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ABSTRACT: The predictive ability of Response Surface Methodology (RSM) And Artificial Neural Network
(ANN) in the modelling of photo-Fenton degradation of Rhodamine B (Rh-B) was investigated in the present
study. The dye degradation was studied with respect to four factors viz., initial concentration of dye,
concentration of H

2
O

2
and Fe2+ ions and process time. Central Composite Design (CCD) was used to evaluate

the effect of four factors and a second order regression model was obtained. The optimum degradation of
99.84%  Rh-B was obtained when 159 ppm dye, 239 ppm H

2
O

2
, 46 ppm Fe2+ were treated for 27 min. The

independent variables were fed as inputs to ANN with the percentage dye degradation as outputs. For the
optimum percentage dye degradation, a three-layered feed-forward network was trained by Levenberg-Marquardt
(LM) algorithm and the optimized topology of 4:10:1 (input neurons: hidden neurons: output neurons) was
developed.  A high regression coefficient (R2 = 0.9861) suggested that the developed ANN model was more
accurate and predicted in a better way than the regression model given by RSM (R2 = 0.9112).

Key words: Photo-Fenton process, Rhodamine B degradation, Response surface methodology,
  Artificial Neural Network

INTRODUCTION
Production and dyeing of clothes are one of the

important commercial activities in many Asian
countries. However, a huge amount of chemical and
biochemical waste are produced in these processes.
The literature reveals that more than 100,000 different
dyes are available and 7x105 tons of dyestuffs are
produced every year (Robinson et al., 2001). Substantial
amount of them are released in textile coloration process
which presents the main cause of pollution (Pearce et
al., 2003; Kariyajjanavar et al., 2012). Dyes are mainly
divided into acidic, basic, direct and reactive dyes. They
have delocalized electron systems with conjugated
double bonds, a chromophore as well as an auxochrome
group (Rangabhashiyam et al., 2013). They are
produced to be highly stable against many chemicals
and natural conditions (Guimaraes et al., 2012). The
molecular structure and the synthetic origin not only
makes them difficult to decolorize but also highly water-
soluble (Baldev et al., 2013). Most of the dye effluents
are hard to treat, high in volume and contains harmful
chemicals. They exhibit toxic and carcinogenic effects
on biological systems and reduce the photosynthesis
due to the absorbance of light that enters the water.

Rhodamine B (Rh-B), one of the most important stable
xanthene dyes, is also known as Basic Violet  10, and
used in the textile industry for colouring (Baldev et
al., 2013). Unfortunately, it is harmful for aquatic
communities and also causes irritation of the skin and
eyes (Nagaraja et al., 2012). Moreover, this dye is
carcinogenic, neurotoxic and has a potential chronic
toxicity towards humans, which makes it necessary to
find a reasonable way of degrading Rh-B from aqueous
solutions (Torrades and García-Montaño, 2014).

Many different ways of treating dye-containing
wastewater have been studied so far, like coagulation,
flocculation, foam flotation, membrane filtration and
biological treatment. These methods differ in their
efficiency, cost and environmental impact (Torrades
and García-Montaño, 2014). One the most effective
processes of degradation of dye in textile effluents is
advanced oxidation processes (AOP) which includes
photolysis, Fenton and photo-Fenton processes. All
these methods depend on the formation of hydroxyl
radicals (OH•) which have high oxidative power.

The Fenton’s reagent consists of ferrous sulphate
(FeSO

4
) as a homogenous catalyst and hydrogen
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peroxide (H
2
O

2
) as an oxidation agent. The conventional

Fenton process is based on the formation of OH•
radicals by electron transfer (Eq.  1) (Basturk and
Karatas, 2014). These in-situ produced radicals initiate
the non-selective destruction of the organic pollutants
by attacking the unsaturated dye molecule and
destroying the chromophores (Eq.  2-3) (Gan and Li,
2013; Siddique et al., 2014).

The major setback of Fenton reaction is the
accumulation of Fe3+ ions and the reaction does not
proceed further, once all the Fe2+ ions are consumed.
On the other hand, in photo-Fenton process, Fe3+ ions
can react with water in the presence of UV radiation
and can regenerate Fe2+ by photoreduction (Eq. 4).
The newly generated Fe2+ can react with H

2
O

2
 and

generate other free hydroxyl radicals as per Eq.1 and
the cycle continues (Torrades and García-Montaño,
2014).

The major setback of Fenton reaction is the
accumulation of Fe3+ ions and the reaction does not
proceed further, once all the Fe2+ ions are consumed.
On the other hand, in photo-Fenton process, Fe3+ ions
can react with water in the presence of UV radiation
and can regenerate Fe2+ by photoreduction (Eq. 4).
The newly generated Fe2+ can react with H

2
O

2
 and

generate other free hydroxyl radicals as per Eq.1 and
the cycle continues (Torrades and García-Montaño,
2014).

Therefore the photo-Fenton process generates
many OH•, which increases the rate of degradation of
pollutants as compared to the conventional Fenton
process (Babuponnusami, and Muthukumar, 2014).
The effectiveness of photo-Fenton process depends
on many factors such as pH, temperature, source of
light, the initial dye concentration, the concentration
of H

2
O

2
 and Fe2+.  Therefore, it is essential to optimize

the process by using specific optimization tools. In
recent times, the use of response surface methodology
(RSM) and artificial neural network (ANN) are gaining
importance for modelling and optimization of many
environmental processes (Kasiri et al., 2008, Noori et
al., 2011 and Noori et al., 2013)  Both the models estimate
the relationship between the input factors and output

 (1)

 (2)

 (3)

 (4)

responses of a process using the experimental values.
Finally, the models are used to estimate the optimum
conditions of the process (Marchitan et al., 2010).

In the literature, RSM has been applied for Rh-B
dye degradation using sono-catalytic process (Pang
et al., 2011) and heterogeneous Fenton-like catalyst
system (Xu et al., 2013).  However, it is evident from
the existing literature that there are no reports dealing
with the comparison of RSM and ANN modelling for
the Rh-B dye degradation by photo-Fenton process.

Therefore, the objectives of the present
investigation are (1) optimizing of the degradation of
Rh-B by photo-Fenton process using RSM by taking
four factors viz., concentration of Rh-B, H

2
O

2
, Fe2+ and

time; (2) developing an ANN model and predicting the
output of the photo-Fenton process.

MATERIALS & METHODS
(a) Chemicals: Analytical-grade Rhodamine B (C.I.

Basic Violet 10) was used without any further
purification and purchased from Hi Media, India. H

2
O

2

and FeSO
4
.7H

2
O were purchased from Merck. The

required stock solutions of each component were
prepared with Millipore-Milli-Q water.

(b) Photo-Fenton experiments: All the photo-
Fenton experiments were performed in 25 ml beakers
under room temperature. The samples were put in a UV
Cabinet (Rotek Instruments, 230  V, 40  W, B&C
Industries, Kerala, India) and irradiated with short
wavelength of λ = 254 nm.  For the determination of
the degradation of dyes, UV/Vis measurements were
performed at the absorbance maximum of λ = 552 nm
using the UV/Vis spectrometer UVmini-1240 (UV-VIS
Spectrometer, Shimadzu, Kyoto, Japan) at regular time
intervals.  Initially a dilution series was prepared to
plot a calibration graph of Rh-B concentration versus
absorbance.

(c) Experimental design by RSM: With a view to
investigate the influence of the concentration of Rh-
B, H

2
O

2
, Fe2+ and time on the degradation of Rh-B,  a

central composite design (CCD), which is one of the
response surface methodologies, was used.  Based on
the previous experimental results, the levels of each
factor were chosen and the values with both coded
and uncoded forms are shown in the Table 1.

A total number of 30 experimental runs with
different arrangements of levels of each factor are
shown in Table 2. It consists of 16 factorial runs (24 full

factorial), 8 axial runs (at a distance of

from the centre) and 6 centre point runs to estimate the
quadratic effect of variables on the response.  The
effects of extraneous factors were avoided by
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conducting all the experiments in a random order
(Montgomery, 2008).
The percentage dye degradation (% Y) was calculated
by using

% Y = 100 * (C
o
- C

f
) / C

o
(5)

where C
o
 and C

f
 are the initial and final

concentrations of Rh-B respectively. After the
completion of the experiments, the percentage dye
degradation, Y was taken as the response and
regression analysis was done to fit into a second order
polynomial equation.

The coefficients of this equation were calculated
by the method of least squared error analysis. The
statistical significance of the model and coefficients
were checked by analysis of variance (ANOVA) (Wang
and Wan, 2009a). The design and analysis of the
experimental runs were performed with the statistical
package software, Design Expert 7.0.0.

The coefficients of this equation were calculated
by the method of least squared error analysis. The
statistical significance of the model and coefficients
were checked by analysis of variance (ANOVA) (Wang
and Wan, 2009a). The design and analysis of the
experimental runs were performed with the statistical
package software, Design Expert 7.0.0.

(d) Modelling using ANN: ANN is a branch of
artificial intelligence which is used to solve challenging
problems like classification (speech recognition),
forecasting, and optimization or multivariate data
analysis using experimental data, field observations
or even incomplete or fuzzy data sets (Kalogirou, 1999)
. It can provide accurate solutions for highly complex
and non-linear problems with many interrelating
parameters and has therefore a better modelling ability

(6)

Table 1. Actual and coded levels of factors of the CCD experiments

Factor Variables Unit
Coded levels

-2 -1 0 1 2
A Dye concentration ppm 50 100 150 200 250

B
Hydrogen peroxide
concentration ppm 75 150 225 300 375

C Fe2+ concentration ppm 20 30 40 50 60
D Time min 3 12 21 30 39

than RSM (Basheer and Hajmeer, 2000).  ANN has been
already successfully used for many environmental
applications (Noori et al., 2010a & 2010b).

The general network architecture of ANN is
described by an input layer (IPL) receiving data, one
or more hidden layers (HL) and output layer (OPL)
presenting the desired response. Weights connect the
neurons of the layers as well as storing the knowledge.
Biases are not connected to the IPL, but are able to
influence the hidden neurons independently and serve
as a threshold. The net input is passed forward from
the IPL to the HL and is processed by the neurons in
the HL using a transfer function, e.g. linear, binary or
sigmoid. The same procedure applies for the transfer
of data from the HL to the OPL (Wang and Wan, 2009b).
Before a network can be used for reproduction of data
or optimization of processes, it has to be trained by
presenting input data and targets. To learn the
interrelationship between the input parameters and the
output, the weights are modified in a certain way until
the desired output is given (Wang and Wan, 2009b).
This modification is done by a suitable learning method
which defines how the weights should be adjusted. In
this study, a ‘feed-forward error-back propagation’
algorithm has been employed. In this method, each
iteration is composed of forward activation to produce
a solution and the backward propagation of the
calculated error to adjust the weights. The mean
squared error (MSE) is propagated backwards from
the OPL through the HL to the IPL, modifying the
interconnecting weights. Thus, the validation is used
to measure generalization of the network and stop the
training, when no further improvement of generalization
is noticed. During the third part, the testing, unused
data is supplied to the network. When the MSE reaches
the desired value, the training process is stopped.
Together, the optimum weights matrices and bias
matrices define the newly created ANN.

The experimental data obtained from the CCD
matrix were used to train, test and validate the ANN
model.  The ANN modelling was executed with
MATLAB 2013a (The Mathworks Inc., USA). The
prediction accuracy and the degree of fitness of the
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ANN model were evaluated by calculating the
following factors (Eq. 7 – 10) viz., Mean Square Error
(MSE), Root Mean Square Error (RMSE), Standard
Error of Prediction (SEP), Average Absolute Relative
Deviation (AARD).

RESULTS & DISCUSSIONS
(a) Modelling of dye degradation using RSM: A

total number of 30 experiments were performed
according to the CCD matrix to investigate the photo-
Fenton process. Each of the experimental runs in the
design matrix was unique which represented a specific
combination of the four independent factors viz., dye
c o n c e n t r a t i o n ,  F e

2+ concentration, H
2
O

2
 concentration

and time, with five different levels. For each experiment,
the response (percentage degradation, %Y) was
calculated and shown in the Table 2. The levels were
coded since the variables had different units and limits
(Göb et al., 1999). The last 6 runs were exactly the same,
in order to account for the experimental error. The
results of the experiments were used, together with the
input data, to explore the relationship between
dependent variables and the output. With the help of
RSM, the following second order regression model
(Eq.  11) was obtained. The regression model, however,
was only valid in the range of experimental factor levels
(50  <  c  (Rh B)  <  250  ppm; 75  <  c (H2O2) < 375 ppm;
20 < c (Fe2+) < 60 ppm; 3< time < 39 min). 

 (11)
Y = 95.7 – 4.77 *A + 1.16*B + 7.91*C + 7.43*D +
0.36*A*B + 3.33*A*C + 1.87*A*D + 0.27*B*C +
0.56*B*D – 4.87*C*D + 0.41*A2-0.05*B2 – 3.77*C2 –
4.87*D2

The coefficients’ significance was tested by
student’s t-test and the accuracy of the regression
model was evaluated by ANOVA (Table 3).

The analysis was done at 95% confidence interval.
The model F-value of 10.99 and p < 0.0001 implied the
significant model attainment.  There was only a 0.01%
chance that a model F-value could occur due to noise.
Moreover, P < 0.05 indicates the significant model terms.

In this case, the linear terms A, C, D,  the interaction
terms AC, CD, and the quadratic terms C2 and D2 were
significant model terms.

In general, for a satisfactory highly correlated model,
the range of correlation coefficient R2 should lie
between 0.9 and 1. In the present study the R2 of the
model was 0. 9111 which indicated that 91.11% of the
experimental data and predicted data can be explained
by the model and thus confirmed the significance of
the model. According to (Sohrabi et al., 2014), the
coefficient of variation, CV should not be greater than
10% for a model to be reproducible.  The CV obtained
in this study was 6.42 %, which indicated precision
and reliability of the results. Another important
parameter is the adequate precision, which measures
the signal-to-noise ratio. The value of 12.461 in this
study indicated an adequate signal, which should be
greater than 4 for a desirable model.  Fig 1 indicates
the goodness-of-fit model using the predicted and
actual values of the RSM model, where the R2 was
0.9112.

The interactive effect between the four variables
on dye degradation was studied by examining the
three-dimensional response surface plots (Fig 2). The
3D plots were constructed against two variables while
keeping the remaining variables at their corresponding
mid-value.  The concave curved surfaces in the figures
indicate the possibility of obtaining a maximum value
within the levels chosen. It also confirms the interaction
between the factors and the correctness of a second-
order regression model.

Fig.2a shows the dependency of dye degradation
on Fe2+ and dye concentration. While plotting this
graph, H

2
O

2
 and time were maintained in their mid-

levels. When the dye concentration was increased from
low (50 ppm) to high concentration (250 ppm), the
percentage of dye degradation decreased at the low
level of Fe2+ (20 ppm). This could be due to the lesser
amount of hydroxyl free radicals formed, to degrade
the large number of dye molecules (Sohrabi et al., 2014;
Tamimi et al., 2008). However, at the high level of Fe2+

(60 ppm), the degradation percentage did not have a
significant effect. This remained at a high value which
may be due to the saturation of Fe2+ ions. The fact that
the increase in degradation percentage at lower Fe2+

concentration and remaining constant at a higher Fe2+

concentration reinforced the interaction between the
concentration of Fe2+ and dye. This was further
supported by the value of P which was less than 0.05.
Fig. 2b shows the dependency of dye degradation on
Fe2+ concentration and time. The plot was constructed
by maintaining H

2
O

2
 and dye concentrations at their

mid-levels. When the time was increased from 3 to 39

 (7)

 (8)

 (9)

 (10)
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Table 2. Experimental design matrix and response based on experimental runs and predicted values by CCD
and ANN

Exp.No:
Factor Level Response, Y (%)

A B C D Expt. CCD ANN

1 -1 -1 -1 -1 84.25 77.19 84.25

2 1 -1 -1 -1 59.05 56.52 59.05

3 -1 1 -1 -1 84.05 77.15 84.05

4 1 1 -1 -1 58.11 57.91 59.91

5 -1 -1 1 -1 98.6 95.56 98.60

6 1 -1 1 -1 91.65 88.23 91.65

7 -1 1 1 -1 98.9 96.59 96.75

8 1 1 1 -1 93.25 90.68 93.25

9 -1 -1 -1 1 97.15 96.95 97.54

10 1 -1 -1 1 83.65 83.76 83.65

11 -1 1 -1 1 97.91 99.13 97.91

12 1 1 -1 1 87.11 87.38 87.11

13 -1 -1 1 1 97.83 95.83 97.83

14 1 -1 1 1 91.85 95.98 91.85

15 -1 1 1 1 99.32 99.08 99.32

16 1 1 1 1 95.81 100.67 95.81

17 -2 0 0 0 99.11 106.89 101.56

18 2 0 0 0 90.62 87.81 86.95

19 0 -2 0 0 88.64 93.16 93.80

20 0 2 0 0 97.35 97.80 97.35

21 0 0 -2 0 59.62 64.77 62.41

22 0 0 2 0 96.61 96.43 96.61

23 0 0 0 -2 49.83 61.36 49.83

24 0 0 0 2 97.65 91.09 97.65

25 0 0 0 0 92.21 95.70 95.19

26 0 0 0 0 96.35 95.70 95.19

27 0 0 0 0 96.7 95.70 95.19

28 0 0 0 0 96.55 95.70 95.19

29 0 0 0 0 96.82 95.70 95.19

30 0 0 0 0 95.55 95.70 95.19

AARD (%) 3.66 1.07

RMSE 4.04 1.62

SEP (%) 4.54 1.82
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Table 3. ANOVA table for RSM model

Source Coefficient Sum of
squares

DF Mean
square

F value P value

Model 95.69667 5029.701 14 359.2644 10.99313 < 0.0001*

A -4.77125 546.3558 1 546.3558 16.71795 0.0010*

B 1.160417 32.3176 1 32.3176 0.988887 0.3358

C 7.912917 1502.742 1 1502.742 45.98242 < 0.0001*

D 7.43375 1326.255 1 1326.255 40.5821 < 0.0001*

AB 0.358125 2.052056 1 2.052056 0.062791 0.8055

AC 3.334375 177.8889 1 177.8889 5.443224 0.0340*

AD 1.871875 56.06266 1 56.06266 1.715462 0.2100

BC 0.266875 1.139556 1 1.139556 0.034869 0.8544

BD 0.556875 4.961756 1 4.961756 0.151825 0.7023

CD -4.87188 379.7627 1 379.7627 11.62036 0.0039*

A^2 0.413229 4.683657 1 4.683657 0.143315 0.7103

B^2 -0.05427 0.080786 1 0.080786 0.002472 0.9610

C^2 -3.77427 390.7233 1 390.7233 11.95575 0.0035*

D^2 -4.86802 649.9921 1 649.9921 19.88911 0.0005*

Residual 490.212 15 32.6808

Cor Total 5519.913 29
* significant at 95% confidence interval
SD: 5.72; R2: 0.9111; Adeq. Precision: 12.4605 ; C.V.%: 6.42

Fig. 1. Scatter plot of predicted vs experimental % dye degradation from RSM model

min, the dye degradation percentage increased at the
low level of Fe2+ (20 ppm).  However, at the high level
of Fe2+ (60 ppm), the degradation % increased till 21
min and further increase in time decreased the
degradation percentage. Since the effect of time relied
on the level of Fe2+, these two show significant
interactions (low P value of 0.0039). The decrease in
percentage dye degradation may be caused by

scavenging of free OH• free radicals (Torrades and
García-Montaño, 2014) by the high concentration of
Fe2+ to form Fe3+ (Eq. 12), which resulted in the UV
light absorption and caused the recombination of OH•
free radicals (Ebrahiem et al., 2013).

Fe2+ + OH• Fe3+ + OH– (12)
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Fig. 2. Response surface plots (a) Interaction plot of Fe2+ concentration and Dye concentration (b) Interaction
plot of Fe2+ concentration and Time

Fig. 3 shows the perturbation plot, which gives
the comparative effects of the variables on dye
degradation. This plot shows the variation in the output
as each factor changes from a chosen reference point
while the remaining factors are kept constant at the
reference point. A substantial slope or curvature in a

Design-Expert® Software

Degradation
Degradation

Actual Factors
A: Dye con = 150
B: H2O2 con = 225.00
C: Fe2+ con = 40
D: Time = 21

Perturbation
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da

tio
n

-2.000 -1.000 0.000 1.000 2.000

49.00

63.50

78.00

92.50

107.00 A

A

B

B

C

C

D

D

Fig. 3. Perturbation plot showing the effect of variables on % Dye degradation

factor implies that the output is very sensitive to the
change in the factor (Kalariya et al., 2014). In the
present study, the steep curvature in C (Fe2+) and D
(time) curves showed that the dye degradation was
very sensitive to these variables. Curve A (dye
concentration) was less sensitive when compared to
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curves C and D. A flat profile for factor B (H
2
O

2
)

indicated that it had no sensitivity towards the
response. Therefore the most significant factor in the
dye degradation was Fe2+ followed by time and dye
concentration. This fact was corroborated by the
absolute values of the coefficients of linear terms as
given in Table 3, which followed the order: C > D > A >
B. In addition to these, the least sensitive factor B was
not significant (P > 0.05) whereas the other factors A,
C and D were significant (P<0.05).

In order to find out the optimum percentage dye
degradation, the second order regression equation
was solved by using the desirability function
(Satapathy and Das, 2014) and the conditions for a
desirability of 1 were as follows: Dye concentration –
159.27 ppm; H

2
O

2
 concentration – 239.21 ppm; Fe2+

concentration – 46.18 ppm; Time – 27.29 min and the
predicted % dye degradation – 99.95%. Confirmatory
experiments were done with dye concentration – 159
ppm; H

2
O

2
 concentration – 239 ppm; Fe2+ concentration

– 46 ppm and time – 27 min and the calculated % dye
degradation were found to be 99.84%, which was close
to the predicted value. The degradation process at
optimized conditions is shown in Fig 4. It can be
noticed from the figure that the characteristic peak of
Rhodamine B, λ = 552 nm disappears at the end of the
photo-Fenton process which confirms the complete
degradation of dye. The visual images of the
degradation process are also shown in the Fig 4.

(b) Modelling of dye degradation using ANN: For
analysing and modelling the photo-Fenton process of
the degradation of Rh-B, artificial neural network was

Fig. 4. Absorption spectra of Rhodamine B before and after the degradation by photo-Fenton process at
optimized conditions

used. The crucial step in ANN is the selection of
network size, the number of hidden layers and hidden
neurons. The CCD data set was used to create a
network model with an IPL, one HL and an OPL. The
experimental data was divided into three categories,
namely, training (70%), validation (15%) and testing
(15%). The performance of the trained model against
new data was checked the testing set. The results of
this set provided an independent measure of the
performance of the ANN model, during and after
training (Lin et al., 2008).

The network was trained using Levenberg-
Marquardt back-propagation algorithm (Elmolla et al.,
2010). A hyperbolic tangent sigmoid transfer function
(tansig) was employed for processing the data in the
HL and a linear transfer function (purelin) was used to
determine the effect of the values on the output nodes.
The connections between the different layers and
neurons were represented by weights and biases. IW
and HW represented the input and HL weight matrices,
respectively. Ib and Ob represented the biases of input
and OPL respectively.  The training was stopped when
MSE reached a minimum (Sabzevari and Moosavi,
2014) and the optimum values for weights and biases
were saved to define the ANN model. The optimal
number of hidden neurons was determined by adding
neurons during the training and comparing the R2, MSE
and AARD of each network (Table 4).

Since MSE, R2 as well as AARD % values has
reached a minimum for 10 hidden neurons, the optimum
number of neurons in the HL is 10. Therefore, the
selected topology of ANN in the present study



551

Int. J. Environ. Res., 10(4):543-554, Autumn 2016

Table 4. Results of topology studies to find the optimal ANN configuration

Number of
Hidden neurons

Error Analysis
R2 MSE AARD (%)

4 0.93 27.1848 3.353516
8 0.98 8.879109 1.751032
10 0.99 2.63 1.071695
12 0.97 13.3162 2.358209
14 0.93 36.98525 5.444711

consisted of 4 input neurons, 10 hidden neurons and
one output neuron (4:10:1).  The optimal structure of
the ANN model in this study is shown in Fig. 5 and the
optimized weights and biases of the developed model
are given in Table 5.

Fig. 5. Structure of ANN model used for the prediction of % Dye degradation

Table 5. Optimum values of weight matrices and biases resulting from ANN model

IW HW Ib Ob
1.4258 1.0306 -0.2585 1.398 -0.1788 -2.719 -1.2497

1.4985 -0.3544 -3.6242 -1.8194 -0.7187 -2.4961

-0.7666 -1.5137 -1.2355 -0.6316 -0.0511 1.1378

3.8551 -1.6939 -0.8707 -0.6713 -0.1726 -0.0718

-3.9187 0.3368 0.3455 -0.539 -0.5289 -0.3498

2.8403 -0.0095 -0.1156 0.5739 -0.5609 0.4198

1.883 -1.7552 0.2922 0.1536 0.0048 0.8872

0.661 -0.9254 0.4194 3.943 1.4968 3.9616

0.497 -2.3366 -0.653 -0.1522 -0.0477 2.0206

-1.6979 0.1736 -1.4078 0.2699 0.1837 -2.8443

The ANN model developed for the prediction of % dye
degradation was being described using the inputs X

i

and the output Y (Sathish, and Prakasham, 2010) as:
(14)
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By using the weights and biases, the output of
the ANN model was calculated and given in Table 2.
The low values of RMSE, AARD and SEP suggested
that the model given by ANN was more accurate
compared to the regression model of RSM. The
correlation between the experimental values and the
calculated responses from the ANN model for the %
dye degradation is shown in Fig 6. The correlation

coefficient of 0.9861 of the plot indicated the reliability
of the ANN model in the system (Kýranþan et al., 2015).

In addition, the residual error (Maran and Priya,
2015) was calculated for both the models and it can be
seen from the Fig. 7 that the deviation between
experimental and predicted values of ANN model was
very less as compared to the RSM model (Fig. 7).

Fig. 7. Residual errors between predicted and experimental % dye degradation from RSM and ANN models

Fig. 6. Scatter plot of predicted vs experimental % dye degradation from ANN model
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CONCLUSIONS
Photo-Fenton process was used to degrade Rh-B

and the various process parameters such as initial
concentration of dye, process time, concentration of
H

2
O

2
 and Fe2+ ions were optimized by using response

surface methodology, which gave a second-order
regression equation. The optimum process conditions
were found out to be initial dye concentration – 159
ppm; H

2
O

2
 concentration – 239 ppm; Fe2+ concentration

– 46 ppm and Time – 27 min with 99.84% dye
degradation. Both RSM and ANN models were in
coherent with the experimental results. The low values
of root mean square (RMSE), average absolute relative
deviation (AARD) and standard error of prediction
(SEP) suggested that the developed ANN model was
more accurate compared to the regression model given
by RSM. Therefore ANN could serve as a tool to
accurately predict and model the dye degradation
process.
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