa.gov/ORD/NRMRL/wswrd/epane

t.html) 

Shang, F., Uber, J.G. and Polycarpou, M.M. (2002). 

“Particle backtracking algorithm for water 

distribution system analysis”, Journal of 

Environmental Engineering, 128(5), 441-450.  

Shen, H. and McBean, E. (2010). “Pareto optimality 

for sensor placements in a water distribution 

system”, Journal of Water Resources Planning 

and Management, 137(3), 243-248. 

Specht, D.F. (1990). “Probabilistic neural networks”, 

Neural Networks, 3(1), 110-118. 

Storey, M.V., van der Gaag, B. and Burns, B.P. 

(2011). “Advances in on-line drinking water 

quality monitoring and early warning systems”, 

Water Research, 45(2), 741-747. 

Vapnik, V. (1995). The nature of statistical learning 

theory, Springer-Verlag, New York, USA. 

Wu, T.F., Lin, C.J. and Weng, R.C. (2004). 

“Probability estimates for multi-class 

classification by pairwise coupling”, Journal of 

Machine Learning Research, 5, 975-1005. 

Yusta, J.M., Correa, G.J. and Lacal-Arantegui, R. 

(2011). “Methodologies and applications for 

critical infrastructure protection: State-of-the-art”, 

Energy Policy, 39(10), 6100-6119. 

Zechman, E.M. (2011). “Agent-based modeling to 

simulate contamination events and evaluate threat 

management strategies in water distribution 

systems”, Risk Analysis, 31 (5), 758-772. 

 

 


