توسعه مدل پخش آلودگی هوا (AERMOD) در نرم افزار MATLAB

تهیه و نشر: فرهاد نژاد کورکی، شهرام طالبی

چکیده

امروزه آلودگی هوا به عنوان یکی از مهم‌ترین جلاش‌های کشورها می‌باشد. بی‌پرداختی‌های زیادی در مدل‌سازی پخش آلودگی هوا صورت گرفته است. یکی از این مدل‌ها گر به اساس مدل گوس می‌باشد. AERMOD. اما از روش‌های محاسباتی محدودیت‌های زیادی را وارد می‌کند و گزینه‌های مورد نیاز اجرای مدل می‌باشد. بنابراین برای کردن این محدودیت‌ها و تیز تولید یک مدل بومی اهمیت دارد که به آن پرداختی نداید. هدف از این تحقیق توسعه مدل از نظر استفاده از برنامه نویسی MATLAB می‌باشد. در این تحقیق ابتدا مدل از نویسی برنامه نویسی ADAMM و پسین مدلهای سازی و ارزیابی پرداخت تکمیلی (ADAMM) انجام گردید که نتایج مدل‌سازی برای داده‌های مربوط به آلودگی هوا از انواع مدل ADAMM پیاده‌سازی کننده با مدل مقابله مدل نتایج دادن که در کل مدل ADAMM متوقف به مدل از نظر فرآیندهای است. لیب مدل ADAMM به عنوان یک مدل بومی در مراحل نسبت به مدل از نظر ADAMM که سرعت عملکرد بهتری نسبت به از نظر F. نژادکورکی بهبود می‌یابد. ADAMM این است که اطلاعات می‌تواند در از نظر ADAMM و توضیح جهت با فرمول‌های اصلی، اسکی، از نظر ADAMM به روش محاسباتی کاربر پیشنهاد می‌کند که در صورتی که این مدل مستند دریافت بهتری فیزیکی مختص خود می‌باشد. همچنین مدل ADAMM به عنوان یک مدل دیگر مدل که از نظر ADAMM به روش محاسباتی پیشنهاد می‌کند در صورتی که این مدل دیگر مدل به روش محاسباتی پیشنهاد می‌کن...
در جهت عمودی و افقی در شرایط ثابت و در جهات افقی در شرایط جابجایی استفاده می‌شود.
(Eamid, 2009)

این مدل با الگوریتم نسبت پیچیدگی، با در نظر گرفتن مشخصات سطح زمین مثل سپیدایی، طول زับ، نسبت بون و همینطور نکته شبیم، رطوبت نسبی و فشار در ارتفاعات بالا ارتفاع احتیاط و ارتفاع لاپی مزی و در نهایت از طریق معادله گوی میانگین غلظت در هر گیرنده تخمین می‌زنند. مدل علاوه بر پردازشگر اصلی ارومود از یک پیش پردازندای هوشمند به نام AERMOD و یک پیش پردازندای هوشمند به نام AERMET تشکیل شده است.

عوارض زمین به نام AERMAP شکل نده است. پیش پردازندای ارتم داده‌های هوشمندی را پردازش می‌کند و پارامترهای لاپی مزی جو را به منظور استفاده در مدل تخمین می‌زنند و پیش پردازندای امپ اطلاعات توپوگرافی منطقه را تجزیه و تحلیل می‌کند و در نهایت مدل با استفاده از نتایج این دو پیش پردازندای اطلاعات تکمیلی در مورد منابع انتشار و شبکه پذیرنده محاسبات خوند را انجام داده و نتایج نهایی را ارائه می‌دهد (شکل 1).

1- مقدمه

مدل‌سازی محیط زیستی علمی است که از ریاضياتی و کامپیوتر جهت شبیه‌سازی فیزیکی و شیمیایی پدیده‌ها در محیط زیست (مانند آلودگی محیط زیستی) استفاده می‌کند. این علم در ابتدا بر اساس مباحث خودکار و کاغذ با استفاده از معادلات ساده بهره است. در ۵۰ سال گذشته، با پیشرفت کامپیوترهای دیجیتال، مدل‌های محیط زیستی پیچیده‌تر و اغلب نیازمند جواب‌های عددی برای سیستم‌های معادلات دیفرانسیل مشتق‌های جزئی شدند. (Holzbecher, 2007)

برگزیده مدل ۱ می‌باشد که به عنوان یکی از جدیدترین و در عین حال پیشرفت‌های ترین مدل‌های معرفی شده توسط سازمان حفاظت محیط زیست است. (Farkouhavand, 2012)

همکاری رسمی را در سال ۱۹۹۱ با هدف طراحی و ایجاد یک نمایه پیش راه‌اندازی ارومودی است. کارگیری الگوریتم‌های بی‌ته و یک کردن پیشرفت‌های اخیر در بررسی شرایط لاپی مزی آغاز کردند که نتیجه این همکاری، مدل پیشرفت و بررسی ارومود بود.

۱ American Meteorological Society/Environmental Protection Agency Regulatory Model

2 Albedo
3 Roughness Length
4 Bowen Ratio
دسترسی مدل نیز شامل سه قابلیت شبکه‌ای شدن، کاربرد وپل بین و همزیست پایین است.

1- نرم‌افزار ریاضی، متلب، در دو دهه پیش توسعه یافته. این مجموعه برای کاربردهای کامپیوتری و شخصی خیلی موفق عمل کرده است. این ابزار به عنوان مجموعه‌ای از ابزارها برای حل معادلات آنتالپی و عددی اجاید شده است. این نرم‌افزار در مقایسه با ابزارهای پیشینه نوستی (مثل Fortran که سابقه توسط دانشمندان استفاده می‌کنند) برای ابزار برنامه‌نویسی است (Holzbecher, 2007).

امروز مدل‌های توانمند در زمینه مسائل زیست محيطی با از ویژگی‌های خاصی برخوردار باشند. نیاز به حل مشکلات بین روشن‌ها، هرگز‌ها و سازمان‌های موتور کمیتی محیط زیست نقص مهمی را ایفا نمی‌نمایند. یک مدل خوب باید دارای توانمندی‌ها و قابلیتی باشد که مورد نظر سازگاری و قابلیت اجرایی مدل، به هره‌گهی از علم جدید و توان رقابتی آن است. سازگاری معرف میزان سازگاری مدل با دنیای بیرون است. قابلیت

MATLAB

نرم‌افزاری است که کاربردهای مختلفی دارد. این نرم‌افزار به‌وسیله سیستم‌عامل و نرم‌افزار سازگاری باشد.

توسعه مدل پیش آن‌دگی هوای

(بهره گیری از علوم جدید و توان رقابتی آن است. سازگاری، معرف

میزان سازگاری مدل با دنیای بیرون است. قابلیت)

شکل (1) ارتباط بخش‌های مختلف مدل با یکدیگر (Bhardwaj, 2005).

1 Simulation and Assignment of Traffic in Urban Road Networks
محيط زیست طبیعی، منابع طبیعی ایران، دوره 69، شماره 2، تابستان 1395

580

پراکندگی و انتشار آلیاژ دارد. در ویرایش قدمی
برای پراکندگی انساز های از دو مدل
EDMS و PAL2 استفاده می‌شود که با ظهور
مدل ارمود در آژانس حفاظت محیط زیست سازمان
هواپیمایی فردار تصمیم به جابجایی مدل ارمود با
دومدل قبیل در
گرفت. چرا که اگر نیمایش
پراکندگی ارمود برای مدل‌های فیزیکی انسازی دقت
بیشتری نسبت به مدل‌های قبیل دارند، همچنین
و همکاران (2010) برنامه‌نگاری و
نقشه‌برداری فتوغرافی‌برداری را با استفاده از ملت
نوشتند. که به موجب آن تمر افزار 1
تولید شد.

(2007) کتابت تحت عنوان مدل‌دایزی
محیط‌زیستی با استفاده از ملت با تأیید کرده که
در آن انواع مدل‌های محیط زیستی و نوشتن آنها با
استفاده از ملت بررسی شده است.

با توجه به اهمیت مدل‌سازی پخش الودگی هوا
برنامه‌نویسی آنها در ترم‌های افزایش قابل دسترسی و
ساده و جامعتری مثل ترم‌های ملت از اهمیت
تکمیل‌برداری یافته و برای مدل ارمود برای
اجرا مدل به داده‌ها مختصات نیاز است. به منظور
ورود داده‌های هوشمندسازی به مدل باید از فرمت
خاصی که قابل خواندن توسعه برنامه‌نویسی
فرمی‌پشتی استفاده شود. لذا برای گواهی از خطا
در اجرای مدل باید کاربر دقت زیبایی جهت ورود
داده‌ها داشته باشد. همچنین حساسیت مدل نسبت
به ورودی زیادی بهره بوده و با کوچکترین اشتباه، مدل خطای
داده و اجرا نمی‌شود. امروزه پیشرفت زیادی در دنبای

ADAMMs، HyperMesh، Catia، Nastran، AIMAS و
Moḥammadi شد. و
Sadeghi (2009) نیز طی مطالعاتی از ادبیات برداشت
از مخازن نقیش به روش تریک حکایی (متن‌نویسی) آب
و گاز غیر استراحتی را با استفاده از ملت شیب‌سازی
کردن. همچنین
Mirbagheri و
Hossein (2004) با
استفاده از مدل مدل‌رسی اکسیژن محلول در
سیستم‌ها لحی می‌یابند. هدف آنها
پیشنهاد شکست اکسیژن محلول در راکتورهای لجن
فعال بود. برای این کار مدل‌رسی اکسیژن محلول در
معادلات دیفرانسیلی مربیه اول گنجانده شد و شبیه‌سازی
ساز مدل در ترم‌های ملت نوشتند. طی مطالعاتی
 Dirk و
Parshandeh (2006) کاهش
آلاینده‌های
Alpine به
Cox، NOx و SOx
(2005) با استفاده از ملت‌رسی کردن. این‌زمان
ابتدا به هدف را تکمیل داده و کلیه مراحل را تحت
نرم‌افزار پایان برداری نویسی متلب‌بازی کردن. عملیات برای سه نوع سوخت انجام شد و در پایان منظم
افزار تولید شد که می‌توان مناسب‌ترین نوع سوخت
را به منظور تولید کمترین میزان آلاینده انتخاب کرد.

(2011) اثر
SCR بر کاهش آلاینده
Su خروجی افزایش یافته با استفاده از ملت‌رسی
NOx
سازی کردن که مراحل شیب‌سازی در ملت صورت
گرفت و
(2004) ترم افزار ارمود را
RoGER ادغام کردن. سازمان هواپیمایی
EDMS
فاصله
(FAA)
پایان آلاینده کننده با استفاده از ملت‌رسی
حمل و نقل هواپیمایی

1
Mobile Mapping System
۲- اجرای زیر مدل ارمت:
داده‌های هواشناسی در پنجم فاصله‌مندی وارد شده و توسط این پیش‌بردارنده پردازش شده و دو فاصل داده‌های سطحی و بیروپیل عمودی جو را برای اجرای مدل ارمت ایجاد می‌کند. در اولین فاصله ورودی به ترتیب داده‌های مختصات منطقه مورد مطالعه، ارتفاع انداره‌گیری داده‌های هواشناسی از جمله سرعت و جهت می‌باشد. قطعه‌های اطراف دودکش، شماره قطعه، ضریب آب‌زدایی، نسبت بیرون و ضریب زیری وارد می‌شوند. در فاصله متنی بعد نیز مختصات منطقه و فرمت داده‌های هواشناسی (در محل) منطقه وارد می‌شود. فاصله متنی بعدی که باید داده‌های هواشناسی در محل را اطلاع فرمت تعیین شده در فاصله متنی با دارای نشانه خاص در این فاصله وارد کرد که این داده‌ها عبارتند از: سال، ماه، روز و ساعت نمونه برداری، نام محل، شماره محل، ارتفاع انداره‌گیری داده‌ها، نقطه شیمیایی، جهت باد، سرعت باد و رطوبت نسبی. بعد از تکمیل داده‌ها پیش‌بردارنده ارمت اجرا می‌شود که حاصل دو فاصله متنی است. با استفاده از PFL و SFC پسوند جو وارد شده بایستی است. این پایانه شده که شرط ارتفاژ USGS با دقت ارتفاعی ۲۰ متر است. در اینجا جهت مدل‌سازی غلظت آلاشیه، از مدل رقمی ارتفاع با دقت ۵۰ متر استفاده شد. برای تهیه فرمول مدل رقمی ارتفاع از ارتفاع USGS وارد بردن ارتفاع از نرم‌افزار لگولب (می) و (ویرایش) استفاده شد. داده‌های هواشناسی و منبع (دودکش کوره های قوس الکتریکی شرکت فولاد آلبالیا ایران) به مدت ۸ ساعت برداشت و ایجاد به صورت بازه‌های سه ساعته گردید.

۱ DEM
۲ Global Mapper
در گزینه‌های مدل مشخصات دودکش از جمله دی‌بی خروجی گاز، سرعت خروج گاز، قطر دودکش و ارتفاع دودکش وارد می‌شود. و در قسمت هواشناسي دو فايل واط که توسط ارمت ايجاد شده بود بارگذاري مي شود. و در نهایت مدل ارمود اجرا شده و فايل خروجی به شكل ۳ داده مي شود.

۲-۴- اجرای ارمود:

در پيش پردازند مکان و ارتفاع عوارض زمين كه بيشترین تأثیر را بر فرآیند پخش در هر پديندگي منفرد دارد، مشخص می‌كند. بسته به تعداد گيرنده تعريف شده بعد از چند دقيقه تا چند ساعت اجرای ارمود طول می‌کشد.

شکل (۲) منطقه مورد مطالعه، موقعیت دودکش و توبوگرافي منطقه.
شکل (۳) خروجی مدل ارومد

برای تریم نقشه پراکنده‌ی به جهار ستون
او برای این است که عبارات‌های مدت ستون اول طول
چگالتری‌ها گیرند. ستون دوم عرض چگالتری‌های,
ستون سومیانگین غلط در هر گیرنده و ستون
چهارم ارتفاع هر پذیرنده. که این خروجی به صورت
قابل ماندن ذخیره شده و بعد جهت تهیه نقشه
پراکنده‌ی الیندندی و روی هم گزاری آن با نقشه‌های
کاربری اراث منطقه یکی وارد نمایند. GIS
جدید که به منظور خواندن داده‌ها باید قابل
انفو‌رسی گاهی در GIS
کل کی، شده و با جذرف مواد اضافه به
انتقال داده شود.

۵-۵ سرعت کاهش آبادانیک

تغییرات دما (کاهش) بر حسب ارتفاع (افزایش)
را سرعت کاهش آبادانیک خشک، می‌نامند که با

\[
\frac{dT}{dz} = \frac{9/8}{C^\circ\text{F}/\text{km}} = \frac{5/4}{C^\circ\text{F}/\text{1000 ft}}
\]

\[(1)

قائمه اهمیت آن در قرار گرفته است به
الاهمیت آن در قرار گرفته است به

در این آبادانیک راز سطح
زمین (حداکثر دامی متوسط ماهیان، رسم می‌کنند
محل برخوردار خطا کاهش آبادانیک خشک با نمودار
نیم‌خوارشی جو بین‌گزار حداکثر عمق آبادانیک

۲ - حداکثر عمق آبادانیک

\[(1)

ی برای ایجاد ۳۴ ساعت خواصی سرعت یاد در

\[\text{Adiabatic Lapse Rate}\]

\[\text{Dry Adiabatic Lapse Rate}\]

\[\text{Maximum Mixing Depth(MMD)}\]
محیط زیست طبیعی، منابع طبیعی ایران، دوره 69، شماره 2، تابستان 1395 صفحه 284

در این رابطه، در U و Z به ترتیب سرعت باد در بالاترین و پایین‌ترین ارتفاع مورد نظر و P به ترتیب ارتفاع حداکثر و حداقل و V نیز عدد بدون استطلاع به در جدول 1 مقادیر P پیشنهاد شده به وسیله آزمایش‌های محیط زیست آمریکا برای سطح ناهماهنگ بر اساس سنجش‌های هوشمندی (بادسنجی) آورد شده است. برای سطح هموار مانند دشت‌ها، سطح دریاها و در راه‌ها مقادیر P موجود در جدول 1 می‌باشد در عدد 6/0 ضرب شوند.

اهرام قدرت 10 متری مورد سنجش قرار می‌گیرد، در صورتی که افزایش ارتفاع سرعت باد نیز عموماً افزایش می‌یابد، بنابراین اندیشه گیری سرعت باد در ارتفاعات بیش از 10 متر به بررسی وضعیت پراکنش مواد آلاینده کمک زیادی می‌کند. در صورتی که وسایل مورد نیاز به کمک باد در ارتفاعات بیش از 6 متر در اختیار نباید می‌توان از رابطه زیر برای تعیین سرعت باد در ارتفاع مورد نظر استفاده کرد.

$$U = \left(\frac{V}{V_0} \right)^{\gamma}$$

در جدول 1 مقادیر P برای سطوح ناهماهنگ

<table>
<thead>
<tr>
<th>پ</th>
<th>شرح</th>
<th>رده پایداری هوا</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/15</td>
<td>بیانداز</td>
<td>A</td>
</tr>
<tr>
<td>0/15</td>
<td>نسبتاً بیانداز</td>
<td>B</td>
</tr>
<tr>
<td>0/25</td>
<td>کمی بیانداز</td>
<td>C</td>
</tr>
<tr>
<td>0/25</td>
<td>خشن</td>
<td>D</td>
</tr>
<tr>
<td>0/40</td>
<td>کمی پایدار</td>
<td>E</td>
</tr>
<tr>
<td>0/6</td>
<td>پایدار</td>
<td>F</td>
</tr>
</tbody>
</table>

شکل (5) توزیع جیهه دود به صورت سه بعدی نشان داده شده است. در این شکل 1 توزیع افتقی جیهه دود و 2 توزیع عمودی جیهه و بینایگر ارتفاع صعود توده دود می‌باشد. در نقطه مشخص از طریق معادله g، u، v، و w، نسبت u و w را می‌توان از نظر g و u را از نظر w را در بازکردن و انتقال g، مواد خارج شده از منبع از نظر شرکت در

Erfanmanesh&Afyooni, 2009&Mosavi et al.)
ارتفاع صعود توده دود پس از خروج از دودکش تحت اثر سرعت اولیه است. \(u \) سرعت متوسط در ارتفاع موثر صعود دود بر حسب متر بر ثانیه. \(y \) سرعت افقی از محور مرکزی جبهه دود بر حسب متر. \(Q \) نقطه در جهت پایین‌دست بر حسب متر، \(H \) فاصله.

ضریب پراکنش افقی (انحراف از از استاندارد) بر حسب متر، \(\sigma_x \) ضریب پراکنش عمودی (انحراف از استاندارد) بر حسب متر. \(Z \) ارتفاع گیرنده نسبت به ارتفاع مبدا یا دودکش. \(\Delta h \) ارتفاع دودکش و

\[c(x, y, z) = \frac{Q}{2\pi \sigma_y \sigma_z} \times \left[\exp \left(-\frac{y^2}{2\sigma_y^2} \right) \right] \left[\exp \left(-\frac{(z - H)^2}{2\sigma_z^2} \right) \right] + \exp \left(-\frac{(z + H)^2}{2\sigma_z^2} \right) \]
محیط زیست طبیعی، منابع طبیعی ایران، دوره ۶۹، شماره ۲، تابستان ۱۳۹۵ صفحه ۲۸۶

ضایب پشت‌رکش گاز‌های آلاینده به‌صورت متوسط قرار گرفته است. معمولاً، ترین روش تخمین ضرایب به وسیله پاسکال و گیسورد ابداع و اصلاح شد.

جرد(۲) رده‌بندی پایدار جو

<table>
<thead>
<tr>
<th>نسبت ابری بودن(شب)</th>
<th>تابش انرژی خورشیدی(روز)</th>
<th>سرعت باد(م/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ابری < ۸/۸</td>
<td>شفاف < ۳/۸</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>E</td>
<td>۲<</td>
</tr>
<tr>
<td>F</td>
<td>E</td>
<td>۲-۳</td>
</tr>
<tr>
<td>E</td>
<td>D</td>
<td>۳-۵</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>۵-۶</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>۶<</td>
</tr>
</tbody>
</table>

توجه: در رده‌بندی فوق A: پیش‌باز پایدار B: نسبتاً پایدار C: کمی پایدار D: خشک E: کمی نابود F: کمی نابود

باد در جدول (۳) مقدار ثابت از برای استفاده در معادلات (۴) و (۵).

جدول (۳) مقدار ثابت f, d, c, A برای استفاده در معادلات (۴) و (۵)

<table>
<thead>
<tr>
<th>1 km ≤ X</th>
<th>x ≤ 1 km</th>
<th>Rده</th>
<th>پایداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>d</td>
<td>c</td>
<td>A</td>
</tr>
<tr>
<td>۱۹/۳۷</td>
<td>۱۹۴/۸</td>
<td>۱/۹۴۱</td>
<td>A</td>
</tr>
<tr>
<td>۱۹۴/۸</td>
<td>۴۸/۱۹۸</td>
<td>۱۰/۸۶</td>
<td>B</td>
</tr>
<tr>
<td>۱۰/۸۶</td>
<td>۹/۱۹۱</td>
<td>۱۱/۴۹</td>
<td>C</td>
</tr>
<tr>
<td>۹/۱۹۱</td>
<td>۲/۱۹۰</td>
<td>۱۳/۴۹</td>
<td>D</td>
</tr>
<tr>
<td>۲/۱۹۰</td>
<td>۳/۱۸۹</td>
<td>۵/۴۹</td>
<td>E</td>
</tr>
<tr>
<td>۳/۱۸۹</td>
<td>۴/۴۹۸</td>
<td>۶/۴۹</td>
<td>F</td>
</tr>
</tbody>
</table>

سرعت باد در ۱۰ متری سطح زمین محاسبه شده است.

* روزهای اغلبی تابستان با رابطه پایش بیش از ۶ درجه
* روزهای تابستان با وجود لگه‌های پیش یا پایانه در آستانه یا یک روز صاف با رابطه پایش ۳۵ درجه
* روزهای پاییز (بعد از نورهای صاف تابستان با رابطه پایش ۱۵ درجه
* روزهای نیمی از روزهای اول تابستان با رابطه پایش ۳۰-۵۰ درجه
تنویع برای تخمین بلندی توده دود استفاده شاخص S از این رابطه \(\Delta h = \frac{g}{g_s} \frac{dTa}{dz} + r \)

در این رابطه 1 سرعت دود در این رابطه مدل

\[S = \frac{g}{g_s} \left(\frac{dTa}{dz} + r \right) \]

زوال آبایانیک به میزان 2001 و مشتق شاخص سرعت تغییرات درجه حرارت محیط با ارتفاع است توجه شود که علامت منفی به معنای افزایش درجه حرارت و سیگر دود دود و (ارتفاع‌بندی ارتفاع است) (Erfanmanesh & Afyooni, 2009). مبنای مدل ارومد مدل گوس است که در این قانون مدل گوس برای شکه کاربر در نرم افزار مطلب نوشته می‌شود.

2- برناهه توسی: یک نک مراحل محاسبه

\(F \cdot F_s = \gamma \left(1 - \frac{Ta}{T_s} \right) \)

در این فرمول \(g_s \) (Sh) جاذبه ماکسیموم زمین \(r_s \) (m/s) مدل گوس \(z_m \) (m/s) توده دود \(r \) (K) مناسب به شرایط خشی (دیده‌پذیری) دیده می‌شود. در شرایط

\[\frac{z_m}{r} \leq 1 \]

برای تخمین بلندی توده دود استفاده کرد.

\[\Delta h = \left[\frac{1}{(x/F)^{3/7} (x/F)^{3/7}} \right] \]

\[F\geq 55 \left(m^3/s^2 \right) \]

\[X_f \leq 12 \cdot \frac{F^{1/7}}{x/F} \]

\[X_f \leq 5 \left(F^{1/8} \right) \]

\[X_f \leq 55(m) \]

شرايط پذيردن (E-F) نهایی از مدل سطحی

1. Plume Rise
برنامه‌ی توشته‌شدن که شکه گیرنده‌ها را در اطراف دودکش ترسیم کند. به طوری که طول و عرض دودکش، کلیه‌ی محور x و y از دودکش و همچنین فاصله بین نقاط x و y از کاربرد گرفته و شکه گیرنده‌ها را در اطراف دودکش ترسیم می‌کند.

نتایج

- ترکیب الگوریتم مدل‌های گوس، الگوریتم ترسیم شکه گیرنده و الگوریتم اعمال نشانه‌های دلیل زمینه‌ای ارتقاء جهت محاسبه ارتقاء گیرنده‌ها، منجر به تویید مدل جدیدی که به نام ADAMM نام گذاری گردیده.
- Atmospheric Dispersion Assessment & Mapping Model (ADAMM) هنوز با آنچه که در واقعیت اتفاق می‌افتد فاصله زیادی دارد. اینکه این صحت سنجی دقیق نیازمند استخراج الگوریتم کامل مدل ارومود که خود را تانن ضریب زبری سطح. رطوبت نسبی و سبیدابی در مدل گوس حاصل می‌شود. همچنین نمونه برداری از صنعت مشخص می‌باشد که در مجموع زمان بر است. ولی بخش اصلی مدل که مدل گوس و تانن توابعی همچنین تانن پارامترهای هواشناسی و شکه گیرنده‌ها در سیک نرم افزار ساده و کاربرد دوست می‌باشد، صورت گرفته است. که با استخراج اصل مدل می‌توان به راحتی الگوریتم مدل RA ارتقای داد.

نتایج حاصل از مقایسه دو مدل: در فواصل مختلف از دو مدل، با داده‌های مشابه خروجی گرفته شد. داده‌ها جهت بررسی آماری به نرم افزار SPSS16 انتقال یافت. بعد از بررسی نرم‌نظامیه داده‌ها با آزمون کلیومکروفسامپلینگ، به دلیل نرمال تیون داده‌ها بعد از تبدیل، از ضریب همبستگی اسپیلور جهت بررسی میزان همبستگی داده‌های حاصل از دو مدل، استفاده گردید. نتایج حاکی از آن بود که با توجه به جدول ۴ و شکل ۶ مدل این تخمین بوده و در فواصل تردیدی به مبنای از صحت بیشتری برخوردار است. به طوری که ضریب همبستگی اسپریمن در فاصله‌های کمتر از ۵ کیلومتر به ۵/۴ می‌رسد و با دو دور شدن از منبع همبستگی کاهش می‌یابد.
جدول (۴) ضریب همبستگی اسپیرمن غلظت مدل ارومود و مدل ADAMM در فواصل مختلف از منبع.

<table>
<thead>
<tr>
<th>فاصله از دودکش (کیلومتر)</th>
<th>ضریب همبستگی اسپیرمن</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۹</td>
<td>۲</td>
</tr>
<tr>
<td>۰/۲۸</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۲۹</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۲۷</td>
<td>۷</td>
</tr>
<tr>
<td>۰/۲۸</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۸</td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۱۶</td>
</tr>
<tr>
<td>۰/۱۹</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰/۰۵۳</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۰۸</td>
<td>۸</td>
</tr>
<tr>
<td>۰/۱۹</td>
<td>۱۶</td>
</tr>
<tr>
<td>۰/۲۲</td>
<td>۴۰</td>
</tr>
<tr>
<td>۰/۱۸</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰/۰۵</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۲۷</td>
<td>۱۰</td>
</tr>
<tr>
<td>۰/۲۲</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰/۲۳</td>
<td>۳۰</td>
</tr>
</tbody>
</table>
محدودیت زیست طبیعی، منابع طبیعی ایران، دوره 69، شماره 2، تابستان 1395، صفحه 290

شکل (۶) مدل‌های ذرات معلق با استفاده از مدل (الف) ارمود و (ب) ADMM در فاصله دو کیلومتری دورکشی

مدل رقیمی ارتقاء و داده‌های هواشناسی وارد می‌شود. در قسمت اجرا بعد از اطمینان از تکمیل داده‌های ورودی، مدل نیاز مدل، ADMM می‌شود و در قسمت خروجی به کاربر داده‌های خروجی مدل را با فرم دلخواه دریافت می‌کند.

۳- اجزای مدل ADMM

به صورت شماتیک در شکل ۷ آمده است. اجزای اصلی مدل از سه بخش تشکیل شده است: ورودی، اجرا و خروجی. همان‌طور که از اسم اجرا مشخص است در قسمت ورودی تمام داده‌های ورودی مورد نیاز مدل مانند: مشخصات دورکشی، شبکه گیرنده،
نمایه مدل پخش آودینگی هوایی

شکل (۲) اجزای مدل ADAMM

گزینه (۳) صفحه اول مدل شامل سه ورودی مدل است که ۴ بخش دارد: انتشار، گیرنده، هواشناسی و مدل رقابی

ارتفاع که به کدام از این بخش‌ها دارای زیر بخش از

های مربوط به خود هستند (شکل ۸) موارد گفته شد در ادامه آورده می‌شود.

کلیک بر روی گزینه INPUT

شکل (۸) صفحه اول مدل ADAMM گزینه انتشار مدل
محيط زیست طبیعی، منابع طبیعی ایران، دوره 69، شماره 2، تابستان 1395 صفحه 292

گزارش افتتاح دودکش، رفع افتتاح، دودکش، پیش‌بینی دودکش، امکانات مواردی

مشخصات دودکش را کاربر می‌گیرد شامل مواردی

از جمله: سرعت خروج دود، برحسعد متر بر ثانیه،

شعاع دودکش بر حسب متر، دمای دودکش بر حسب درجه کلوین، دیبی خروج دود از دودکش

حس نسبت، ارتفاع دودکش بر حسب دروازت، ارتفاع دودکش از سطح دریا بر حسب متر.

گزارش گیرنده: این گزارش که جهت رسید شیبکه

گیرنده اطراف دودکش اختصاص داده شده است.

مایه‌ها ویژه را از کاربر گرفته و شبکه را ترسیم می‌کند. اطلاعات خواسته شده در این گزارش شامل مواردی از جمله: مختصات دودکش، بر حسب X و Y بر حسب متر، UTM طول محورهای 10 و X بر حسب متر،

میان نقاط شبه بر حسب متر، تعداد گیرنده‌های شبکه 11 این گزارش که تعداد گیرنده‌ها را نشان می‌دهد، بعد از ورود موارد ملاک به یک دیگر به طور خودکار تبیین اطلاعات محاسبه شده و تماشای داده

می‌شود. که زمان محاسبه ارتفاع گیرنده‌ها در مدل قابل ملاحظه است (جدول 6).

گزارش مدل رقایم ارتفاع 13 در انجا مدل

14 Meteorology
15 OUTPUT
جدول (۶) زمان صرف شده چهت محاسبه ارتفاع شبکه گیرنده بر حسب ثانیه در دو مدال

<table>
<thead>
<tr>
<th>زمان در مدل</th>
<th>زمان در مدل ارهود</th>
<th>تعداد گیرنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳</td>
<td>۳۰</td>
<td>۹</td>
</tr>
<tr>
<td>۵</td>
<td>۶۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۵</td>
<td>۶۰</td>
<td>۸۱</td>
</tr>
<tr>
<td>۹</td>
<td>۱۲۰</td>
<td>۲۸۹</td>
</tr>
<tr>
<td>۹</td>
<td>۱۲۰</td>
<td>۴۴۱</td>
</tr>
<tr>
<td>۹</td>
<td>۴۶۶</td>
<td>۹۶۱</td>
</tr>
<tr>
<td>۵</td>
<td>۵۴۰</td>
<td>۱۶۸۱</td>
</tr>
<tr>
<td>۹</td>
<td>۱۹۲۰</td>
<td>۶۵۶۱</td>
</tr>
<tr>
<td>۹</td>
<td>۳۲۴۰</td>
<td>۱۰۲۰۱</td>
</tr>
</tbody>
</table>

شکل (۹) گزینه هواشناسی در مدل ADAMM
ادام مدل ADAMM در فاصله ۵ کیلومتری منبع، می‌باشد و با دور شدن از منبع این همبستگی کاهش می‌یابد (جدول ۴).

این فراخوانی و غلظت بالا در مدل ADAMM می‌تواند ناشی از عدم در نظر گرفتن طول زبری سطح و همچنین رطوبت نسبی هوا باشد. چرا که معادله (۱) با این فرض بی‌رو محاسبه گرایی در هوا مورد نظر به صورت گاز کاملاً عمل کرد و در حین جابجایی با محیط اطراف خود هیچگونه تبادل حرارتی انجام ندهد. علاوه بر این فرض شد که توسعه هوا خشک است اما این فرض نمی‌تواند در نظر گرفت خویی باشد زیرا در صورت مرطوب بودن هوا، گرمای ویژه توسعه هوا در فشار ثابت متفاوت خواهد بود. از طرف دیگر اگر هوا مقدار کافی بخار آب همراه داشته باشد.

پیش‌بینی به شکل ۶ مشاهده می‌شود که مدل غلظت آلاینده را نسبت به مدل ارمود بیشتر تخمین می‌زند در واقع فرا تخمین است. در شکل ۶ قسمت (الف) حداکثر غلظت ۵۵/۵ میکروگرم بر متر مکعب می‌باشد که حاصل مدل‌سازی ارمود در ۳ کیلومتری منبع است. در شکل ۶ قسمت (ب) حداکثر غلظت ۱۹۴ میکروگرم بر متر مکعب می‌باشد اما هر دو مدل جهت حداکثر غلظت را در جنوب غربی منطقه نشان می‌دهد. مدل ADAMM در فاصله‌های نزدیک‌تر به منبع از صحت بالاتری برخورد است به طوری که ضریب همبستگی اسپریمین بین غلظت‌های حاصل از مدل ارمود و
در هنگام سردر شدن توده هوا، گرماتی نهان تبخیر، از آب آزاد خواهد شد (Farkuoravand, 2012) بخاش برای افراد داغتی نسبت بین آلبال تأثیر زیادی بر روی گلخانه و پراکش مواد آلاینده ندارند ولی در عوض ضریب زبری تأثیر زیادی در پراکش مواد آلاینده دارد (Farkuoravand, 2012).

۱) در مدل ارمود، داده های هواشناسی به صورت متنی (text) قابل تغییر می‌باشد که نیازمند زمان و دقت زمان است. چرا که نیاز است که در هر ازدحام هوایی مختصات دو دوکست همینطور با فاصله و سهولت کاری و خروجی بهتر عمل می‌کند. همچنین از سرعت بالاتری نیز برخوردار می‌باشد. در نتیجه وقت کمتری صرف می‌شود. جهت جمع‌آوری مراحل مدل ارمود، داده نشته است (می‌توان به موارد زیر اشاره کرد:
۲) مدل ارمود برای محاسبه ارتقاع هر گیزندگی از بیشتر داده‌های مربوطه استفاده می‌کند که مدل رقومی ارتقاع بر فرمت USGS (.dem) و همتی و در مدت مشخص ارتقاع شیشه گیرنده می‌باشد. اما مدل ADAMM مدل رقومی ارتقاع را با فرمت متنی از کاربر گرفته و طرف دیگر تابیه انداخته است (Farkuoravand, 2012).
محيط زیست طبیعی، منابع طبیعی ایران. دوره ۶۹. شماره ۲، تابستان ۱۳۹۵ صفحه ۲۹۶

به صورت دو بعدی جهت تحلیل نتایج خود مشاهده شد. نمایید (۱۰) به تصویر کشیدن و نقشه سازی، مطالعه و مدیر رقومی ارتفاع منطقه آن هم در یک نرم افزار برای کاربر سیار مفید خوای بود. جرای که در اکثر مدلهای نیاز است خروجی مدل به نرم افزار دیگر از جمله ARCGIS، انقلاب داده و شکل دو بعده و یا
سه بعدی ترسیم شود. به جهت نیازمندی زمان و دقت
می باشد. اما مدل ADAMM
می دهد تا در زمانی کوتاه کل منطقه مورد مطالعه خود را با تصورهای مختلف تفسیر نماید.

۳ مدل ارزیابی به منظور رسم شکل کاربر
تعداد نقاط X و Y و فاصله بین دو گیرنده همچنین
مختصات شکل را از کاربر می خواهد که کاربر باید
ADAMM مختصات شکل را محاسبه کند. اما مدل
با گرفتن طول محور X و Y و فاصله بین نقاط گیرنده به طور خودکار شکل گیرنده را طوری ترسیم می کند که منبع در مکان شکل قرار می گیرد و نیازی به
محاسبه مختصات شکل خروجی کاربر نیست.

۴ مدل‌سازی در مدل ارزیابی با اجرای و پردازش
داده‌های هواشناسی، توبوگرافی و مختصات دودکش
در دو بخش پردازش شمالگان و در نهایت انتقال به
پردازش ارزیابی اجرای مدل اندازی به نهایی
که در مدل ADAMM اجرای و پردازش داده‌های هوا
شناسی، توبوگرافی و مشخصات دودکش در یک نرم
افزار و در محیطی ساده و آسان برای کاربر صورت
می‌گیرد.

۵ خروجی مدل ارزیابی فقط به صورت ممکن
بوده اما در مدل خروجی ADAMM
صوت امکان پذیری می باشد: فرم آمیل و متنی و به
۲ شکل سطح (سه بعدی) و نقشه هیبرید (دو بعدی)
آن هم فقط با یک کلیک کاربر (شکل ۶) همچنین در
گزینه خروجی کاربر می تواند مدل
رقومی ارتقاء منطقه را هم به صورت سه بعدی و هم
REFERENCES

Bhardwaj, K. S., (2005), “Examination of sensivity of land use parameters and population on the performance of the AERMOD model for an urban area”. submitted as partial fulfillment of the requirements for the Degree of Master of Science in Civil Engineering, University of Toledo, pp 2,3,9,10,11,13,15,22,40,41pp.

Mosavi, M., Bahrpeyma, S., Rezazadeh, R., 2003. Assessment of air pollution from power plants in Mashhad city using the Gaussian model. Fourth National Conference of Energy.(in persian)

Su, Y., Li, J., Gao, Y., Qu, D. Applying Matlab/Simulink to Study Calculation of NOx Efficiency of the SCR, Environmental Sciences 11 (2011) 996–1000.

Developing Air Pollution Modeling (AERMOD) in MATLAB Software

Zahra Khebri, Farhad Nejadkoorki, Shahram Talebi

1-Master of Science, Department of Environmental Engineering, Yazd University, Yazd, Iran
2-Associate Professor, Department of Environmental Engineering, Yazd University, Yazd, Iran
3-Assistant Professor, Department of Mechanical Engineering, Yazd University, Yazd, Iran

Accepted: 4-May-2016 Received: 26-July-2014

Abstract
Nowadays, air pollution is one of the main challenges worldwide. There have been significant improvements in air quality dispersion modelling. AERMOD is one of these models which is based upon the Gaussian Model. However, AERMOD has some limitations in terms of data input and output. Therefore improving this model as well as developing new models adopted to our country is required to be addressed. The current research aims to develop a new model in MATLAB programming software. AERMOD and MATLAB were first investigated and then Atmospheric Dispersion Assessment Mapping Model (ADAMM) was proposed to displace AERMOD. To verify the ADAMM, results of modelling for identical pollution sites were compared. It was found that ADAMM overestimates concentrations of pollutants in comparison with AERMOD. However, ADAMM has some advantages in particular as a domestic model in different areas. It performs better in short distances (<5 km, r=0.53) than far apart. In addition ADAMM provides a user friendly environment to manipulate input and output data while reducing the simulation time. While AERMOD has specific file formats for its own input data, ADAMM follows commonly used formats such as Microsoft Excel. Data output in ADAMM is presented in different formats including MS Excel, ASCII, 2D and 3D. The other advantage of ADAMM is that it provides a single interface for all necessary operations such as data input, manipulating, modelling, and data output while a suite of modules are required to run AERMOD with each one performing a separated task.

Key Words: ADAMM Model, AERMOD, Air pollution modeling, MATLAB

1 Corresponding author: Phone: +983538200149 E-mail: F.Nejadkoorki@gmail.com