تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,090,345 |
تعداد دریافت فایل اصل مقاله | 97,194,014 |
بررسی اثر اتیلن خارجی بر ویژگیهای بیوشیمیایی و فعالیت آنزیمی مرتبط با فرایند پیری در دو اکوتیپ گلمحمدی | ||
به زراعی کشاورزی | ||
مقاله 15، دوره 19، شماره 3، آذر 1396، صفحه 767-783 اصل مقاله (730.98 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2017.60397 | ||
نویسندگان | ||
غلامحسن موحد* 1؛ نیما احمدی2؛ احمد معینی3 | ||
1کارشناسیارشد، گروه علوم باغبانی، دانشگاه تربیت مدرس، تهران، ایران | ||
2استادیار، گروه علوم باغبانی، دانشگاه تربیت مدرس، تهران، ایران | ||
3دانشیار، گروه اصلاح نباتات، دانشگاه تربیت مدرس، تهران، ایرانن | ||
چکیده | ||
بهمنظور ارزیابی واکنش دو اکوتیپ گلمحمدی (Rosa damascena Mill) به اتیلن خارجی، تحقیقی در قالب فاکتوریل بر پایة طرحی کاملاً تصادفی در آزمایشگاه پس از برداشت گروه علوم باغبانی دانشگاه تربیت مدرس در سال 93-1392 انجام گرفت. برای این منظور چهار وضعیت گل یعنی غنچة منفرد و روی شاخه، گل باز منفرد و روی شاخه بهمدت 24 ساعت تحت تیمار با اتیلن خارجی به غلظتهای 1، 2، 3 و 4 میکرولیتر قرارگرفت و فعالیتهای آنزیمی، بیوشیمیایی و خصوصیات موفولوژیکی اکوتیپهای کاشان و آذران بررسی شد. کمترین عمر گل در غلظت 3 و 4 میکرولیتر بر لیتر اتیلن و بیشترین ریزش نیز مربوط به اکوتیپ آذران در غلظت 4 میکرولیتر بر لیتر اتیلن پس از چهار روز مشاهده شد. کمترین میزان آنتوسیانین، پرولین و فعالیت آنزیمکاتالاز (77/48 در دلتای جذب 240 بر میلیگرم پروتئین) در هر دو اکوتیپ مورد مطالعه در غلظت 4 میکرولیتر بر لیتر اتیلن مشاهده شد. بیشترین مقدار مالوندیآلدئید (MDA) (63/3 میکرومول) در تیمار با اتیلن (4 میکرولیتر بر لیتر) در اکوتیپ آذران مشاهده شد. کمترین میزان فلاونوئید (19/2 میکرومول) مربوط به آذران بود. همچنین، کاهش پروتئین کل نیز در کاشان (32/0 میلیگرم در یک گرم وزن تر گلبرگ) نسبت به آذران (20/0 میلیگرم در یک گرم وزن تر گلبرگ) کمتر بوده است. بر اساس نتایج بهدست آمده، اکوتیپ کاشان نسبت به آذران اکوتیپی متحملتر به تنش اتیلن محسوب میشود که لازم است به استفاده از آن در برنامههای اصلاحی ورد توجه شود. | ||
کلیدواژهها | ||
آذران؛ آنتیاکسیدان؛ پروتئین کل؛ پرولین؛ کاشان | ||
عنوان مقاله [English] | ||
The effects of exogenous ethylene on biochemical characteristics and enzymatic activity associated with aging of two ecotypes of Damask rose | ||
نویسندگان [English] | ||
Gholamhasan Movahed1؛ Nima Ahmadi2؛ Ahmad Moieni3 | ||
چکیده [English] | ||
In order to evaluate the responses of two ecotypes of Damask rose (Rosa damascena) to exogenous ethylene, an experiment was conducted based on a completely randomized design (CRD) at the laboratory of Postharvest Physiology, Tarbiat Modares University, Tehran, Iran. Damsk rose cut stems containg flower buds and/or open flowers, single buds, or multiple flowers were exposed to exogenous ethylene for 24 h. Plant organs were placed into hearmatically seald glass chambers, where ethylen was injected, to achieve 0, 1, 2, 3, and 4 µl/l concentrations. Biocehmival characteristics, enzyme activities and morphological characteristics including flower life, contents of anthocyanin, flavonoide, and proline were determind in Kashan and Azaran ecotypes of Damask rose. The lowest psotharvest life was observed at 3 and 4 μl concentration of ethylene and the highest abscission was observed in Azaran ecotypes at a concentration of 4 μl/l of ethylene after four days. Anthocyanin and proline content and catalase activity reduced in both ecotypes studied. For both ecotypes, the lowest content of anthocyanin, proline and the lowest catalase activity (48/77 ΔA 240/mg protein) were observed in those treated with ethylene at 4 µl/l. The highest malondialdehyde (3.63 µmol/g petal fresh weight) was found in Azaran ecotype flowers treated with 4 µl/l ethylene concentration. Decrease of total protein in Kashan flowers (0.32 mg/g fresh petal) was much less than that in Azaran flowers (0.2 mg/g fresh petal). Based on these results, Kashan could be recommended as a tolerant ecotype to be used in breeding programs. | ||
کلیدواژهها [English] | ||
Antioxidants, azaran, Kashan, proline, total protein | ||
مراجع | ||
Ahmadi N, Mibus Hand Serek M (2008) Isolation of an ethylene induced putative nucleotide laccase in miniature roses (Rosa hybrida L). Plant Growth Regulation. 27: 320-330. Ahmadi N, Mibus H and Serek M (2009) Characterization of ethylene-induced organ abscission in F1 breeding lines of miniature roses (Rosa hybrida L.). Postharvest Biology and Technology. 52: 260-266. Apel K and Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 55: 373-399. Ashraf M and Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59: 206-216. Bates LS, Waldren RP and Teare LD (1973) Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-208. Ben Amor N, Ben Hamed K, Ranieri A and Abdelly C (2006) Kinetics of the antioxidant response to salinity in Crithmum maritimum. In: Öztürk M., Waisel Y., Khan M.A., Görk G. (eds) Biosaline Agriculture and Salinity Tolerance in Plants. Birkhäuser Basel. Borda, AM, David G, Donald J, Huberb B, Weltc A and Terril A (2011) Effects of ethylene on volatile emission and fragrance in cut roses: The relationship between fragrance and vase life. PostharvestBiologyand Technology. 59(3): 245-252. Bradford MM (1976) A rapid and sensitivemethod for the quantitation of microgramquantities of protein utilizing the principle ofprotein-dye binding. Annual Review ofBiochemistry. 72: 248-254. Bestwick CS, Brown IR and Mansfield JW (1998) Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiology. 118(3): 1067-1078. Cakmak I and Horst JH (1991) Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). PhysiologiaPlantarum. 83: 463-468. Daneshi Nergi MA and Ahmadi N (2013) Effects of 1-MCP and ethylene on postharvest quality and expression of senescence-associated genes in cut rose cv. Sparkle. Scientia Horticulturae. 166: 78-83. Das PK, Geul B, Choi SB, Yoo SD and Park YI (2011) Photosynthesis-dependent anthocyanin pigmentation in arabidopsis.Plant Signaling & Behavior. 61: 23. De Vos C, Schat HM, De Waal MA, Vooijs R, Ernst W (1991) Increased to copper-induced damage of the root plasma membrane in copper tolerant silene cucubalus. Plant Physiology. 82: 523-528. Desingh R and Kauagaraj G (2007) Influence ofsalt stress on photosynthesis and antioxidativesystems in twocotton varieties. General andApplied Plant Physiology. 33(3): 221-234. Djanaguiraman M, Prasad PVV and Al-Khatib K (2011) Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environmental and experimental botany, 71: 215-222. Ezhilmathi K, Singh VP, Arora A and Sairam RK (2007) Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of gladiolus cut flowers. Plant Growth Regulation. 5(12): 99-108. Galeshi S, Torabi B, Resam GH, RahemiKarizaki A and Barzegar A (2009). Stress management in plants. Gorgan University of Agricultural Sciences and Natural Resources press. 307 p. [translated in Persian] Gill SS and Tuteja N (2010) Reactive oxygenspecies and antioxidant machinary in abioticstress tolerant in cropplants. Plant Physiologyand Biochemistry. 48: 909-930. Hwang SA, Lee PO, Lee HS, Lee JS, Roh M and Choi M (2012) Flower bud abscission triggered by the anther in the Asiatic hybrid lily. Postharvest Biology and Technology. 64(1): 31-39. Krizek DT, Kramer GF, Upadhyaya A and Mirecki RM (1993) UV‐B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiologia Plantarum. 88(2): 350-358. Li V (2008) Kinetics of the antioxidant response to salinity in the halophyte Limonium bicolor. Plant Soil and Environment. 54: 493-497. Mirzaei M, Sefidkon F, Ahmadi N, Shojaeiyan A and Hosseini H (2016) Damask rose (Rosa damascena Mill.) essential oil is affected by short-and long-term handling. Industrial Crops and Products, 79: 219-224. Mishra S, Khare PK, Trivedi P and Nath A (2008) Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. South African Journal of Botany. 74: 282-287. Nakabayashi R and Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology. 24: 10-16. Nikitaki Z, Hellweg CE, Georgakilas AG and Ravanat JL (2015) Stress-induced DNA damage biomarkers: applications and limitations. Frontiers in Chemistry. 3:35. doi: 10.3389/fchem.2015.00035. Ranjbar A and Ahmadi N (2015) Effects of 1-MCP and Ethylene on Antioxidant Enzymes Activity and Postharvest Physio-Biochemical Characteristics of Cut Carnation Flower cv. ‘Fortune’. Advances in Horticultural Science, 29(4): 192-198. Schmitzer V, Veberic R, Osterc G and Stampar F (2009) Changes in the phenolic concentration during flower development of rose ‘KORcrisett’. Journal of the American Society for Horticultural Science. 134(5): 491-496. Serek M, Sisles E and Reid M (1995) Effects of l-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regulation. 16: 93-91. Sivaramakrishnan S, Pattel V, Flower G and Paleg LG (1988) Proline accumulation and nitrate reductase activity in contrasting sorghum lines during mid-season drought stress. Plant Physiology. 74: 418-426. Sofo A, Dichio B, Xiloyannis C and Masia A(2005) Antioxidant defences in olive treesduring drought stress:changes in activity ofsome antioxidant enzymes. Functional PlantBiology. 32: 45-53. Stocker R (1990) Induction of haem oxygenase as a defence against oxidative stress. Free Radical Research Communications. 9: 101-112. Taylor NL, Day DA and Harvey Millar A(2004) Targets of stress-induced oxidativedamage in plant mitochondriaand their impacton cell carbon/ nitrogen metabolism. Journal ofExperimental Botany. 55(394): 1-10. Tyagi S, Sharma S, Taneja M, Shumayla, Kumar R, Sembi JK and Upadhyay SK (2017) Superoxide dismutases in bread wheat (Triticum aestivum L.): Comprehensive characterization and expression analysis during development and, biotic and abiotic stresses. Agri Gene. 6: 1-13.
| ||
آمار تعداد مشاهده مقاله: 928 تعداد دریافت فایل اصل مقاله: 344 |