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Abstract 

In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire 
under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko 
beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into 
consideration. Using Hamilton’s principle, the nonlocal governing differential equations are derived. The governing 
equations and the related boundary conditions are discretized by using the differential quadrature method (DQM). The 
numerical results are obtained for both free and forced vibration of piezoelectric nanowires. The present results are 
validated by available results in the literature. The effects of the nonlocal parameter together with the other parameters 
such as residual surface stress, temperature change and external electric voltage on the size-dependent forced vibration 
of the piezoelectric nanowires are studied. It is shown that the nonlocal effect (small scale effect) plays a prominent 
role in the forced vibration of piezoelectric nanowires and this effect cannot be neglected for small external 
characteristic lengths. The resonant frequency increases with increasing the residual surface stress. In addition, as the 
surface elastic constant increases, the resonant frequency of PNWs increases, while the surface piezoelectric constant 
has a decreasing effect on the resonant frequency. 
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1. Introduction

Since laboratoryexaminations in nanoscale are 
difficult to perform and also molecular dynamics 
simulationsare costly and time consuming particularly 
for systems with large number of atoms, the theoretical 
analysis of nanostructures is very important.The 
continuum modelingof nanoscale structures has 
attracted tremendous attention in recent years. The 
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theory of classical continuum mechanics is 
independent of small scale effect and is unable to 
predict the small scale effect on the mechanical 
behavior of nanomaterials.Both laboratory results and 
the results obtained by molecular dynamics 
simulations show that the small scale effect would be 
very important and also meaningful in the mechanical 
properties of materials when thedimensions of these 
structures arein the order of several nanometers 
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[1,2].The classical elasticitytheory is incapable of 
predictingthe size-dependent behavior of 
nanostructures and by which the small scale effects 
cannot be considered in nanoscale. There are different 
theories of elasticity concerning the scale effect in their 
analysis, including couple stress theory, strain gradient 
theory and modified couple stresstheory[3], butthe 
theory that is widely used to analyzethe structures with 
smaller size is the Eringen nonlocal elasticity 
theory[4,5]. The nature of this theory is based on the 
assumption that the stress at a given point is not only a 
function of strain at that point, but is a function of 
strain at all points of the body. Recently, the nonlocal 
elasticity theory has been used by several researchers 
to study the mechanical behavior of nanorods[6], 
nanobeams[7,8], piezoelectric nanowires [9,10], 
single-layered graphene sheets [11,12], piezoelectric 
nanoplates[13] and magneto-electro-elastic 
nanoplates[14]. 

After the publication of the article by Pan and his 
colleagues[15] about the ZnO piezoelectric 
nanostructures in a prestigious journal(Science), 
various piezoelectric nanostructures such as 
piezoelectric nanowires have attracted considerable 
attention from many researchers. Ke and Wang [16] 
investigated transverse vibrations of piezoelectric 
nanobeams in a thermal environment based on the 
nonlocal elasticity theory. They derived governing 
differential equations based on the Hamilton’s 
principle and by using the differential quadrature 
method, they calculated the natural frequencies of the 
system. In other research, Samaei and his colleagues 
[17] were investigated the buckling behavior of 
piezoelectric nanowires with considering surface 
effects. They used the local (classical) Timoshenko 
beam theory with surface effects for the modeling of 
piezoelectric nanowires.In their presented model, 
nonlocal effects were not considered. Gheshlaghi and 
HashemiNejad[18] studied the effects of surface 
energy and size on the free transverse vibrations of 
piezoelectric nanowires. Using the nonlocal elasticity 
theory and with considering surface effects, they 
developed a new analytical model for the piezoelectric 
nanowires. However, they did not take into account the 
influence of surface piezoelectricity. In another 
interesting work, Yan and Jiang [19] 
investigatedtheelectromechanical response of a curved 
piezoelectric nanobeam with the consideration of 
surface effects. The nonlocal effects were not taken 
into consideration in their work. Ke et al. [20] also 
studied the nonlinear vibration of the piezoelectric 
nanobeams based on the nonlocal beam model. More 
recently, Ansari et al. [21] developed a nonlocal 
Timoshenko beam model for the nonlinear forced 
vibration of magneto-electro-thermo-elastic 
nanobeams. These two interesting works are limited to 

the vibration of piezoelectric and magneto-electro-
thermo-elastic nanobeams with the consideration of 
only nonlocal effects. In nanoscale structures, the 
surface-to-volume ratio is relatively high and therefore 
the surface-to-bulk energy is quite meaningful [19]. 
Hence, surface effects on the vibration of 
nanostructures such as graphene sheets [22], carbon 
nanotubes [23], piezoelectric nanobeams[24] and 
microtubules [25] should be considered in order to 
correctly determine the free and forced vibration 
characteristics. This motivates us to investigate the 
free and forced vibration of piezoelectric nanowires 
(PNWs) considering both surface and nonlocal effects. 
It should be noted that in Ref. [9], only the free 
vibration of PNWs was studied. Furthermore, the 
influence of surface piezoelectricity was not taken into 
account in this work. 

In this study the free and forced vibrations of 
piezoelectric nanowires are investigated using the 
Eringen nonlocal elasticity theory with the 
consideration of surface effects. The governing 
differential equations of motion of 
PNWsarederivedbased on the Timoshenko beam 
theory. Both surface and small scale effects are taken 
into account. The natural frequencies of piezoelectric 
nanowires as well as their forced vibration 
characteristics are obtained by using the differential 
quadrature method as an efficient numerical tool. The 
present results are validated by comparing the results 
with available solutions in the open literature. The 
numerical results are presented for both simply-simply 
(S-S) and clamped-clamped (C-C) piezoelectric 
nanowires. Finally, the effect of various parameters 
such as residual surface stress, surface elastic modulus, 
surface piezoelectric constant, small 
scalecoefficient,temperature change, external load and 
applied electric voltage on the vibration of PNWsare 
investigated. 

2.   Nonlocal elasticity theory for the piezoelectric 
materials 

In the classical (local) elasticity theory, the stress 
tensor at a given pointofa body depends on the strain 
tensor at that point, while in the nonlocal elasticity, the 
stress tensordepends on the strain tensor at all points of 
the body.This assumption is in accordance with the 
experimental observations on phonon dispersion[4] 
and the results of molecular dynamics simulations 
[22]. The basic nonlocal constitutive 
relationsofHookean piezoelectricsolidwithout any 
body forcescan be mathematically written as[4,16,20] 
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(1) 

 

(2) 

 (3) 

 (4) 

Here, the terms , , and represent the 
nonlocal stress, strain, nonlocal electric displacement 
and electric field, respectively; ,Δ and  stand for 
the displacement components, the change of 
environment temperatureand the electric potential, 
respectively; and are the fourth order 
elasticity tensor, piezoelectric constants anddielectric 
constants, respectively; and arethermal moduli 
and pyroelectric constants, respectively;  indicates 
the nonlocal modulus that takes into account thesmall 
scale effects. ′ is the distance between points  
and ′. is small scale parameter (nonlocal 
parameter) where  is a calibration parameterwhich 
can be determined experimentally or by using 
simulations based on molecular dynamics. and  are 
theinternal (e.g. lattice parameter or granular size)and 
external (e.g. length or widthof nanostructure) 
characteristic lengths, respectively.The use of integral 
equations (1) and (2) is very difficult to model 
nanostructures. Therefore,Eringen[4,5] suggested the 
following differential forms instead of equations (1) 
and (2): 

 

 
(5) 

 

 
(6) 

where denotes the Laplacian operator.It should be 
noted that the traditional local constitutive relations 
( ) cannot be employed for the 
nanostructures such as graphenesheets, carbon 
nanotubes and piezoelectric nanowires because they 
do not contain a small scale parameter.  

3.   Forced vibration of piezoelectric nanowires 
with surface and nonlocal effects 

Based on the nonlocal elasticity theory which has been 
described above, in this section a nonlocal beam model 
including surface effects is presented for the forced 
vibrations of piezoelectric nanowires under the 
thermo-electrical loading.Fig. (1) shows a 
piezoelectric nanowire under an applied electric 
voltage. The length, width and thickness of the 
nanowire are denoted byL, b and h, respectively. 

According to the Timoshenko beam theory, the 
components of the strain tensor of an arbitrary point(x, 
z) of the beam can be written as follows: 

 (7) 

where  and are displacement components 
of the middle surfacealong the x- and z-directions, 
respectively. Also, denotes the rotation of 
nanowire cross-section. For piezoelectric material, the 
distribution of the electric potential should be known 
as well as the displacement field. Yan and Jiang [19] 
assumed that the distribution of the electric potential is 
linear across the thickness of the nanobeams. 
However, this electric potential function does not 
satisfy the Maxwell equations. In order to satisfy the 
Maxwell equations, Ke and Wang [16] considered a 
cosine and linear function for the electric potential 
variations. Following them, one can easily obtain the 
following relationships for the electric field 
components of the PNWs: 

 

 
(8) 

 

Fig.1. A nonlocal continuum model of a piezoelectric 
nanowire under an external voltage. 

Here denotes the variation ofelectric 
potential in the middle surface; and are the 
appliedelectric voltage and the natural frequency of the 
nanowire, respectively. 

Using the differential forms of the basic relations,i.e. 
Eqs.(5)and(6),the constitutive equationsofPNWscan 
be written as  
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(9) 

 (10) 

 (11) 

 
(12) 

In nanostructures, the ratio of surface to volume is 
high and thus the ratio of surface energy to bulk energy 
is considerable [19]. Therefore, the influences of 
surface energy on the bending, buckling and vibration 
of micro/nano structures such as single-layered 
graphene sheets [22],carbon nanotubes [23], 
piezoelectric nanowires [24]and 
microtubules[25]should not be neglected. Based on the 
surface elasticity theory [19,24], the constitutive 
equations of the surface layer can be written as 

 (13) 

where  , , and are the surface stress, 
residual surface stress, surface electric displacement 
and residual surface electric displacement, 
respectively. The coefficients  and are the 
Young’s modulus and piezoelectric constant of surface 
layer, respectively. It should be noted that the elastic 
and piezoelectric properties of surface layer are 
different from those of the bulk material. There are two 
distributed tractions due to the surface stresses that act 
on the piezoelectric nanowires. According to the 
generalized Young–Laplace equations, these tractions 
can be expressed as[24] 

 
where  represents the radius of curvature of the 

surface.The z component of the surface traction ( ) is 
zero on the left and right surface layers, namely,  is 
only non-zero at the lower and upper surface layers of 
the PNW. It should be noted that the electric 
displacement jump along the surface is assumed to be 
zero. Substituting Eqs. (7)and(8) into Eq. (13), we 
have 

 

Using the Hamilton’s principle and considering the 
surface tractions which acts on the nanowire, the 
following differential equations of motion are obtained  

 

 

 
in which and ;  and  

are the shear force and bending moment, respectively; 
 is the transverse distributed 

load; , and arerespectively the axial loads 
caused by temperature change, external electric 
voltage and surface traction and are defined by 

 

The surface moments of inertia are defined by 

 
where is the cross-sectional area of the PNW. The 

stress resultants are defined by using the following 
relations: 

 

UsingEqs. (9)and(10) and in view of relation(21), 
the stress resultants can be expressed as 

2
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Similarly, using Eqs. (11)and(12),the following 
equations can be obtained for the electric 
displacements 
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            (24)  
Here z z h  and sk is the shear correction 

factor. By applyingEqs. (16), (17) and (22), one can 
obtain the following relations for the bending moment 
and shear force of the PNW in terms of transverse 
displacement and cross-sectional rotation  

2
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(25 , )a b  SubstitutingEqs.(23) and(25)into Eqs. (16), (17) 
and (18),one can obtain the governing differential 
equations of motion for the forcedvibration of PNWsin 
thermal environment considering both surface and 
nonlocal effects 
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It should be noted that when the surface parameters 

are set to zero (i.e., 11 31 0s s
sN c e ), the above 

differential equations of motion and the relations of 
bending moment and shear forcereduce to those of the 
nonlocal theory of elasticity. In this work, the 
boundary conditions of the piezoelectric nanowires are 
assumed to be simply supported or clamped. In 
addition, the value of electric potential is equal to zero 
at both two ends of the nanowire. Thus, the non-
classical boundary conditions can be expressed as 

0, 0, 0,
0

x L x L x L
w

                        (29)  
for a clamped-clamped piezoelectric nanowire and 
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      (30)  

for a simply-simply piezoelectric nanowire. 

4.   Solution of the governing equations using the 
differential quadrature method 

Assuming that the external transverse load as well as 
the vibration are harmonic, therefore the transverse 
displacements, cross-sectional rotations, electric 
potential and distributed load can be written in the 
following form 

ˆˆ( , ) ( ) ,   ( , ) ( ) ,  
ˆ ˆ ( , ) ( ) ,   ( , ) ( )

i t i t

i t i t

w x t w x e x t x e
x t x e q x t q x e

    (31)  

Substituting the above equations into Eqs. (26), 
(27) and (28), one can derive the non-dimensional 
equations of motion of PNWs as follows 
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In the above equations, the dimensionless 
parameters are defined as 
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To determine the free and forced vibration 
characteristics of PNWs, thedifferential quadrature 
method [26,27]is employed. DQM is an effective 
numerical toolto obtain the solution ofordinary and 
partial differential equations in engineering 
applications[27]. According to this numerical method, 
the derivatives in the differential equations arereplaced 
by a set of linear weighted sum of the functional values 
at all of the mesh points (grid points) in the 
domain[27]. Using DQM, the governing equations 
(32), (33) and (34) can be written as 
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wherenrepresents the number of grid points in the 

direction. 
( )r
ijC is the weighting coefficient 

associated with the rth-order differentiation. For more 
detail about the weighting coefficients and DQM, refer 
to the paper of Bert et al.[26].The boundary conditions 
(29) and (30) are also discretized using this procedure. 
Then, the discrete forms of boundary conditions are 
directly substituted into the discretized governing 
equations (36)-(38).Now, to determine the free and 
forcedvibration characteristics of the PNWs, a 
MATLAB program is used to obtain the matrix form 
of the above system of algebraic equations.  

 
where and  are two square matrices with 

the same dimension  which are 
calculated using the computer program (written in 
MATLAB ). The vibration amplitude vector  can 
beexpressed as follows: 

 
As can be seen, the vector  consists of  

components thatone-third of them are nanowire 
displacements and the other one-third are its rotations 
and the finalone-third arepotential energies. For the 
forced vibration of piezoelectric nanowires, we have 

 
On the other hand, the non-dimensional natural 

frequencies of PNWs can be obtained from the 
following eigenvalue problem: 

 

5.   Results analysis 

5.1.   Validation and convergence of the present 
results 

To validate the present DQsolution, the free vibration 
of piezoelectric nanobeams without taking into 
account the surface effects is considered here. The 
fundamental natural frequencies of piezoelectric 
nanowiresdetermined from Eq. (42)with n=20are 

compared with those obtained by Ke and Wang [16]. 
In order to make a reasonable comparison, the material 
and geometric properties of piezoelectric nanobeam 
are the same as those reported in their work.   

Elastic and electrical properties: 
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The above elastic, electrical and thermal properties 
are used in the following subsection except noted 
otherwise. The present Timoshenko beam model of 
PNWs is reduced to that of Ke and Wang [16], when 
the external transverse force and surface properties are 
set to zero. Table 1shows the natural frequencies 
(GHz) of piezoelectric nanowires for three different 
values of temperature change (i.e. 0,  20, 40 KT
). Since all these values are not very high, the material 
properties of PNWs are assumed to be constants. In 
Refs. [16]and[20], the material properties of 
piezoelectric nanobeams are assumed to be constant 
within the range of 0-100 K. The numerical results are 
presented for various beam theories including the 
classical (local) beam theory (CBT), nonlocal beam 
theory (NBT) with and without surface effects. The 
surface properties of piezoelectric nanowires are as 
follows [24] 

0 1xx N/m, 11 7.56sc N/m,
8

31 3 10se C/m.  
No electric voltage is applied to the nanowire. 

Also, the results are presented for both clamped-
clamped and simply-simply boundary conditions. 
From Table 1, it can be found that the present DQ 
results are in very good agreementwith those obtained 
byKe and Wang [16].In addition, it can be concluded 
that the natural frequency slightly reduces with 
increasing temperature change from 0 to 40 K. Another 
interesting result is that the natural frequency increases 
by considering the surface effects while the nonlocal 
parameter has a decreasing effect on the fundamental 
frequencies of PNWs.It should be noted that with 
increasing the number of grid points, no significant 
change is found in the natural frequencies. This means 
that the present numerical solution is converged (see 
Table 2). 
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5.2.   Forced vibration analysis of PNWs 
considering surface and nonlocal effects 

To investigate the influence of surface properties on 
the forced vibration of PNWs, non-dimensional 

amplitude versus  

the frequency parameter ( 0 11m A L ) are 
plotted in Figs. (2), (3) and (4) for various values of 
residual surface stress, surface elastic and piezoelectric 
constants, respectively. The bulk material properties 

 

Table 1. Comparison of the present results for the free vibration of piezoelectric nanowire 
0( 80 ,  10 ,  0).L nm h nm  

Boundary 

conditions 
Beam theory 

T 0 K  
 

T 20 K  
 

T 40 K  

Present Ref. 
[16] Present Ref. 

[16] Present Ref. 
[16] 

SS Classical beam 
theory 2.8786 2.8786  2.8701 2.8701  2.8616 2.8616 

 NBT without 
surface effects 2.4374 2.4374  2.4274 2.4274  2.4173 2.4173 

 NBT with 
surface effects 

2.8504 ---  2.8418 ---  2.8332 --- 

CC 
Classical beam 
theory 5.7267 5.7266  5.7219 5.7219  5.7171 5.7172 

 NBT without 
surface effects 4.7395 4.7395  4.7298 4.7298  4.7201 4.7201 

 NBT with 
surface effects 5.9300 ---  5.9266 ---  5.9233 --- 

 

Table 2.Convergence study of the natural frequencies of piezoelectric nanowires 0( 0,T 0 1xx N/m, 11 7.56sc
N/m, 8

31 3 10se C/m). 

Number of 
grid points 

S-S C-C 

Small scale coefficient Small scale coefficient 

0.0 0.25 0.5 0.0 0.25 0.5 

5 3.1871 2.6067 2.0074  6.0212 5.4508 5.3373 

7 3.2362 2.7108 2.1367  6.0661 5.7958 4.9800 

10 3.2352 2.7040 2.1433  6.0680 5.8240 5.0266 

12 3.2352 2.7037 2.1424  6.0678 5.8218 5.0205 

14 3.2352 2.7038 2.1424  6.0677 5.8214 5.0203 

16 3.2352 2.7038 2.1424  6.0677 5.8213 5.0203 

18 3.2352 2.7038 2.1424  6.0677 5.8213 5.0203 
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Fig. 2. Variation of dimensionless vibration amplitude against frequency for different values of residual surface stress

8
11 31( 0.25,  7.56 N/m,  3 10  C/m).s sc e  

 
Fig. 3. Variation of dimensionless vibration amplitude against frequency for different values of surface elastic constant

0 8
31( 0.25,  1 N/m,  3 10  C/m).s

xx e  
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Fig. 4. Variation of dimensionless vibration amplitude against frequency for different values of surface piezoelectric 

constant 0
11( 0.25,  7.56 N/m,  1 N/m).s

xxc
are taken as those given in the previous subsection. The 
elastic and piezoelectric properties of surface layers 
are different from their bulk counterparts. The length 
of the piezoelectric nanowire is taken as L=100 nm. 
The cross section is a square of size10 10 nm 
(h=b=10 nm).A value of 5/6 is chosen for the shear 
correction factor. The small scale coefficient ( ), 
external voltage and temperature change are set as 
0.25, 0 V and 0 K, respectively. The PNW is subjected 
to a sinusoidal transvers load of maximum intensity 

1mq .In order to solve the governing equations 
numerically (with the use of the DQ method), 20grid 
points is considered along the nanowire.The typical 
range of residual surface stress is from 0.1 to 1 N/m 
[24]. Unless noted otherwise, the surface properties of 
piezoelectric nanowires are assumed to be 0 1xx

N/m, 11 7.56sc N/m, 8
31 3 10se C/m in the present 

work.According toFig. (2), it is found that the resonant 
frequency increases with increasing the residual 
surface stress.Further, the surface elastic constant has 
an increasing effect on the resonant frequency of 
PNWs (see Fig. (3)), while the resonant frequency 
decreases with the increase of surface piezoelectric 
constant (refer toFig. (4)). 

Now,the influence of nonlocal parameter (small 
scale effect) on the forced vibrations of the nanowires 
made of piezoelectric materials is studied. It is 
assumed that the nanowire is subjected toasinusoidal 
harmonic force ( 1mq ).In order to clarify more the 
influence of small scale coefficient, the temperature 

change and external electric voltage are set to zero. 
Figs. (5a) and (5b) show the small scale effect on the 
amplitude-frequency curve of PNWs for the simply-
simply and clamped-clamped boundary conditions, 
respectively. According to the reported values of the 
nonlocal parameter for piezoelectric nanobeams[16], 
three different values between 0 and0.5are considered. 
From this figure, it is observed that the nonlocal 
parameter has a decreasing effect on the resonant 
frequencies of PNWs.In other words,it can be said that 
increasing the small scale effect leads to the reduction 
in thestiffness of piezoelectric nanowires. A similar 
result is also reported by Ke and Wang [16] in the case 
of free vibration without taking into account the 
influences of surface residual stress, surface elasticity 
and surface piezoelectricity. 

The effect of the external applied voltage on the 
vibrations of piezoelectric nanowires under harmonic 
external forces is shown in Fig. (6). The nonlocal 
parameter (small scale coefficient) is assumed to be 
0.25. The length, thickness and width of the nanowire 
are L=100 nm, h=10 nm and b=10 nm, respectively. 
Thermal effects are not taken into account (

0 KT ). The numerical results are presented for 
various values of applied electric voltage. Both S-S 
and C-C boundary conditions are considered. From 
Fig.(6), it can be seen that the non-dimensional 
amplitude of oscillationsis suddenly increases at a 
certain non-dimensional frequency (

0 11m A L
) between 0.2 and 0.3 for S-S boundary conditions and 
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Fig. 5. Variation of dimensionless vibration amplitude against frequency for different values of small scale coefficient for (a) SS 

and (b) CC boundary conditions 0( 0,  0).T
between 0.6 and 0.7 for C-C boundary conditions. As 
the external electric voltage increasesfrom 0 to 0.1 V, 
the curve shifts to the left (resonance occurs at lower 
excitation frequency).This means that the resonant 
frequency decreases with increasing the external 
electric voltage for piezoelectric nanowires with two 
ends simply supported. This observation can be used 
in the electric frequency tuning of piezoelectric 
nanobeams. However, the effect of applied electric 
voltage on the dimensionless resonant frequency of 
PNWs with clamped-clamped boundary conditions is 
negligible compared with PNWs with two ends 
clamped. 

Fig. (7a) and (7b)depicts the effect of the 
magnitude of external harmonic load applied along the 
lateral direction on the vibrations of the piezoelectric 
nanowires for simply-simply and clamped-clamped 
boundary conditions, respectively. The small scale 
coefficient is taken as 0.25 . The geometric 
properties of the PNW are L=100 nm, h=10 nm and 

b=10 nm. In order to clarify more the influence of 
external transverse load, the temperature change and 
external electric voltage are set to zero. The applied 
harmonic force is of the form 

( ) sin( )mq x q m x L . Different values of the 
magnitude of external harmonic load are considered in 
Fig. (7). From this figure, it is found that the resonant 
frequency of PNWs is independent of mq . 

6.   Conclusions 

The effectsof surface elasticity, surface 
piezoelectricity and residual surface stress as well as 
thesmall scale effecton the forced vibration of 
piezoelectric nanowiresare investigated based on the 
nonlocal elasticity theory. For a more comprehensive 
study of the piezoelectric nanowires, the thermal 
effects arealso considered. It is observed that the 
vibration behavior of the piezoelectric nanowires is 
described using three differential equations. To solve  
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Fig. 6. Variation of dimensionless vibration amplitude 
against frequency for different values of external 
electric voltage for (a) SS and (b) CC boundary 

conditions ( 0,  0.25).T  

Fig. 7. Variation of dimensionless vibration amplitude against 
frequency for different values of external load for (a) SS and 

(b) CC boundary conditions
0( 0,  0,  0.25).T  

 

this set of differential equation, the DQ method is 
employed. The accuracy of the obtained results are 
checked by comparing them with the available results 
in the literature. It is observed that the residual surface 
stress has an increasing effect on the resonant 
frequency of PNWs.Furthermore,the resonant 
frequencyincreases with the increase of surface elastic 
constant. On the other hand, the resonant frequency 
decreases with the increase of surface piezoelectric 
constant. The small scale coefficient has a decreasing 
effect on the resonant frequencies of PNWs. Also, it is 
found that the amplitude-frequency curve of the 
nanowire shifts to the left with increasing the external 
electric voltage for simply-simply boundary 
conditions. However, the rate of this reduction is 

relatively small for the clamped-clamped boundary 
conditions 
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