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Abstract

Silicon and aluminum sources are most important reactants in the 
synthesis of zeolite. The use of the silicon source has an important 
effect on the crystallization of zeolites. Also, it can change the prop-
erties of the end product. This work reports the influence of three 
common commercial silica sources such as colloidal silica (Ludox 
AM-30), fumed silica and water glass on the crystallinity of NaX zeo-
lite by hydrothermal method, also the adsorption of carbon dioxide on 
these samples have also been studied. The synthesized samples from 
different sources are characterized by X-ray diffraction (XRD), scan-
ning electron microscope (SEM), Fourier transformin frared (FT-IR) 
and nitrogen adsorption–desorption analysis. The sample obtained by 
fumed silica, colloidal silica and water glass is NaX phase. The percent-
age of crystallinity and surface area increased in the sequence: water 
glass< colloidal silica < fumed silica, also the sample of synthesized by 
Fumed silica (Z-F) with higher crystallinity, shows better performance 
in the adsorption process.
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1. Introduction

Zeolites are the most important family in crys-
talline microporous materials. The zeolite 
comprises infinitely extending three-dimen-

sional network of aluminum and silicon tetrahedra 
linked to each other by the sharing of oxygen ions 
with uniformly sized pores of molecular dimen-
sions [1]. Synthetic zeolites have been used in the 
petroleum industry in reactions such as cracking, 
alkylation, isomerization, shape reforming, hydro-

genation and dehydrogenation, adsorbents, cata-
lysts, ion-exchangers and separation processes. 
Zeolites are of particular interest because of their 
remarkable properties, such as high hydrothermal 
stability, catalytic activity, excellent shape selectiv-
ity and adsorption capacities [2-4].

The increase of CO2 emissions in the atmosphere 
leading to global warm in gas a serious environ-
mental problem. The adsorbents reported for CO2 
adsorption such as zeolites, activated carbons [5-
8], hydrotalcite [9] via physisorption in micropores 
[10]. Some of the more important zeolite types, 
which have been used in commercial applications, 
include the synthetic zeolite types A, X, Y [1]. Milton 
and Breck reported the discovery of zeolites A and 
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X in 1959 at Union Carbide [11]. Zeolite X-type is an 
excellent adsorbent for gases such as carbon diox-
ide, nitrogen, argon and water vapors, due to large 
pore diameter (0.74 nm) with the same framework 
structural type as faujasite (FAU) [12].

Synthesis of NaX zeolites has been reported 
earlier using various precursor materials via hy-
drothermal reactions [13, 14]. It was found that 
chemical composition of the reactant mixture play 
most important role in the synthesis of zeolites [2, 
4, 13]. The reactants have important effects on the 
crystallization of zeolites. The reactant sources 
(silica and alumina) affect the physico-chemical 
properties of final products [15, 16].The choice of 
the silicon source may influence on the formation 
of a particular zeolite, morphology, crystal size, 
nucleation, the rate of crystallization and chemi-
cal properties of the zeolites [15-17]. Various sili-
con sources differ in reactivity and solubility [15]. 
Some of the important parameters attributed to 
the process of zeolite crystallization depend on the 
dissolution of the silica precursors [16].

Several reports have appeared on at the syn-
thesis of this kind of zeolite such as ITQ-13, NaA, 
MFI, silicalite-1 and ZSM-5 using the different 
sources of silica and alumina [3, 4, 16, 18,19]. It is 
well known that the choice of silica source playan 
important role in the nucleation, crystallization of 
zeolites and also leads to changes in characteris-
tic of the products [15, 20]. Much work have been 
done on the synthesis of NaX zeolites only with 
one silica source [13, 14], but a limited number of 
previous articles have investigated the synthesis of 
NaX zeolites by using different silica sources. Ham-
ilton et al. [21] have reported that the silica source 
effects on the number of crystals in NaX zeolite and 
the only additive was varied in the batch composi-
tion. Jen Twuet al. [22] have reported that spectro-
scopic test of the zeolite growth stage is function 
of two sources of silicon. Krznaric et al. [17] have 
pointed that the equilibrium distributions of Na, 
Al, Si between the phases of gel formed by using 
different silica sources pertain on the batch chemi-
cal composition, but not the silica source utilized.

In this study, we have used several types of 
silica sources i.e. water glass, fumed silica and col-
loidal silica for the synthesis of NaX zeolite. The in-
fluence of different silica sources on the different 
aspects of zeolite crystallization and properties 
of the synthesized products has been investigated 
by analyses of structural (XRD, IR) and particulate 
properties (SEM) and the surface area as tested by 
nitrogen adsorption–desorption analysis. The CO2 
adsorption capacity of samples were also mea-
sured by the volumetric method.

2. Materials and Methods

2.1. Synthesis of Zeolite 
All reactants were used as received without any 
further purification.Three types of silicon sources 
employed in NaX zeolite synthesis were aqueous 
colloidal silica (AM-30, 30wt% SiO2, Sigma-Al-
drich), water glass (Merck) and fumed silica (Sig-
ma-Aldrich). Sodium aluminate (Sigma-Aldrich) 
was used as alumina source. The sodium source 
used was sodium hydroxide pellets (Merck, 99%). 
NaX zeolite crystals of a uniform particle size have 
been prepared using three different silica sources 
by hydrothermal process. The solution of alumi-
nosilicate gels used had the molar composition of 
3.5Na2O:Al2O3:3 SiO2:150H2O [13, 23]. The hydro-
gel was made by dissolving specific amounts of 
sodium aluminateand sodium hydroxide pellets 
in deionized water, followed by adding one of the 
selected silica sources. The mixture was stirred for 
1h, then was transferred to a Teflon-lined stainless 
steel autoclave for crystallization process at 90˚C 
in different crystallization times under autog-
enous pressure. After completion of the crystalli-
zation, solid products were obtained by filtration 
and washed several times with deionized water 
and then dried at 100˚C.

2.2. Samples characterization 
The solid products prepared were characterized 
by a variety of routine techniques. X-ray diffraction 
(XRD) spectrums of the samples were taken by 
Philips 1830 diffractometer with Cu-Kα radiation. 
The XRD data were aggregated in the 2θ range be-
tween 5˚ and 40˚ (step time 1 s, step size 0.02˚). 
The morphology characteristic of NaX zeolite 
samples were obtained by Scanning Electron Mi-
croscopy (SEM, TE scan-LVEGA Π electron micros-
copy). Transmission IR spectra of the adsorbents 
were recorded on a DIGILAB FTS 7000 spectrom-
eter equipped with an attenuated total reflection 
(ATR) cell, in the range of 400-4000 cm-1. The ni-
trogen adsorption-desorption experiments were 
measured on a Micromerities model ASAP 2020 
sorption analyzer at liquid nitrogen temperature 
(−196˚C). Before measurement, the samples were 
degassed at 200˚C for 2 h.

2.3. Experimental set-up 
The CO2 adsorption capacities of the products 
were measured by using a standard system based 
on volumetric method and the setup is shown in 
Figure 1. First, 1 g of a sample was loaded into 
the adsorption cell (13). Before measurement, 
the samples were degassed by using the vacuum 



3A. Eskandari et al.  /  Journal of Chemical and Petroleum Engineering, 50 (2), Feb. 2017  /  1-7

Figure 1. Set up for adsorption capacity test.

Table 1. Effect of silica sources in crystallinity of NaX zeo-
lite.

pump at 250˚C for 1.5 h. The CO2 adsorption mea-
surements were carried out using high purity car-
bon dioxide (99.999%) and helium as the purge 
gas. The pressure of adsorption cell decreased 
some dead volume and some CO2 adsorption. The 
exact pressure decrease because of CO2 adsorption 
and then gas adsorption can be calculated. Details 
of the procedures and the equipments applied are 
explained in literature [24, 25].

faster than when a highly condensed source of sil-
ica is utilized [16]. The effect of silica sources on 
percent crystallinity of synthesized NaX zeolites 
are presented in Table 1.

The surface area of silica sources was de-
creased as following: Fumed silica > silica colloid > 
water glass. It can be seen that the fumed silica has 
the highest surface area than the other sources. 
The silicon source with high surface area is more 
easily solved in basic solution than with low sur-
face area. The silicon source with high surface area 
and high solubility leads to a faster nucleation in 
basic medium and is desirable for the formation of 
small crystals but the silicon source with low sur-
face area and low solubility is desirable for the for-
mation of large crystals [2, 15]. These results show 
that there was something different in the three 
source silicate, since other factors were constant 
between the three batches.

Table 2 shows the measured pH of zeolite solu-
tion using different silica source (after and before 
crystallization), are similar which is based on the 
fact that the solutions of silica source had the same 
batch compositions [21].
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Product of synthesized Crystallinity of NaX, % Phase formed 

Figure 2. Effect of silica sources on crystallinity of synthe-
sized zeolites (a) Z-F, (b)Z-C, (c) Z-W.

Product of syn-
thesized

Crystallinity of 
NaX, % Phase formed

Z-F a 98 NaX

Z-C b 85 NaX

Z-W c 40 NaX+NaA

a Zeolite of synthesized by Fumed silica b Zeolite of syn-
thesized by Colloidal silica C Zeolite of synthesized by 
Water glass
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Table 2. Measurement of zeolite solution pH (before crys-
tallization, after crystallization).

Silica source before after

Fumed silica 13.47 13.73

Colloidal silica 13.50 13.68

Water glass 13.53 13.70

3.2. FT-IR analysis
The FT-IR spectra of synthesized samples by using 
silica sources is shown in Figure 3. According to pre-
vious studies, IR results confirm that bands close to 
(560 cm-1 “characteristic of the existence of double 
six rings (D6R)”), (1060-971cm-1‘‘characteristic 
of the asymmetric stretching due to the inter-
nal vibrations of Si–O–T linkage’’), (820-750cm-
1“characteristic of the symmetric stretching of the 
external linkage’’), (458cm-1“characteristic of T–O 
bending vibration”) are observed for synthesized 
samples by using silica sources such as colloidal 
silica, silica fumed and water glass [1, 27, 28]. The 
spectra of synthesized samples are in good agree-
ment with the mentioned values above, and also 
when the crystallinity of synthesized samples 
grows, the bands become stronger [28]. In other 
words, the progress increase in intensity of bands 
indicates the increase in the crystallinity of the 
samples. The FT-IR results are in agreement with 
obtained XRD results.
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Figure 3: IR spectra of samples obtained by using different silica sources (a) Z-W, (b) Z-C, (c) Z-F 
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Figure 4. SEM images of synthesized samples (a) Z-F, (b) 
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3.3. Scanning electron microscopy (SEM)
Scanning electron microscopy (SEM) is the meth-
od of choice for determining the size and morphol-

9 

 

Figure 4: SEM images of synthesized samples (a) Z-F, (b) Z-C, (c) Z-W 
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decreased in the sequence: Z-F > Z-C > Z-

W and also the sample of Z-F has the 

largest volume of micropores, this 

indicates that with decrease in micropore 

volume crystallinity is lower as estimated 

by XRD studies. The nitrogen adsorption-

desorption isotherms of samples prepared 

by using fumed silica and colloidal silica 

are shown in Figure 5. It can be seen that 

the sample (a) has higher N2 adsorption 

capacity at low pressure and the sample (b) 

has low adsorption capacity which is 

ascribed to higher crystallinity of the 

sample (a) [12, 13]. The samples of Z-F 

and Z-C demonstrate type I isotherms, that 

are characteristic of a microporous 

material [8]. 

The CO2 adsorption isotherms of the 

samples are shown in Figure 6 at room 

temperature (25 ˚C) and at different 

pressures in the range of 0 to 20 bar. It can 

be seen that the amounts adsorbed of CO2 

on the sample Z-F was higher than Z-C 

which may be ascribed to its higher 
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3.4. N2 Adsorption-desorption isotherms anal-
ysis and isotherms of CO2 adsorption
The effect of silica sources on the surface area and 
micropore volume of the synthesized zeolites is 
shown in Table 3. It can be seen that the surface 
area of samples due to decreasing crystallinity was 
decreased in the sequence: Z-F>Z-C>Z-W and also 
the sample of Z-F has the largest volume of micro-
pores, this indicates that with decrease in micro-
pore volume crystallinity is lower as estimated by 
XRD studies. The nitrogen adsorption-desorption 
isotherms of samples prepared by using fumed 
silica and colloidal silica are shown in Figure 5. It 
can be seen that the sample (a) has higher N2 ad-
sorption capacity at low pressure and the sample 
(b) has low adsorption capacity which is ascribed 
to higher crystallinity of the sample (a) [12, 13]. 
The samples of Z-F and Z-C demonstrate type I iso-
therms, that are characteristic of a microporous 
material [8].

The CO2 adsorption isotherms of the samples 
are shown in Figure 6 at room temperature (25˚C) 
and at different pressures in the range of 0 to 20 
bar. It can be seen that the amounts adsorbed of 
CO2 on the sample Z-F was higher than Z-C which 
may be ascribed to its higher surface area or mi-
cropore volume compared to the Z-C [8, 10] and 
may be explained by the fact that the sample with 
higher crystallinity, has better performance in the 
adsorption process. The high CO2uptake by NaX 
zeolite was ascribed to its microporous structure 
with charge cations in the cavities [8]. The amount 
of CO2adsorbed on Z-F at 25˚C was close to the val-
ue reported in literature [29].
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Table 3: Surface area and micropore volume for different samples 
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Z-F 650 0.34 
Z-C 620 0.25 
Z-W 500 0.19 
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Figure 6: CO2 adsorption isotherms of two adsorbents at temperature 25 ˚C (a) Z-F, (b) Z-C 
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lower. SEM data show that the samples 

which were prepared by fumed silica, 
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shape crystals, however the sample 

prepared by water glass crystallized, cubic 

particles due to the NaA zeolite can be 

seen in addition to the octahedral particles. 
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temperature 25 ˚C. The results indicated 

that the amounts adsorbed of CO2 on the 

sample Z-F were higher than Z-C. 
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were studied by XRD, FTIR, SEM, nitrogen adsorp-
tion–desorption isotherms. These results indicate 
that the use of silica sources with different surface 
areas was found to play a significant role on the 
crystallization rate of zeolite and leads to trans-
formation in the properties of the end product. All 
of applied silica sources could prepare NaX, but 
the percent crystallinity of the samples Z-F, Z-C is 
more than Z-W and the crystallization rate of Z-W 
is lower. SEM data show that the samples which 
were prepared by fumed silica, colloid silica crys-
tallized in octahedral shape crystals, however the 
sample prepared by water glass crystallized, cubic 
particles due to the NaA zeolite can be seen in ad-
dition to the octahedral particles. The equilibrium 
adsorption tests were performed by the volumet-
ric method at temperature 25˚C. The results in-
dicated that the amounts adsorbed of CO2 on the 
sample Z-F were higher than Z-C.

4. Conclusions
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