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Abstract 

Unsteady slip-flow of second grade non-Newtonian electrically conducting fluid over an oscillating sheet has been 
considered and solved numerically. A second-order slip velocity model is used to predict the flow characteristic past 
the wall. With the assumption of infinite length in x-direction, velocity of the fluid can be assumed as a function of y 
and t, hence, with proper variable change partial governing equations are converted to ordinary differential equations, 
and resulting equations are solved numerically. Fourth-order finite difference scheme is used to solve the transformed 
governing equations. The effects of magnetic field applied on surface, slip flow parameters, frequency of oscillating, 
mass suction or injection and elastic second number on the velocity distribution are shown graphically and discussed. 
With increase of slip flow parameter, unlike that of other parameters, thickness of the fluid affected by motion of 
boundary will decrease. It is also realized that both injection and suction of mass on the sheet, will increase amplitude 
of velocity. 
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1.   Introduction and literature survey 

The flow on stretching surface has found many 
applications in a number of process technologies 
including polymer processing industry. The classical 
problem has especially been used in manufacturing 
process of artificial film, artificial fibers, polymer 
extrusion, drawing of plastic films and wires, glass 
fiber and paper production, manufacture of foods, 
crystal growing, liquid film in condensation process, 
etc. [1,2,3]. Due to its applications, stretching flow has 
gained considerable interest in literature. The flow in 

the boundary layer of an incompressible viscous fluid, 
on the stretching surface with constant speed, has been 
investigated by Sakiadis[4,5]. Extensions of this 
problem were reported by many investigators [6-13]. 

Magneto hydro dynamics (MHD) of an electrically 
conducting fluid is encountered in many problems 
such as in engineering and industrial applications. 
Since the flow can be regulated by external means 
through a magnetic field, an electrically conducting 
polymeric liquid can prove highly advantageous in 
such industrial applications as polymer technology and 
metallurgy.
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Alphabetic symbols v y-velocity( ) 
A1 slip parameter of Wu's model vo injection or suction velocity ( ) 

B strength of constant magnetic field ( ) x distance ( ) 

B1 slip parameter of Wu's model x* dimensionless distance 

G dimensionless pressure ( )  y distance ( ) 

Ha Hartman number ( ) y* dimensionless distance 

Kn Knudsen number ( )   

ko  elastic second order number ( ) Greek Symbols 

K1 dimensionless elastic second order number ( )  thermal diffusivity( ) 

K2 dimensionless elastic second order number ( )  dimensionless first slip coefficient( ) 

l min( )  dimensionless second slip coefficient( ) 

Lc characteristic length ( )  Womersly number( ) 

m1 non-Newtonian second order constant  Molecular mean free path 

m2 non-Newtonian second order constant  fluid viscosity( ) 

N Number of nodes  fluid density( ) 

P pressure ( )  Electrical conductivity ( ) 

Pc characteristic pressure ( )  Angular frequency ( ) 

Re Reynolds number Acronyms 

t Time ( ) 
MEMS Micro-Electro-Mechanical Systems 

 Maximum time choose for numerical calculation ( ) 

Uc characteristic velocity ( ) MHD Magneto hydro dynamics 

U∞ infinite velocity ( )   

Many metallurgical processes involve the cooling 
of continuous strips or filament by drawing, these 
strips is sometimes stretched. Another interesting 
application of hydro-magnetics to metallurgy lies in 
purification by the application of a magnetic field. So, 
the MHD flow over stretching sheet has been the focus 
of attention of many researchers [14-18].  

Non-Newtonian fluids are widely used in 
industries, and many materials; such as drilling mud, 
polymer solutions, emulsions, grease and certain oil 
are classified as non-Newtonian fluids. The stretching 
sheet problem was also extended to non-Newtonian 
fluids [18-23]. Given the complexity of non-newtonan 
fluids, it is very difficult, if not impossible, to integrate 
all properties of such fluid into a single model. This 
has led most authors’ attention toward proposing 
empirical and semi empirical models. non-newtoninan 
fluids are generally classified into two classes; namely 
the different-type fluids and rate-type fluid, among 
which, the differential type fluids have received more 
attention from researches in the past decades. 

Moreover, due to its relative mathematical simplicity, 
the second order slip flow has proven to be more 
acceptable than the third and fourth order fluids in this 
subclass of non-Newtonian fluids [24]. 

In the recent decades, a micro scale fluid flow in 
Micro-Electro-Mechanical Systems (MEMS) has 
become a popular research topic. Flow behavior in 
micro scale deviate from the traditional flows and 
belong to slip flow. In this case, the fluid's molecular 
structure becomes more significant and the continuum 
assumption is no longer valid. Fluid motion in slip 
flow regime, obeys Navier-Stokes equations with slip 
velocity and temperature jump at the fluid-solid 
interface [25]. However, the no-slip situation is 
insufficient in a number of cases where the fluid is 
particulate [3]. Emulsions, suspensions, foams and 
polymer solutions are among such fluids, which are 
frequently applied in technology such as in polishing 
of artificial heart valves and internal cavities [26]. In 
problem of stretching surface, the assumption of no-
slip, in certain situations, is not applicable and slip 
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boundary conditions should be used. Non-Newtonian 
fluids such as polymer melts exhibit wall slip condition 
[22, 27]. 

The main objective of the current paper is to 
investigate the influences of slip boundary condition 
and magnetic field on velocity distribution of non-
Newtonian fluid over an oscillating sheet which is not 
investigated in the previous studies. Stokes second 
problem of oscillating surface [28] is a simplified of 
this paper. 

2.   Mathematical formulation 

In this paper, two dimensional unsteady MHD slip 
flow of non-Newtonian fluid of second grade over a 
continuously oscillating surface in a quiescent fluid 
has been investigated. The surface (as shown in figure 
1) at t=0 oscillates with the velocity Uw(t) along the x-
axis. Since the boundary at y=0 is oscillating in time, 
it is predictable that fluid will also oscillate in the x 
direction in time. By comparison to Stokes second 
problem [28], the flow is governed by the following 
equations: 

From the continuity: 

0u v
x y  

(1) 

It can be assumed that when the sheet start to 
oscillation at t>0, due to infinite length of the sheet, all 
fluid particles will oscillate in horizontal direction 
similarly. This assumption will lead to simplified 
continuity equation as follow: 

1
0 0 ( , t)v v v x

x y
 (1-a) 

Therefore the velocity of fluid is only a function of 
time and horizontal distance (t and x). Applying 
constant injection or suction boundary condition on the 
surface, the fluid velocity in y direction will be as 
below equation:  

 (1-b) 
Where  is suction or injection velocity at wall and 

assumed to be constant. Now, momentum equation in 
horizontal and vertical directions will be as following 
[29]: 

X-momentum: 

2

0 2

23 3
1

02 3

1

( ) o

u u P uv
t y x y

Bm u uv u
t y y

 (2) 

Y-momentum: 

2
1

2

2
2

2

1 (4 )

(2 ) 0

mP u u
y y y

m u u
y y

 (3) 

Subject to the boundary conditions [29]: 

3 2

2
4 2 2

2 2

1

2

1 2

(0, ) cos( )

2 3 3 (0, )( )
3 2

1 2 (0, )( (1 )
4

(0, )cos( )

(0, ) 0

u t U t

l l l u t
Kn y

u tl l
Kn y

u tU t A
y

u tB t
y

 
(4) 

( , ) 0 ( ,0) ( )u y t as y and u y U y  (5) 

In the above equations, u is the velocity in x 
direction, v is velocity in y direction, and  are non-
Newtonian second grade fluid constant, B is strength 
of constant magnetic field applied perpendicular to the 
sheet and is electrical conductivity of the fluid. The 
Wu's slip velocity model is used in current paper 
(equation 4), which is valid for arbitrary Knudsen 

number (Kn) [30]. In Wu's slip model, 1min( ,1)l
Kn

 

,  is the momentum accommodation coefficient and 
is the molecular mean free path. According to 

definition of l,  and , it is seen that   and  [31]. A1 and 
B1 are two slip parameters of Wu's model.  

Since the boundary at y=0 is oscillating in time, it 
is predictable that fluid will also oscillate in the x 
direction in time. However, it is to be expected that the 
amplitude of motion and the phase shift relative to the 
motion of the boundary will depend upon on y. Thus, 
one can assume the velocity of fluid as below [28]:
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 Figure 1 schematic of an oscillating sheet in magnetic field

( , ) ( )cos( ) ( )sin( )u y t f y t g y t  (6) 

Partial differential equation x-momentum of (2) 
can be transformed to ordinary differential equation by 
substituting assuming velocity of (6) in (2), as follows: 

X-momentum: 

2

0 2

23 2
1

0 3 2( ) 0o

dg d gf v
dy dy

Bm d g d fv g
dy dy

 (7) 

2

0 2

23 2
1

0 3 2( ) 0o

df d fg v
dy dy

Bm d f d gv f
dy dy

 (8) 

,c cU L are used as a characteristic velocity and 
length respectively, to rewrite equations in non-
dimensional form as follows: 

( , ) ( )cos( Re )

( )sin( Re )

u y t f y t

g y t
 (9) 

2

0 2

3 2

0 0 3 2

1
Re

( ) 0

dg d gf v
dy dy

d g d fk v Ha g
dy dy

 (10) 

2

0 2

3 2

0 0 3 2

1
Re

( ) 0

df d fg v
dy dy

d f d gk v Ha f
dy dy

 (11) 

In the above equations 2, ( )c cy y L t t L   
is dimensionless form of y and t and u*, f* and g* are 
dimensionless form of u, f and g respectively. Also, 

0 0 cv v U is dimensionless suction or injection 
velocity, c cL U   is the Womersly number for 
oscillating behavior, Re c cU L   is the Reynolds 

number, 2
o ck L  is elastic second order number 

for elastic properties of fluid and 2
o c cHa B L U  

is Hartmann number for magnetic property of fluid.  

Similar to the governing equations, the boundary 
conditions can be transformed as follows: 

2

1 2 2
(0) (0)(0) df d ff U

dy dy  

(12) 

2

1 2 2
(0) (0)(0) dg d gg

dy dy  

(13) 

( ) ( ) 0g f  (14) 

1 1 cA L , 2
2 1 cB L  are dimensionless first 

and second order slip coefficients for fluid velocity in 
wall. In present work, cU U  is used for convenient. 

After solving x-momentum equation, u is obtained. 
By substituting u in y-momentum equation, the 
distribution of pressure can be obtained. y-momentum 
equation in dimensionless form is as follow: 

2 2

1 22 20 4 2p u u u uK G K G
y y y y y

 (15) 

Where, 2
c cG U P  is dimensionless pressure ( cP  

is characteristic pressure), 2
1 1 cK m L and

2
2 2 cK m L  are dimensionless elastic second grade 

numbers in second order fluid model. Integrating of 
equation (15) respect to y yields to: 

2

1 2(2 ) ( )up K K G h t
y  

(16) 

Finally, h(t*) may be evaluated by applying 
boundary condition in large enough distance(infinity), 
as follows: 

0
2

1 2 0

: ( , )

(2 )
y

at y p y t p p

u uK K G p
y y

 (17) 
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In equations (16) and (17) 0 0p  (dimensionless 
reference pressure) and 1G  are considered to be 
solved numerically. 

3.   Numerical procedure and validation 

A finite difference fourth order scheme is used to cover 
the third order derivatives existing in the ODEs of 
equations 7 and 8. Also, due to the existence of third 
order derivatives, forward second order procedure has 
been used in wall, backward second order procedure 
has been used in places sufficiently out of the boundary 
layer (infinity), and a combination of central and 
backward fourth order procedure has been used in 
other places. This helps the stability of the solution, 
due to dissipative nature of fourth order scheme in 
interior domain and second order scheme in boundary. 
in other words, using second order scheme in boundary 
and fourth order scheme in computation domain are 
numerical tricks for damping unstable effect of third 
order derivative (which exists in  governing equations) 
of solution fields. Furthermore, it is important to note 
that using a combination of central and backward finite 
difference procedures increases the effect of periodic 
boundary condition for wall in solution field.  

Verification has been done by extracting our 
numerical results of this scheme for computing 
unsteady velocity profile in Newtonian fluid obtained 
by setting zero non-Newtonian parameters (i.e. ko & 
Ha), no suction or injection and also no-slip boundary 
condition in numerical code. Exact agreement has been 
observed between this results and unsteady velocity 
profile for stokes second problem for Newtonian 
fluids. Numerical results showed that 250 equal 
distance nodes in the domain will satisfy the grid 
independency for all cases. The result of grid 
independency is shown in figure 2 for the horizontal 
velocity component at the half of the domain of 
numerical solution (ymax/2) and maximum time of 
calculation (tmax). 

4.   Results and discussions 

By using a fourth order finite difference scheme, 
governing equations (10) and (11) are solved 
numerically subject to the boundary conditions (12)-
(14). In present work we use 

0 1 21,Re 10, 1, 1, 5, 1, 1ok Ha v   
as local values for dimensionless parameters. 
Furthermore, *

maxt   is used to represent the maximum 
time chosen for numerical calculation. Since the 
governing equations are first order in time, an initial 
condition is needed at (t=0), so choosing maximum 
time is optional and depends on dimensionless time 
given to the problem in order to study unsteady 

  
Figure 2 Axial velocity at specific spatial point (ymax/2) at 

maximum time (tmax) as a function of number of 
computational point. 

behavior. In the present study, *
max 6t  is used to in 

the numerical calculation. Figure 3 show the velocity 
of oscillating surface along the y-coordinate in time. 
The amplitude of oscillating fluid reaches its 
maximum value at y=0 and decrease quickly as y 
increase. In Figure 4, velocity at * *

max / 2t t  , f and g 
are plotted in different Hartmann number, while other 
parameters are fixed at constant values (shown in 
figure). As the value of Hartmann number increased in 
magnitude, the amplitude of oscillating fluid gradually 
increased and the fluid velocity decreased [18] and 
also fluid was distorted in y-direction, due to increase 
in the magnetic force in x-momentum equations. Fluid 
near the wall of sheet is majorly influenced by 
oscillating surface; therefore, the distance away from 
the oscillating sheet within which the fluid is 
influenced by the motion of the boundary is increased, 
thus fluid reached quiescent at higher distance from the 
surface. 

Figure 5 shows variations of velocity at  
* *

max / 2t t , f* and g* of fluid in a different 
Womersly number while the other parameters kept 
constant. It is seen from the figure that, by increasing 
Womersly number, the amplitude of oscillating fluid 
in y=0 is decreased, and so is the distance away from 
the moving boundary within which the fluid is 
influenced by the motion of the boundary. Note that, 
this behavior also depends on the other values which 
are used. 

Figure 6 represents variations of velocity at 
* *

max / 2t t  , f* and g* in a different k0 while the 
other parameters kept constant. As the elastic second 
order number of fluid k0 increases, the amplitude of 
velocity and also the thickness of affected fluid by the 
motion of boundary are increased. Increasing the 
elastic second order number; which results in the 
increase of fluid elastic force due to normal stress, 
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causes the further displacement of elements of the fluid 
in horizontal direction; i.e. increase in velocity.

 
 

Figure 3 velocity along time and distance over the oscillating surface in the constant values of  
0 1 21,Re 10, 1, 1, 5, 1, 1ok Ha v  

 

 
 Figure 4 variations of velocity at * *
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 Figure 5 variations of veocity at * *
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 Figure 6 variations of velocity at * *

max / 2t t , f* and g* with y in different k0 

 
 Figure 7 variations of velocity * *

max / 2t t , f* and g* with y in different α1

In Figure 7 the values of velocity at  * *
max / 2t t , 

f* and g* are plotted for various values of slip 
parameter α1 while other parameters are fixed at 
constant values (shown in figure). It is observed that as 
slip parameters increase in magnitude, more fluid is 
permitted to slip past the surface and also the thickness 
of the fluid affected by motion of boundary decreases. 
It is also seen that with the increase in slip parameter 
in this figure, velocity magnitude in the boundary layer 
decrease which in in agree with the results of Fang and 
Lee [13]. It can be observed that maximum shear stress 
has occurred in the surface of the wall [13, 27] . 

Figure 8 shows variations of velocity at
* *

max / 2t t  , f* and g* with y in different slip 
parameters α2 with the other parameter kept constant. 
From this figure, fluid is permitted to slip more past 
the sheet and fluid velocity decreased as α2 is 
increased [14, 31]; also thickness of the fluid which is 
affected by motion of the boundary is decreased 
similar to that of figure 7.  

Variation of velocity at * *
max / 2t t   and also f* 

and g* functions with different v0 velocities (suction 

and injection on the surface) are plotted in figure 9. It 
is seen from this figure that, with both injection and 
suction on surface, amplitude of velocity increases 
relative to that of no suction and injection applied on 
sheet [27]. The influence of Injection of mass in 
amplitude of velocity is greater than the suction of 
mass on oscillating surface. Note that, horizontal 
component of velocity will increase by increasing the 
suction or injection velocity values, due to a rise in 
horizontal inertia force which is implied in fluid’s 
elements [31]. This force can have an effect similar to 
shear stress effect in fluid control volume. So by 
increasing the suction or injection values, fluid 
elements can be more tensile and have better 
displacements. This effect is meant to increase in 
values of horizontal velocity component.   

Figure 10 shows the pressure over on oscillating 
surface along the y-coordinate in time. The amplitude 
of oscillating pressure over the surface has its 
maximum value at y=0 and decreases rapidly as y 
increases. 
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Figure 8 variations of velocity at * *

max / 2t t , f* and g* with y in different slip parameter α2 

 
Figure 9 variations of velocity at * *

max / 2t t , f* and g* with suction or injection velocity on the surface 

 
 

Figure 10 pressure along time and distance over the oscillating surface in the constant values of  
0 1 21,Re 10, 1, 1, 5, 1, 1ok Ha v  
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5.   Conclusion 

Unsteady slip flow of second grade non-Newtonian 
electrically conducting fluid of second order over an 
oscillating sheet has been considered. The results show 
that change of magnetic field applied on the sheet, slip 
flow parameters, frequency of oscillating, mass 
suction or injection and elastic second number will 
cause a change in amplitude and thickness of the fluid 
affected by motion of boundary. With increase of slip 
flow parameter, unlike that of other parameters, 
thickness of affected fluid by motion of boundary will 
decrease. It is also realized that both injection and 
suction of mass on the sheet, will increase the 
amplitude of velocity. 
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