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A B S T R A C T 

 

Reliable characterization of subsurface soil in urban areas is a major concern in geotechnical and geological engineering projects. In this 
regard, this research deals with development of a 3D geological engineering model for the subsurface soil of the city of Mashhad, Northeast 
Iran, using Sequential Gaussian Simulation (SGS) approach. Intense variability of soil in the study area has sometimes caused major problems 
in civil engineering projects of the city. Therefore, a better understanding of the soil-related problems is critical for current and future civil 
engineering work. The main objectives of this study were investigating the spatial variability of soil through variograms and then predicting 
the values of soil properties at un-sampled locations using SGS method. In this study, some geotechnical index parameters including 
percentage of fine-grained material, plasticity index, and liquid limit have been employed as input data. A database including the data of 1750 
boreholes was built and the hard data were transformed into normal scores in order for them to be applicable as input data in SGS modeling. 
Maps related to the average of all realizations along with Coefficient of Variation (CV) were provided for each variable as well. Then the maps 
were interpreted according to the sedimentary environment of Mashhad.  
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1. Introduction  

Grading and Atterberg limits are known as soil Index Tests that are 
usually carried out in all geotechnical studies. These tests are easy to 
conduct and require little sample preparation but their results can be 
linked to many properties of soils such as strength, permeability, 
compaction and consolidation characteristics [1, 2, 3-4]. When grading, 
by determining the percentage of finely-grained material, many other 
properties of soils can be estimated. Typical values for some properties 
of soils presented by Price [3] are given in Table 1. Soil compressibility 
can be judged from the liquid limit (LL) of the soil. Greater the liquid 
limit, greater the compressibility of soil. For soils with equal value of 
liquid limit, dry strength and toughness increase with increasing 
plasticity index. But the permeability and the rate of volume change 
decrease while compressibility does not bear any significant change. In 
addition, it is observed that for equal plasticity index, with increase in 
liquid limit, the dry strength and toughness decrease while permeability 

and compressibility of the soil increase. In general, Soils with high 
plasticity index may bring about sudden and unpredictable structural 
failures due to volumetric changes in soil induced by moisture changes 
[5]. Therefore, a general and initial perspective on a project site can be 
provided by a simple and inexpensive experiment. Thus, in this study, 
Sequential Gaussian Simulation (SGS) has been utilized in order to 
model the percentage of fine-grained material and plasticity limits 
(liquid limit (LL) and plasticity index (PI)) in subsoil of the city of 
Mashhad, NE Iran. 

Table 1. some geotechnical properties of soils [3]. 
Fine-grained material (%) <50 >50 
Soil texture gravel sand silt clay 
Hydraulic conductivity (K) (ms-1) 10-1-10-4 10-3-10-6 10-6-10-9 <10-9 

Angle of friction (ϕ) (·) 33-45 27-46 25-35 4-17 
Cohesion (C) (KNm-2) - - <70 15-200 
Liquid limit (%) - - 24-36 >25 
Plastic limit (%) - - 14-25 >20 
Coefficient of consolidation (Cv) (m2y-1) - - 12 5-20 

In recent decades, many researchers coupled with different geological 
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survey organizations have drawn much attention to 3D modeling of 
geotechnical and geological properties [6, 7, 8, 9, 10, 11-12]. More 
sophisticated computational tools as well as up-to-date geodatabases 
have allowed geoscientists to produce meaningful 3D spatial models for 
the shallow subsurface in many urban areas [13, 14, 15, 16, 17-18]. In 
many of such research works, geostatistics has been used as a tool to 
estimate the values of variables at un-sampled locations based on spatial 
statistics methods while they cannot be determined with conventional 
statistical approaches [19, 20, 21, 22, 23, 24-25]. 

In most cases, the borehole records are widely distributed within the 
study area. So in order to depict a geotechnical or geological surface, a 
common method is interpolation. Many interpolation techniques are 
available, but as most of these techniques are purely deterministic, for 
example: polynomial trend surface, Fourier series, and inverse distance 
weighted method; they are not able to assess the prediction errors [26]. 
Geostatistical Kriging estimation has been extensively used to 
interpolate the sampled points on the nodes of a gridded network based 
on the analysis of spatial variability via variograms or semi-variograms 
[27]. Kriging interpolation is an optimal and unbiased interpolation 
method based on regression against observed values of surrounding data 
points, which are weighted according to spatial covariance values [28-
29]. But the most important negative characteristic of moving average 
estimators such as kriging is smoothing effect. Geostatistical simulation 
is widely used to overcome this problem [30]. Conditional stochastic 
simulation is designed to overcome the smoothing effect of kriging 
estimator especially when sharp or extreme spatial discontinuities are to 
be found in mapping [31, 32-33]. The simulation algorithms take both 
the spatial variation of actual data at sampled locations and the variation 
of estimates at un-sampled locations into consideration [34]. Thus, in 
this study, Sequential Gaussian Simulation (SGS) was chosen as the 
method of modelling. 

2. Study area 

Mashhad is the second largest city of Iran which is located in the 
northeast of the country (Figure 1). In the last decade, along with the 
population growth, there have been many new highrise constructions in 
the city. Therefore, urban planners and engineers look for geological 
engineering models upon which they can reliably base their calculations 
upon. 

Mashhad is situated in an arid to semiarid area with the average 
annual precipitation of 250 mm. The average depth of groundwater table 
is between 10 m to 100 m in the city. The minimum depth is observed in 
the northeastern and central areas while the maximum depth is noticed 
in the south, southeast and northwest [35]. In the northeastern and 
central areas, the recharge of aquifer by municipal wastewater has led to 
high groundwater level. The sediments laid under the city originate from 
different sources: Kashaf Rood River, alluvial fans originated from the 
northern slopes (Koppet Dagh Mountain), and alluvial fans originated 
from Mount Binalud in the south and southwest. Mount Binalud which 
is located in the south and southwest of the city mostly consists of 
ultrabasic as well as metamorphic rocks such as phyllite and schist. The 
majority of recent deposits originated from Binalood are usually flaky 
due to the dominant rock type of Mount Binalud. On the other hand, 
Koppet Dagh which is situated in the north of the city comprises 
different sedimentary rocks such as limestone, marl, and clastic rocks. 
Figure 2 shows the different sedimentary environments in the study area 
[36]. 

Alluvial fan is the dominant sedimentary environment in Mashhad 
basin. Alluvial fans are very large conical deposits of sediment that occur 
adjacent to mountains. They can be huge and some extend for over 100 
km away from the mountains. Alluvial fans are best developed in arid 
climates like Mashhad where there is a sudden transition from a steep 
slope to shallower slopes. The coarsest stuff (gravel) is deposited right 
at the base of the mountain where the slope change is the greatest at the 
fan head. The gravel passes into sand in the middle of the fan and then 
into silt and clay (mud) in the tail of the fan. Indeed, the mud of the fan 

tail passes laterally into mud on the alluvial plain. So as one go from the 
fan head to the fan tail, (s)he gets a progressive fining sequence. In other 
words, when moving far from the sediment source, the percentage of 
fine-grained material increases. Thus, the amount of fine-grained 
material can be an indicator of sedimentary environment. In the case of 
Mashhad, the coarsest particles are deposited at the southwest of the 
city and the finest ones are deposited at the central and eastern parts. 

 

 
Figure 1. Location of the study area. 

 
Figure 2. Sedimentary environment map of Mashhad [36]. 

The sediments in the northern part of the city are also results of 
Kashaf Rood River floodplain. Floodplain deposits accumulate during 
rare inundations. They predominantly consist of suspended load, i.e., silt 
and mud, though fine sand may also be present in areas where the peak 
flood currents are sufficiently strong to transport this grain size. 

3. Material 

In this research, all thirteen municipality districts of the city of 
Mashhad were selected in order to create a comprehensive 3D 
geological engineering model (Figure 1). To meet this aim, 1750 
geotechnical borehole logs and reports covering the study area were 
collected. Then, a database containing information of UTM coordinates 
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and geotechnical properties of soil was developed. The distribution of 
the boreholes is indicated in Figure 3. 

 
Figure 3. Locations of boreholes in the study area. 

The majority of the boreholes are located in the downtown, western 
and southern parts of the city while fewer investigations have been 
carried out in the northeastern part. The northeastern part of Mashhad 
includes very old buildings and there have not been many new 
constructions there. On the other hand, new high-rise buildings 
including residential complexes, hotels, shopping malls and 
governmental buildings have been centralized in western and 
northwestern parts of the city.  

In this research, some geotechnical index properties including 
percentage of fine-grained material (grain size<0.075 mm based on ASTM 
D422), liquid limit (LL), and plasticity index (PI) of soil were employed. 
The values of these parameters have been specified through soil 
mechanical tests proposed by ASTM (American Society for Testing and 
Materials) standards. The percentage of fine-grained material is the 
fraction of soil passing sieve No.200. Based on Unified Soil Classification 
System (USCS), soil is called fine grained (silt and clay) when the 
fraction of soil passing No.200 sieve exceeds 50% and it is called coarse 
grained (gravel and sand) when this fraction is less than 50%. Liquid 
limit is defined as the minimum moisture content at which a soil will 
flow under its own weight. Plasticity index is the difference between 
liquid limit and plastic limit. It is a measure of the amount of water 
bounded within the sediment at specific stress or strength levels. Plastic 
limit (PL) is the percentage moisture content at which a soil can be 
rolled, without breaking, into a thread 3mm in diameter, any further 
rolling causing it to crumble. In other words, PL is defined as the 
moisture content at which soil begins to behave as a plastic material. LL 
and PI are representative of soil consistency and its plastic properties. 
These limits are influenced by the amount and character of the clay 
minerals content. Descriptive statistics of hard data related to each 
parameter is presented in Table 2. 

Table 2. Descriptive statistical values of the parameters. 
Parameter N Minimum Maximum Mean Std. 

Deviation 
Variance 

Fine-grained material 8330 0 100 35.67 31.586 997.663 
PI 18070 0 33 3.79 4.915 24.160 
LL 11333 0 69 23.28 9.709 94.274 

4. Geostatistical modeling 

4.1. Spatial correlation analysis using variograms 

The variogram, γ(h), measures the average dissimilarity between the 
values of a parameter (x) at location u and at a location u+h. Assuming 
stationarity, the variogram γ(z(u), z(u+h)) depends on a lag vector h: 
γ(h). The experimental variogram is calculated based on the following 
equation: 

𝛾(ℎ) =
1

2𝑁
∑ [𝑧(𝑢𝛼) − 𝑧(𝑢𝛼 + ℎ)]2𝑁

𝛼=1  (1) 

Where z(u) is the value of the parameter at location u and N is the 
number of data pairs separated by vector h. 

Analytical functions (called theoretical variograms) are used to model 
the experimental variograms to meet three main purposes: 1) they 
guarantee unique solutions, 2) they allow for the calculation of a 
variogram value, γ (h), for any given lag vector, h., and 3) they allow for 
filtering of the noise, which is usually a result of either imperfect 
measurements or lack of data. The most common theoretical variograms 
that can either be used by themselves or as nested structures in order to 
describe more complicated experimental variograms are as follows: 

1. Spherical model with range a: 

(ℎ) = {
3

2

‖ℎ‖

𝑎
−

1
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‖ℎ‖

𝑎
)3   𝑖𝑓 ‖ℎ‖ ≤ 𝑎

1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

2. Exponential model with practical range a: 

𝛾(ℎ) = 1 − exp (
−3‖ℎ‖

𝑎
) (3) 

3. Gaussian model with practical range a: 

𝛾(ℎ) = 1 − exp (
−3‖ℎ‖2

𝑎2
)  (4) 

The upper bound of a theoretical model is called the “sill.” The range 
is the lowest lag at which the variogram reaches the sill. The sill is 
reached asymptotically in the case of exponential and Gaussian models. 
The distance at which 95% of the sill is reached is called the “practical 
range.” 

Since the geological data often display some degree of anisotropy, it 
is always beneficial to assess the possible effect of anisotropy on 
variograms in multiple directions. In this study, variogram modeling was 
performed on the normal score transformed data. Experimental 
variograms of normal scores were searched in various directions. 
Attention was given to find a model which would best fit each of the 
variograms. The number of lags, lag separation distances, and lag 
tolerance were different in each case, depending on the nature of data 
and the spatial correlations they demonstrate. 

4.2. Variography Validation Using Cross-Validation 

The cross-validation technique is applied to choose the best 
variogram model among different models and to select the search radius 
and lag distance that minimize the kriging variance. For cross-validation, 
interpolation is performed at all of the data points, ignoring in turn, each 
one of them one after the other. Then the estimated and true values are 
compared. Cross-validation checks how well the variogram model 
estimates the value of soil properties at an un-sampled location. 

4.3. Sequential Gaussian Simulation (SGS) 

Sequential simulation is a stochastic modeling algorithm that obtains 
multiple realizations based on the same input data [37-38]. These data 
could be either continuous or categorical. Considering the data type, one 
of the methods among sequential indicator simulation, Sequential 
Gaussian Simulation (SGS: [39-40]) or direct sequential simulation will 
be chosen. The most straightforward algorithm for generating 
realizations of a multivariate Gaussian field is presented by the 
sequential principle [31, 41-42]. In SGS method, data are transformed 
into Gaussian through a quantile transformation because it employs 
standard Gaussian data i.e. the ones with zero mean and unit variance 
[30]. Then, each variable is simulated sequentially based on its normal 
Complementary Cumulative Distribution Function (CCDF) using 
Simple Kriging (SK) estimation. The conditioning data consist of all 
original data and all previously-simulated values found within a 
neighborhood of the location being simulated [31, 41-42].  

Sequential simulation formalism is used to simulate a Gaussian 
random function. Let Y(u) be a multivariate Gaussian random function 
with zero mean, unit variance, and a given variogram model γ(h). 
Realizations of Y(u) can be generated as follows [43]: 

1- Transform the data into normal score space. Z(u) → Y(u) 
2- Define a random path visiting each node of the grid. 
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3- For each node u along the path: 
 Get the conditioning data consisting of original 

neighborhood hard data (n) and previously-simulated values. 
 Estimate the local conditional Cumulative Distribution 

Function (CDF) as a Gaussian distribution with mean given 
by kriging and variance by the kriging variance. 

 Draw a value from that Gaussian (CCDF) and add the 
simulated value to the data set. 

4- Repeat the steps described in number 2 for another realization. 
When all the realizations are generated, the Gaussian simulated field 

is back-transformed into the data space (Y(u) → Z(u)) [32]. Regarding 
a transformation to Gaussian and then back-transform to an original 
unit, statistical fluctuations are inherent in simulation but the 
fluctuations should be reasonable and unbiased in the mean and 
variance [44]. The following checks should be performed after having 
all nodes simulated: reproduction of (1) the data values at data locations, 
(2) the original histogram, (3) the original summary statistics, and (4) 
the input covariance model [44]. 

5. Results and discussion 

5.1. Variability Analysis 

In order to identify variogram parameters and define a 3D search 
ellipsoid for each variable in this study, theoretical variogram functions 
were determined based on the experimental ones for each variable 
studied. Then, cross-validation was carried out to select the best fit 
variogram model. In this regard, the estimated values were drawn versus 
true ones. The best variograms of the parameters in their major axes of 
anisotropy are illustrated in Figure 4.  Furthermore, the results of cross-
validation for the best fit variogram model of each parameter are 
presented in Figure 5. The variogram model, nugget effect (C0), 
contribution (C), ranges, and angles were determined as variogram 
parameters resulting from theoretical variograms (Table 3). 

Table 3. Best fit variogram parameters for each variable. 
Variable Model C0 C Ranges Angles 

Max Med Min Azimuth Dip Rake 
Fine-grained 

Material 
Spherical 0.3 0.2 5840 3760 80 160 0 0 
Gaussian 0.5 560 480 67 160 0 0 

PI Spherical 0.3 0.3 4240 2798 75 150 0 0 
Exponential 0.4 480 240 38 150 0 0 

LL Gaussian 0.4 0.6 7200 4200 100 100 0 0 

 

 

 
Figure 4. Variograms of the parameters in their major axes. 

 

 

 
Figure 5. Cross-validation results a: fine-grained material b: LL c: PI.. 

It is worth noting that initially a trend in the variogram related to the 
percentage of fine-grained material was recognized. Therefore, the data 
were first de-trended and then the final variogram for fine-grained 
material was calculated which is demonstrated in Figure 4. In order to 
de-trend these data, in the first step the percentage of fine-grained 
material versus the X direction was drawn and the relationship between 
these two was assessed and the equation was estimated. In the next step, 
the real values were subtracted from the model values which had been 
calculated based on the estimated equation. 

5.2. Sequential Gaussian Simulation of the Parameters 

In order to simulate the parameters under study, fifty realizations of 
each parameter were generated on 100×100×10 (m3) grids covering the 
study area. Simulation was performed using Simple Kriging estimator, 
and the variogram model for normal score transformed data. In 
addition, uncertainty assessment was done by determination of 
Coefficient of Variation (CV) related to the simulation results. CV is 
calculated based on the following equation: 

𝐶𝑉 =
𝜎

𝜇
 (5) 

Where 𝜎 is the standard deviation of all realizations and 𝜇 is the mean 
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of all realizations. 
Moreover, E-type maps which are in fact smoother versions of 

realizations and are drawn by averaging all realizations, were prepared. 

5.2.1. Fine-grained Material 

The amount of fine-grained material (silt and clay) plays a significant 
role in geotechnical properties of soil and recognition of different 
sedimentary environments. So, the 3D model of fine-grained material 
was developed for Mashhad soil based on SGS approach in order to be 
employed as a base model in geological and geotechnical interpretations 
(Figure 6). According to Figure 6, an obvious increasing trend toward 
east and northeast can be recognized in the percentage of fine-grained 
material. Generally speaking, in the eastern part of the city, subsurface 
soil is categorized in C and M groups based on Unified Soil 
Classification System while in the western part, it falls in G and S groups. 
Moreover, the particle size of soil expands with the increase in depth. 
Maps of E-type along with CV are depicted in Figure 7 for the soil depths 
of 5 m, 15 m, and 25 m of the studied area. The same trend is clearly 
visible in E-type map presented in Figure 7. An increase in CV value can 
be a result of inadequate conditional data and/or high degree of 

heterogeneity. Since the opposite trend is recognizable in the CV map 
shown in Figure 7, it can be concluded that homogeneity in soil texture 
increases toward northeast of the study area because of the shortage of 
data and it may not typically follow such pattern. The presence of recent 
alluviums in western areas might be the main reason of higher 
heterogeneity there; while moving through the flat plain which is 
representative of a flood plain environment, brings about a more 
homogeneous condition and consequently the CV values decrease. 

 
Figure 6. 3D model of fine-grained material (average values) in Mashhad soil in 

oblique view with vertical exaggeration coefficient equals 10. 

 

 
(5m) 

 

 
(15m) 
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(25m) 

Figure 7. E-type map (left) and CV map (right) of fine-grained material. 
 

Considering the geological viewpoint and based on Figure 2, the 
source of alluvial sediments in Mashhad basin is commonly from the 
western and southern alluvial fans especially Chel Baze fan. The 
observed trend in the percentage of fine-grained material confirms this 
hypothesis. 

5.2.2. Plasticity Limits 

Plasticity limits are in close relationship with the amount of fine-
grained material as well as type of clay mineral. 3D models for plasticity 
limits (PI) and liquid limits (LL) of Mashhad soil are demonstrated in 
Figure 8. Moreover, E-type and CV maps related to PI and LL are 
presented in Figures 9 and 10, respectively. 

According to the high percentage (>50%) of fine-grained material in 
eastern and northeastern parts of Mashhad, it might be expected that 
values of PI as well as LL would be high in those areas. But as it is clear 
in figures number 8, 9, and 10, the values are not that high in those areas. 
Two reasons may be put forward for this phenomenon: high amount of 
clay-size soil (rock powder) and/or low activity clay soil. Presence of 
clay-size soil reflects a long transportation distance which in the case of 
present study area, it is not in harmony with the evidence. 
Transportation distance between western and southern sources of 
Mashhad sediments and the eastern deposition areas is not long enough 
to produce high amounts of clay-size particles. So it can imply that 
subsurface soil in eastern and northeastern parts of the city commonly 
consists of low plastic clay minerals such as Kaolinite and Illite. This 
result attests the previous findings on the types of clay minerals in 
Mashhad area [45]. 

Although PI values do not demonstrate intense variations, the values 
are generally lower in the western areas while higher in the eastern parts. 
Moreover, the approximately non-plastic long area in the middle of the 
PI model follows the path of recent alluvium originating from the 
western fans. Similar path can be distinguished in LL model. Recent 
alluvium consists of coarse-grained material. Regarding the CV map, 
more variations are observed compared with the CV map of fine-grained 
material. 

As it can be inferred from Figure 10, variations of LL values in western 
parts of the city follow general form of Chel Baze alluvial fan (See Figure 
2). The observed periodicity of LL values in those areas is a result of 
discharge changes in the main river of the fan due to changing climate 
conditions. Additionally, a long narrow area with higher values of LL is 
clearly recognizable along the southern margin of Mashhad. The 
dominant rock types in the west and southwest of Mashhad are slate and 
phyllite whereas ultrabasic rocks are widespread in the southern parts. 
Since weathering of ultrabasic rocks rather than metamorphic ones 
produce more active clay minerals, this narrow area may be a result of 
southern ultrabasic rocks weathering most probably. 

 

 
Figure 8. 3D models of Mashhad soil plastic properties (average values) in 

oblique view with vertical exaggeration coefficient of 10. 

In addition, in Figure 11 the PI values were drawn versus the ration of 
PL to LL. This graph is representative of different sources of sediments 
in a region and different sedimentary environments. When different 
main sources are involved, various trends are observed in PI-PL/LL 
graph [46]. 

According to Figure 11, the data are accumulated along a single line; 
so it can be implied that Mashhad soil sediments have been originated 
from one main type of source which is believed to be western and 
southern alluvial fans. The source of these fans is ultrabasic and 
metamorphic rocks of Mount Binalud. The observed trend in the model 
of fine-grained material in the city seems to corroborate this hypothesis. 
Moreover, it can be seen that the soil in the study area consists of low-
plasticity clay minerals e.g. illite and kaolinite. 

5.2.3. Data Analysis on the Simulation Results 

All modeling studies and their results require some level of 
verification. In this study, the results of Sequential Gaussian Simulations 
of the parameters under scrutiny were compared with the original data. 
The descriptive statistics of the simulated parameters belonging to the 
E-type map and a random realization of each parameter are given in 
Table 4. The descriptive statistics of the original data were presented 
earlier in Table 2. Comparing Tables 2 and 4, one arrives at this 
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conclusion that the distribution of the original data is so similar to the one from simulated results. 

 
(5m) 

 

 
(15m) 

 

 
(25m) 

Figure 9. E-type map (left) and CV map (right) of plasticity index. 
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(5m) 

 
(15m) 

 
(25m) 

Figure 10. E-type map (left) and CV map (right) of liquid limit. 

Table 4. Descriptive statistics of the simulated parameters. 
Parameter N Minimum Maximum Mean Std. Deviation Variance 

E-type (Fine-grained material) 590202 1.9 95.4 35.63 23.192 537.872 
Real 0 (Fine-grained material) 590202 0 100 35.63 31.585 997.583 

E-type (PI) 590202 0 17.8 3.78 0.793 0.629 
Real 30 (PI) 590202 0 33 3.78 4.904 24.052 
E-type (LL) 590202 9.7 40.6 23.25 2.708 7.332 
Real 15 (LL) 590202 0 69 23.25 9.707 94.223 

In addition to comparisons of basic statistical parameters outlined 
above, Q–Q plots which are used to compare probability distributions, 
were prepared for each simulated parameter for their hard data versus a 
random realization. A straight line is an indication of equality between 

the distributions being compared and that the data in both axes having 
similar quantile values [47]. The Q–Q plot analyses carried out in this 
study gave satisfactory linear trends between hard data and realizations. 
The Q-Q plots related to the parameters are shown in Figure 12. This 
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figure displays that comparisons of simulated data offer nearly linear 
relationships with the hard data from which they are generated, and thus 
the probability distributions of all data are almost identical. 

 
Figure 11. Investigation of sediments source in Mashhad municipal area. 

 

 

 
Figure 12. Q-Q plots of the hard data against a random realization. 

6. Conclusions 

This study which is regarded as the first comprehensive research on 
geotechnical index parameters of Mashhad soil sediments, will be 
hopefully useful for future research as well as ongoing civil engineering 
projects. Moreover, it can suggest the appropriate and efficient location 
of future investigation boreholes. For the sake of brevity, the main 
results of this study can be summarized as follows: 

1- Variability analyses were conducted on three index properties 
of soil in Mashhad municipal area, i.e., the percentage of fine-
grained material, liquid limit, and plasticity index.  

2- Mashhad sedimentary deposits consist of a wide and varied 
range of fine- to coarse-grained soil. In Mashhad, the amount of 
fine-grained material increases toward eastern and northeastern 
parts while it generally decreases in deeper layers. Since some 
eastern parts of the city are being renovated and old buildings 
are to be replaced with high-rise and modern ones, necessary 
and appropriate precautions related to fine-grained soil should 
be taken into consideration from an engineering point of view. 

3- The presence of recent alluviums in western areas has led to 
higher heterogeneity there while a more homogeneous 
condition is dominant in central and eastern parts of the city.  

4- It seems that the sources of alluvial sediments in Mashhad basin 
are commonly from the western and southern alluvial fans 
especially Chel Baze fan. The observed trend in the percentage 
of fine-grained material coupled with the PI versus PL/LL graph 
is in agreement with this hypothesis. 

5- Subsurface soil in the city commonly consists of low-plasticity 
clay minerals. PI values are generally lower in the western areas 
while higher in eastern parts.  

6- The approximately non-plastic long areas in the middle of the 
PI and LL model follow the path of recent alluvium originated 
from the western fans.  

7- Variations of LL values in western parts of the city derive from 
Chel Baze Alluvial Fan. In addition, the long narrow area with 
higher values of LL along the southern margin of Mashhad is 
probably a result of the weathering of southern ultrabasic rocks.  

8- According to the comparison made between the descriptive 
statistics of simulated data and original data coupled with the Q-
Q plots, the probability distributions of all data including 
simulated and original ones are so similar. Thus, it can be 
inferred that the results of simulations are reasonably reliable. 
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