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Abstract 

The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts 
mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration 
energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. 
In this work vibration energy harvesting via piezoelectric resonant unimorph cantilevers is studied and new design for 
obtaining more efficient piezoelectric energy harvester is suggested. This study provides comprehensive analysis of 
the output voltage relationships and deducing a considerable precise rule of thumb for calculating resonance frequency 
in cantilever-type unimorph piezoelectric energy harvesters using Rayleigh method. The analytical formula, is then 
analyzed and verified by FEM simulation in ABAQUS. The analytical data was found to be very close to simulation 
data. A key finding is that among all the unimorph trapezoidal V-shaped cantilever beams with uniform thickness, the 
triangular tapered cantilever, can lead to highest resonance frequency and by increasing the ratio of the trapezoidal 
bases, the resonance frequency decreases. These new findings provide guidelines on system parameters that can be 
manipulated for more efficient performance in different ambient source conditions. 

Keywords: Vibration energy harvesting, Unimorph Piezoelectric vibrator, Trapezoidal V-shaped cantilever, Triangular beam, 
Resonant frequency 

1. Introduction

The conversion of ambient energy in the environment 
surroundings into electrical energy is called energy 
harvesting or energy scavenging. During the past 
decade, energy harvesting from mechanical vibrations 
of ambient environments has attracted the attention of 
many researchers due to the ever increasing desire to 
produce wireless and portable electronics with 
extended life. While sensors and wireless electronic 
equipment to support pervasive computing are 
becoming more prevalent, delivering power to the 
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wireless sensor networks is difficult and remains a 
challenge. Mechanical vibrations are abundant and 
ubiquitous in environment, and they provide no 
limitations in their applications on cloudy days or at 
nights. The prevalent mechanisms for vibration energy 
harvesting are: using electrostatic devices, 
electromagnetic field and utilizing piezoelectric 
materials. Piezoelectric based material’s flexibility in 
volume and size has led to the development of micro 
generators, that they are utilized in places where other 
sources of energy are not readily available [1]. 

Vibration energy harvesting with piezoelectric 
material can currently generate up to 300 microwatts 
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per cubic centimeter, making it an attractive method of 
powering low-power electronics [2]. Compared to 
other structural forms of beams, a cantilever has the 
maximum deformation under the same conditions. The 
larger deflection leads to higher strain and hence more 
output power. Therefore the vast majority of 
piezoelectric vibration power scavenging devices use 
a cantilever structure [3-6]. A cantilever-type power 
scavenger has been intensively studied and a tapered 
one has been found to be the optimum design [7-9], 
because it ensures a large constant and more uniform 
distribution of strain in the piezoelectric layer resulting 
in higher power output in comparison to the 
rectangular beam with the length and width equal to 
the height and base of the corresponding tapered 
cantilever beam. 

A piezoelectric unimorph cantilever structure 
includes one inactive (substrate) and one active 
(piezoelectric) layer, whereas a bimorph cantilever has 
one inactive layer, but two active layers. In order to 
analyze and calculate the resonance frequency of 
unimorph trapezoidal V-shaped cantilever beams (in 
special case triangular cantilevers), a significant and 
simple analytical formula using Rayleigh method is 
derived and then the optimization method for adjusting 
(enhancing or lowering) the resonance frequency with 
this formula is used. In special case that piezoelectric 
layer thickness is negligible and trapezoid becomes a 
triangle, the resonance frequency formulation for a 
simple triangular cantilever is formulated that is in 
accordance with that extracted in [10-12]. The 
extracted analytical formula and the results, are 
verified by FEM simulation in ABAQUS 14.1 
software, and presents a strong potential to be used in 
the design and optimization of unimorph trapezoidal 
V-shaped cantilever piezoelectric energy harvesters. It 
is noteworthy that a cantilever beam has many 
different modes of vibration in different resonance 
frequencies. The first mode of vibration in the 
fundamental mode and has the lowest resonant 
frequency. This fundamental mode of vibration 
typically provides the most deflection and hence 
output voltage and power. Accordingly, power 
scavengers are generally designed to operate in the 
fundamental resonance frequency [13, 14]. 

Then, under the influence of base excitation, 
estimation of voltage response for rectangular and 
tapered unimorph piezoelectric cantilever beam is 
done. Because of the lack of analytical solution for a 
triangular tapered cantilever, the numerical solution is 
done and the result is compared with the nearest 
exponentially tapered cantilever shape that has the 
analytical solution. Analytical formulas in forced 
vibration analysis are validated by finite element 

simulation. Studies are carried out using MATLAB, 
ABAQUS and MATHEMATICA software. 

This paper presents work on improving unimorph 
piezoelectric vibration energy harvesters based on the 
structural modifications. A new design for a unimorph 
cantilever-type piezoelectric energy harvester is 
proposed and the main focus of this paper is to study 
the resonance frequency and output voltage of the 
proposed design in piezoelectric mechanical energy 
harvester. 

2.   Modal analysis 

The structure of unimorph piezoelectric rectangular 
cantilever is shown in Figure 1. In Figure 1, l is the 
length, w is the width, ρs and ρp are the substrate and 
piezoelectric density, ts and tp are the substrate and 
piezoelectric thickness, and Es and Ep are the Young's 
modulus for substrate and piezoelectric layers, 
respectively. Also the total cross-sectional area 
moment of inertia is zI . 

 
Figure 1 Schematic of a simple unimorph cantilever beam 

For beam cross-sections that are not symmetric 
about the y-axis with regard to either geometry or the 
variation of elasticity modulus (E), a convenient 
method for treating bending problems is provided by 
the concept of the transformed section. If we choose a 
certain value of E as a reference value and call it Eref, 
then we can define a transformed section and 
transformed width nw, where /s pn E E/s p/E E/s p/ . In this case 
we assume that Eref=Ep. The line of action of an axial 
force producing purely axial deformation, passes 
through the centroid of the transformed section. In the 
case of bending without any axial force, the neutral 
axis passes through this point. In this case we assume 
that the location of the effective centroid is determined 
by h (Figure 2 and Figure 3) [15]. 

 

 
Figure 2 cross section of unimorph cantilever 
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Figure 3 transformed section of unimorph cantilever 

h is applied for determination of the neutral axis 
location: 
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The total cross-sectional area moment of inertia can be 
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When applying a normal force F at the free end of 
the cantilever, the deflection function along the length 
direction can be expressed as: 
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where K is a constant. The deflection function of (9) 
can be used as the mode shape, for extracting the 
resonant behavior of a unimorph cantilever beam with 
an arbitrary form and width function w(x)  [16]. So the 
vibration displacement at each position is: 
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where K and  are constants, ω=2πf  is the angular 
frequency and τ is the time. 

The kinetic energy of the vibrant unimorph 
cantilever beam can be written as [17]: 
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The maximum kinetic energy of the vibrant 
unimorph cantilever is obtained as: 
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The potential energy of the system can be written 
as [17]: 
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So the maximum potential energy of the unimorph 
cantilever is: 
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According to conservation law of mechanical 
energy, the resonant frequency can be obtained as [14, 
18]:
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In the particular case, for a rectangular cantilever 
with length l1, width w1, thicknesses ts and tp, mass 
densities ρs and ρp and Young's modulus Es and Ep, the 
deduced resonant frequency is as: 

3 3

3 3

2
1

( ( )

( ) ( ) )385
11

s s s

p s p p s
rect

s s p p

E t h E h

E t t h E t h
f

l t t1

p

s sl t1 s s

3 3
s) E h3) s)

3 3) )3 3
p p s) () () () (3) () () (p p385

11 2l 2
p ptp

p (16) 

As mentioned in [13], a typical trapezoidal V-
shaped cantilever is the result of difference between 
one triangular tapered cantilever and one trapezoidal 
tapered cantilever, with same thickness, with lengths l0 
and l1, and with widths w0 and w1 respectively (Figure 
4(a)). Because of the mirror symmetry of V-shaped 
cantilever, it is only necessary to analyze half of the 
geometry, which is a quadrilateral cantilever (Figure 
4(b)). 

Evidently for the quadrilateral cantilever beam, the 
width is a piecewise-continuous function of x, that is: 
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For simplifying calculations, it is reasonable to 
define the width ratios a and b, and the length ratio c 
of the trapezoidal V-shaped cantilever beam: 
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Substituting (17) and (18) into (15), the resonant 
frequency formula of the trapezoidal cantilever beam 
is obtained: 
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In order to represent the relationship between the 
resonant frequency and the ratios a, b and c, a 
characteristic function in terms of a, b and c can be 
defined as mentioned in [11] and [13]: 
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Hence, the resonant frequency of unimorph 
trapezoidal V-shaped cantilever beam is: 
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(b) (c) 

Figure 4 Shape and dimension of (a) trapezoidal V-shaped cantilever beam (b) half of the trapezoidal V-shaped cantilever beam 
(c) triangular tapered cantilever beam
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For a unimorph triangular tapered cantilever, a=0 
and the resonant frequency is: 
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In other words, characteristic function will be 
summarized as: 
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In the special case that tp=0 and a=0, the resonant 
frequency formulation for a simple 
triangularcantilever beam is obtained that is in 
accordance with that extracted in [12]. 

As shown in Figure 5, g(a,b,c) reaches the 

maximum value 3 0.2474
7

0.2474 , when a=0 and c=0 or 

c=1 or b=0. That means if l0=0 or l0=l2 or w0=0, 
unimorph trapezoidal V-shaped cantilever achieves 
highest resonant frequency. For w2=0 and l0=0 or 
w0=0, the unimorph trapezoidal V-shaped cantilever 
beam turns into a unimorph triangular tapered 
cantilever beam as shown in Figure 4(c). When w2=0 
and l0=l1, the unimorph V-shaped cantilever turns into 
two side by side unimorph tapered cantilever beams, 
though, this particular uncommon form is difficult to 
accomplish. Therefore, unimorph tapered cantilever 

beam that is easy for micro-fabrication and is a special 
kind of unimorph V-shaped cantilever beam, can reach 
the maximum resonant frequency. In other words, it 
has the highest sensitivity. It is notable that the 
behavior of g(a,b,c) in Figure 5 is such as that obtained 
in [18]. 

3.   Electrical potential response of a unimorph 
piezoelectric cantilever 

Because of the low thickness of the beam, Euler-
Bernoulli theory is considered in deriving the 
mathematical modelling of the structure. The 
governing equation of motion for a beam embedded by 
a single piezoelectric layer under the influence of base 
excitation is as follows [19]: 
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where M(x,t) is the internal moment, z(x,t) is the 
transverse displacement of the neutral axis, zb(x,t) is 
the base excitation displacement, Cs and Ca are 
equivalent strain rate and viscous air damping 
coefficient, I(x) is the area moment of inertia, m(x) is 
the mass per unit length of the beam and Mt is the tip 
mass. For this structure, the boundary conditions of the 
system are described in Eq.(25) i.e. the cantilever is 
fixed at x=0 and attached to a tip mass at the other end 
[3].

 

 
Figure 5 The function image of g(a=0,b,c)
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where It is the rotary inertia of the tip mass. Here it is 
assumed to neglect the tip mass. 

As the unimorph cantilever, consists of two layers 
with different materials, m can be written as: 

( )s s p pm w t t(w( )s s p p  (26) 
where w is the width, t is the thickness and ρ is the 
density. Also the subscripts s and p, are for substrate 
and piezoelectric layers, respectively. Here, the width 
of the piezoelectric layer is assumed to be the same as 
the width of the substrate layer, denoted by w. The 
internal moment M(x,t), can be written as: 
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Using the constitutive equation of piezoelectric 
and isotropic material, the stress terms in the relation 
(27) can be written as follows: 
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where σ is the normal stress in x direction, ε is the 
mechanical strain, d31 is the piezoelectric strain 
constant, and E3 is the applied electrical field. E3 can 
be written in terms of voltage v(t) as below: 
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Employing equations, (28), (29) and (31) into Eq. 
(27), one may obtain: 
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Using Heaviside step function, the internal 
moment can be written as: 
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where l is the length of the beam and piezoelectric 
layer covers all of this length. Employing eq.(34) into 
eq.(24) yields: 
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The constitutive equation of piezoelectric 
materials that relates the electrical and mechanical 
terms is given by: 
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Here D3(x,t) is the electrical displacement, σ1(x,t) 
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Integrating the electrical displacement over the 
piezoelectric area leads to generated electric charge in 
piezoelectric layer, q(t), as below : 
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where nn  is unit outward normal and DD  is the vector 
of electric displacement. Value of the current, i(t) is 
obtained by differentiating electrical charge over time. 
Therefore, the voltage across the resistive load can be 
obtained as follows: 
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Rearranging the eq.(39) leads to: 
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Using separation of variables technique leads to: 
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Using eq.(41), the integral term in eq. (40) can be 
written as: 
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Simplifying eq. (40) gives the ordinary differential 
equation of piezoelectric energy harvester as: 
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where: 
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Eq.(43) can be solved for v(t) by multiplying the 
following integrating factor through differential 
equation in order to bring the left-hand side under a 
common derivative: 

/( ) ct e( )) ce /
 (45) 

where τc is the circuit time constant and can be 
expressed by: 
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Combining eq.(35) and eq.(41) leads to: 
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Integrating eq.(47) over the length of the beam 
after multiplying it by wp(x) and using orthogonality 
condition gives the equation of motion as follows:
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where λk represents the modal coupling term and is 
dependent on the cantilever shape. For a rectangular 
cantilever it can be obtained as: 
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For an exponentially tapered cantilever, the modal 
coupling term is expressed as below: 
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Modal damping ratio can be estimated using half 
power bandwidth method or based on the motion 
decay in viscous damping. If beam oscillation is 
harmonic in time, base motion, output voltage and 
electrical charge can be written as 0

i t
bz Y e0
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where i is the imaginary number sign and ω is the 
driving frequency. Also substituting 0( ) i tv t V e0

iV e0
t in 

eq.(43) can lead to: 
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Differentiating eq.(51) and substituting in eq.(52) 
can lead to the voltage amplitude across the resistance: 
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 So the ratio of the output voltage to the base 
acceleration or voltage FRF is as below: 
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It is notable that for tapered cantilevers, some 
modifications in the area moment of inertia, I(x), and 
the width function, w(x), must be considered. In this 
case, the width function of beam shape is defined as 
[9]: 
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4.   Finite element analysis 

In order to investigate the accuracy of (21), finite 
element analysis is done in ABAQUS 6.14 software. 

Consider a unimorph rectangular cantilever, assuming 
ρs=8740kg/m3, ρp=7800kg/m3, Es=9.7×1010Pa, 
Ep=6.6×1010Pa, ts=1mm, tp=1mm, w1=80mm and 
l1=400mm. The simulated shape is shown in Figure 6 
and the obtained frequency in ABAQUS is 6.30 Hz. 

Also a set of unimorph trapezoidal V-shaped 
cantilever beams with different forms, assuming, 
ρs=8740kg/m3, ρp=7800kg/m3, Es=9.7×1010Pa, 
Ep=6.6×1010Pa, ts=0.6mm, tp=0.4mm, w0=40mm, 
w1=80mm, l1=100mm and altering w2 and l0 are 
simulated. When w2=0mm and l0=70mm, the 
simulated shape is shown in Figure 7 and the natural 
frequency is almost 76 Hz. 

The relative error δ is introduced to compare the 
results using the obtained formulas with the 
corresponding finite element simulation. 

f f
f

f
f

fff
f

ff

 
(56) 

where f refers to the calculation results with (16) and 
(21), and f’ refers to finite element simulation results 
with ABAQUS 6.14 analysis. The frequency 
calculation for a rectangular shape, according to (16) 
is 6.34 Hz and the corresponding simulation result with 
ABAQUS is 6.30 Hz. Hence the relative error is only 
0.66% and an excellent agreement is obtained between 
the calculation results and the finite element simulation 
results, yielding negligible relative error. The 
calculations according to (21) and the corresponding 
finite element simulation results with ABAQUS 6.14 
when the w2 is variable, are listed in Table 1. 

 
Figure 6 Deformed shaped for the first vibration mode of unimorph rectangular piezoelectric cantilever 

 
Figure 7 Deformed shaped for the first vibration mode of trapezoidal V-shaped cantilever (w2=0 mm and l0=70mm) 
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Table 1 analytical and the simulation results of the resonant frequencies of unimorph trapezoidal V-shaped cantilever beams (w2 is 
variable and l0=70mm) 

w2(mm) f (Hz) f’ (Hz) δ % 

0 80.90 76.09 5.95 % 
10 64.11 62.73 2.15 % 
20 55.70 54.83 1.56 % 
30 50.52 50.71 -0.38 % 
40 46.97 46.86 0.23 % 
50 44.35 44.69 -0.77 % 
60 42.34 42.68 -0.80 % 
70 40.74 41.19 -1.10 % 
80 39.44 40.22 -1.98 % 

In Figure 8, it can be seen that how the frequency (f 
and f’) varies with w2. By increasing the cantilever tip 
width (w2), the frequency decreases. 

It can be seen from Table 1 and Figure 8 that, a 
good agreement is obtained between the analytical 
results and the simulation results. So the relative error 
is slight (less than 6%). 

The calculations according to (21) and the 
corresponding simulation results with ABAQUS 6.14 
when the l0 is variable, are listed in Table 2. 

In Figure 9, the variations of the frequency (f and f’) 
against l0 is shown. In a certain length, the frequency 
reaches its minimum value.

 
Figure 8 frequency variations against cantilever tip width 

Table 2 analytical and simulation results of the resonant frequencies of unimorph trapezoidal V-shaped cantilevers (l0 is variable 
and w2=40mm) 

l0(mm) f (Hz) f’ (Hz) δ 

0 58.26 60.61 -4.03 % 
10 55.9 57.2 -2.33 % 
20 53.75 54.77 -1.90 % 
30 51.83 51.38 0.87 % 
40 50.17 50.86 -1.38 % 
50 48.78 48.72 0.12 % 
60 47.7 48.14 -0.92 % 
70 46.97 46.86 0.23 % 
80 46.63 47.05 -0.90 % 
90 46.71 48.13 -3.04% 
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Figure 9 frequency variations against cantilever beam length

It can be seen from Table 2 and Figure 9 that, a 
good agreement is obtained between the analytical 
results and the simulation results. Hence a little relative 
error occurs (less than 4.04%). When l0=0 the relative 
error is maximum and the V-shaped cantilever will be 
transformed to the simple tapered beam. In other cases, 
the agreement between simulation results and 
analytical results is better. 

Due to the above, in the same condition in length 
l1, width w1, thickness t1 and t2 and material properties 
E1, E2, ρ1 and ρ2, triangular tapered cantilever beam has 
the highest resonant frequency and therefore 
maximum sensitivity as obtained in [13]. It is notable 
that the triangular tapered cantilever is a special kind 
of V-shaped cantilever with w0=w2=0. 

The highest resonant frequency is achieved by 
substituting a=c = 0 into (21): 
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(57)

As can be seen from the derived equation, the 
resonant frequency of a unimorph tapered cantilever 
beam (l0=0) is not dependent on its width w1. It should 
be noted that for a unimorph tapered cantilever beam, 
when w1 increases, while other parameters are fixed, 
the resonant frequency does not change. By comparing 
(16) and (57), the resonant frequency ratio of unimorph 

triangular tapered cantilever and unimorph rectangular 
one is obtained: 
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(58)

Hence, the unimorph tapered cantilever beams are 
more sensitive than rectangular ones to vibrations, 
because tapered cantilevers can lead to higher resonant 
frequency and so higher sensitivity. 

To validate the obtained formula in eq.(54), finite 
element simulation is carried out for different beams 
which consist of a brass substrate layer under a PZT-
5A layer with ρs=8490kg/m3, ρp=7750kg/m3, 
Es=9.7×1010Pa, Ep=5.1×1010Pa and different 
geometrical parameters described in Table 3. 

The simulated shape for a rectangular beam with 
l0=0mm, l1=28.6mm, w0=0mm, w1=3.175mm, 
w2=3.175mm, ts=0.132mm and tp=0.188mm is shown 
in Figure 10. It can be seen that the simulated output 
voltage is 6.57V. Also the other geometries in Table 3 
are analyzed using FEM and the results are shown in 
Figure 11 and Figure 12. 
The cross section of voltage distribution in the 
piezoelectric layer of the simulated unimorph 
trapezoidal cantilever beam with the same volume, is 
shown in Figure 13. 
The calculation according to (54) and the 
corresponding simulation results with ABAQUS, are 
listed in Table 4. 
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Table 3 Geometrical parameters of the models 

Cantilever 
shape 

Volume 
(mm3) 

Length 
(mm) 

w1 (mm) w2 (mm) 
Piezoelectric 

thickness (mm) 
Substrate 

thickness (mm) 
Rectangular 29.06 28.6 3.175 3.175 0.188 0.132 

Trapezoid with 
low volume 

23.81 28.6 3.175 2.028 0.188 0.132 

Trapezoid 29.06 40.8 3.175 1.270 0.188 0.132 
 

 
Figure 10 Output voltage of simulated unimorph rectangular piezoelectric cantilever 

 

 
Figure 11 Output voltage of simulated trapezoidal unimorph piezoelectric cantilever with low volume 

 
Figure 12 Output voltage of simulated unimorph trapezoidal piezoelectric cantilever with same volume 

 
Figure 13 voltage distribution in the unimorph trapezoidal piezoelectric cantilever 

Table 4 Voltage output of different harvester shapes with different calculation methods (V) 

 Rectangular Trapezoid with low volume Trapezoid 
FE simulation 6.57 4.66 8.53 

Calculation results 6.32 4.86 8.22 

Table 4 indicates good agreement between 
simulation and theoretical results, so that the 
difference between the results is negligible (less than 
5%). It can be seen that the trapezoidal geometry leads 
to more power density in piezoelectric material. 

As mentioned before in [13] for bimorph 
cantilevers, as the beam becomes truncated, the 

generated voltage per unit mass and hence the power 
density, increases and it is in maximum value for a 
triangular beam when the width-ratio (w2/w1) becomes 
zero. In a general analysis, strain distribution of a 
triangular cantilever is more uniform than a 
rectangular one. In other words, a triangular geometry 
is more efficient than a rectangular one. The strain 
distribution of different shapes with the same length, 
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width and thickness under similar tip displacement is 
shown in Figure 14. As can be seen in Figure 14-(a), in 
the rectangular cantilever, the maximum strain is 
located in a small area. The strain distribution in the 
Figure 14-(b) is better than Figure 14-(a). It can be seen 
from Figure 14-(c) that the strain distribution of a 
semi-triangular cantilever energy harvester is almost 
uniform and close to its maximum value.  

5.   Conclusion 

This paper deduces a highly precise explicit formula 
for approximating the fundamental resonant frequency 
of unimorph trapezoidal V-shaped cantilevers based 
on the Rayleigh method. The analytical results are in a 
good agreement with the finite element simulation 
results and the relative error is negligible. In addition 
to determining the resonant frequency of unimorph 
trapezoidal V-shaped cantilevers of any material and 
geometrical properties, the presented resonant 
frequency formula can be used to design and 
optimization of unimorph trapezoidal V-shaped 
cantilever energy harvesters which are considered 
among the best and highest performance. The shape of 
the cantilever in the first mode of vibration is not 
exactly the same as static deflection profile. So the 
natural frequency estimates are slightly different from 

the simulation values. The formula presented for 
calculating natural frequency of unimorph tapered 
cantilevers, is a simple, relatively precise and practical 
formula for making some determination. Also the 
output voltage of unimorph piezoelectric cantilever 
beam is formulated and the formula is validated by 
finite element simulation results. Simulation results 
demonstrate that under the same loading, material and 
geometrical conditions, triangular cantilever beams are 
more efficient than other trapezoidal and rectangular 
ones. A family of beam shapes ranging from 
rectangular beams to triangular beams in terms of 
resonant frequency, output voltage and efficiency have 
been investigated. It turns out that the shape can have 
a great effect on the output voltage and therefore 
maximum output power density. It can be concluded 
that the deformation, strain and voltage of a triangular 
vibration energy harvester is more than those of a 
rectangular or trapezoidal one. Combining the 
triangular shape energy harvesters and the multi-modal 
energy harvester designs, can create the most power 
density and so optimized schemes. The results of this 
study can provide design guidance toward fabricating 
high power piezoelectric energy harvesters. 
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Figure 14 Strain distributions of three different piezoelectric vibrators
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