تعداد نشریات | 161 |
تعداد شمارهها | 6,479 |
تعداد مقالات | 70,019 |
تعداد مشاهده مقاله | 122,948,385 |
تعداد دریافت فایل اصل مقاله | 96,178,752 |
تهیه نقشههای سه بعدی توزیع اندازه ذرات نهایی سازنده خاک (بافت خاک) با استفاده از معادلات عمق و شبکههای عصبی مصنوعی | ||
تحقیقات آب و خاک ایران | ||
مقاله 11، دوره 48، شماره 1، اردیبهشت 1396، صفحه 113-123 اصل مقاله (679.5 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2017.61346 | ||
نویسندگان | ||
علیرضا امیریان چکان1؛ روح اله تقی زاده مهرجردی* 2؛ فریدون سرمدیان3؛ احمد حیدری4 | ||
1عضو هیات علمی دانشگاه صنعتی خاتم الانبیاء بهبهان | ||
2استادیار دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان | ||
3استاد گروه مهندسی علوم خاک دانشگاه تهران | ||
4گروه مهندسی علوم خاک، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران | ||
چکیده | ||
در نقشههای مرسوم معمولا چگونگی تغییرات بافت خاک در فواصل بین نقاط نمونهبرداری نشان داده نمیشود و در این نقشهها و نقشههای رقومی، تغییرات تدریجی بافت خاک با عمق به خوبی قابل پیشبینی نیست. از تکنیک نقشهبرداری رقومی برای تخمین ذرات نهایی سازنده خاک در مکانهای نمونهبرداری نشده و از معادلات عمق خاک برای نشان دادن تغییرات بافت خاک با عمق و تخمین آن در هر عمق دلخواه میتوان استفاده نمود. در این مطالعه در 103 نقطه مشاهداتی واقع در دشت سیلاخور در شمال غرب شهرستان دورود استان لرستان، معادله عمق اسپلاین با سطح برابر بر دادههای سیلت، شن و رس تا عمق یک متری برازش داده شد و مقادیر این اجزاء در پنج عمق استاندارد شامل 5-0، 15-5، 30-15، 60-30 و 100-60 سانتیمتر تخمین زده شد. این اطلاعات با متغیرهای کمکی استخراج شده از تصاویر ETM+سنجندههای ماهواره لندست و مدل رقومی ارتفاعی (DEM) تلفیق و بر اساس روابط بین آنها نقشه پیوسته پیشبینی مقدار اندازه ذرات نهایی سازنده خاک و کلاسهای بافت خاک با استفاده از مدل شبکههای عصبی مصنوعی برای کل منطقه به دست آمد. نتایج تجزیه و تحلیل حساسیت نشان داد اهمیت نسبی دادههای کمکی در پیشبینی بافت خاک برای اجزاء مختلف بافت و در اعماق مختلف متفاوت است. بر طبق نتایج حاصله توانایی شبکههای عصبی در تخمین بافت خاک در لایههای سطحی بیشتر از لایههای پایینی بود. مقادیر R2 برای رس، سیلت و شن از سطح به عمق به ترتیب از 73/0 تا 49/0، از 76/0 تا 43/0 و از 68/0 تا 26/0 به دست آمد. این نتایج در نقشهبرداری رقومی در حد قابل قبولی هستند. افزون بر این، نتایج نشان داد دادههای کمکی مستخرج از تصاویر ماهوارهای در لایههای سطحی و دادههای مستخرج از DEM در لایههای عمقی اهمیت بیشتری در تخمین بافت خاک داشتند. | ||
کلیدواژهها | ||
دشت سیلاخور؛ سنجش از دور؛ مدل اسکورپن؛ نقشهبرداری رقومی خاک | ||
عنوان مقاله [English] | ||
Three-dimensional mapping of soil texture using spline depth functions and artificial neural networks | ||
نویسندگان [English] | ||
Alireza Amirian Chekan1؛ Rohollah Taghizadeh Mehrjerdi2؛ Fereydoon Sarmadian3؛ Ahmad Heidary4 | ||
چکیده [English] | ||
Quantitative, continuous and three-dimensional soil data at appropriate scales are prerequisites for modeling of natural resources and environment. Despite the importance of soil texture, its legacy soil maps are often provided for the surface layers in which vertical and lateral variations of soil properties are not considered. The combination of digital soil mapping (DSM) and soil depth functions is an alternative tool to cope with these problems, especially in countries with limited data such as Iran. Therefore, equal-area spline depth function and DSM techniques were employed to assess the vertical and lateral distribution of soil texture in Silakhor Plain, located in Lorestan province, western Iran. By fitting the depth function to the measured clay, silt and sand percent in 103 sites to a depth of one meter, their estimated percents were obtained at five standard soil depths of Global Soil Map project (0-5, 5-15, 15-30, 30-60 and 60-100 cm). Also artificial neural network model was employed to predict lateral distribution of soil texture fractions using the auxiliary variable derived from satellite image and digital elevation model (DEM) in the standard depths. The results of the sensitivity analysis showed although the relative importance of auxiliary variables in predicting soil texture was different according to the depth and texture fractions, the performance of artificial neural network in upper layers was more than lower layers. R2 values for clay, silt and sand and from the top to the bottom were 0.73 to 0.49, 0.43 to 0.76 and 0.26 to 0.68, respectively. Results also showed, for estimating soil texture, auxiliary variables derived from satellite image were more important in surface layers and of DEM were more important in subsurface layers. | ||
کلیدواژهها [English] | ||
digital soil mapping, Silakhor Plain, scorpan model, remote sensing | ||
مراجع | ||
Adhikari, K., Kheir, R. B., Greve, M. B., Bocher, P. K., Malone, B. P., Minasny, B., McBratney, A. B. and Greve, M. H. (2013). High-resolution 3-D mapping of soil texture in Denmark. Soil Science Society of America Journal, 77, 860-876. Akpa, S. I. C., Odeh, I. O. A. and Bishop, T. F. A. (2014). Digital mapping of soil particle-size fractions for Nigeria. Soil Science Society of America Journal, 78, 1953-1966. Akumu, C. E., Johnson, J. A., Etheridge, D., Uhlig, P., Woods, M., Pitt, D. G. and McMurray, S. (2015). GIS-fuzzy logic based approach in modeling soil texture: Using parts of the Clay Belt and Hornepayne region in Ontario Canada as a case study. Geoderma, 239-240, 13-24. Amirian Chakan, A. (2012). Spatial modeling of land suitability using fuzzy sets theory and geostatistics techniques. Ph. D. dissertation, University of Tehran, Tehran. Baker, L. and Ellison, D. (2008). Optimization of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 144, 212-224. Bishop, T. F. A., McBratney, A. B. and Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines, Geoderma, 91, 27-45. Campbell N. A., Mulcahy M. J. and McArthur W. M. (1970). Numerical classification of soil profiles on the basis of field morphological properties. Australian Journal of Soil Research, 8, 43-58. Du, K. L. and Swamy, M. N. S. (2006). Neural networks in a soft computing framework. London: Springer-Verlag. Greve, M. H., Kheir, R. B., Greve, M. B. and Bocher, P. K. (2012a). Quantifying the ability of environmental parameters to predict soil texture fractions using regression-tree model with GIS and LIDAR data: The case study of Denmark. Ecological Indicators, 18, 1-10. Greve, M. H., Kheir, R. B., Greve, M. B. and BØcher, P. K. (2012b). Using digital elevation models as an environmental predictor for soil clay contents. Soil Science Society of America Journal, 76, 2116-2127. Hartemink, A. E. and McBratney, A. B. (2008). A soil science renaissance. Geoderma, 148, 123-129. Hengl, T., Rossiter D. G. and Stein, A. (2003). Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Geoderma, 120, 75-93. Jenny, H. (1941). Factors of soil formation: a system of quantitative pedology. New York: McGrawHill. Kayadelen, C., TaskIran, T., Günaydin, O. and Fener, M. (2009). Adaptive neuro-fuzzy modeling for the swelling potential of compacted soils. Environmental Earth Sciences, 59, 109-115. Kempen, B., Brus, D. and Stoorvogel, J. J. (2011). Three-dimensional mapping of soil organic matter content using soil type–specific depth functions. Geoderma, 162, 107-123. Lagacherie, P. (2008). Digital soil mapping: a state of the art. In: A. E. Hartemink, A. B. McBratney, and M.d.L. Mendonça Santos (eds). Digital soil mapping with limited data. (pp. 3-14). London: Springer. Lacoste, M., Lemercier, B. and Walter, C. (2011). Regional mapping of soil parent material by machine learning based on point data. Geomorphology, 133, 90-99. LieB, M., Glaser, B. and Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random forest models. Geoderma, 170, 70-79. Liu, F., Geng, X., Zhu, A. X., Fraser, W. and Waddell, A. (2012). Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS. Geoderma, 171-172, 44-52. Malone, B. P., McBratney, A. B., Minasny, B. and Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154, 138-152. Malone, B.P., McBratney, A. B., Minasny, B. (2011). Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma, 160, 614-626. McBratney, A. B., Mendonça-Santos, M. L. and Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3-52. Minasny, B., McBratney, A. B. and Lark, R. M. (2008). Digital soil mapping technologies for countries with sparse data infrastructures. In: A. E. Hartemink, A. B. McBratney, and M. d. L. Mendonça Santos (eds). Digital soil mapping with limited data. (pp. 15-30). London: Springer. Minasny, B. and Hartemink, A. E. (2011). Predicting soil properties in the tropics. Earth Science Review, 106, 52-62. Minasny, B., McBratney, A. B., Mendonca-Santos, M. L., Odeh, I. O. A. and Guyon, B. (2006). Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley. Australian Journal of Soil Research, 44,233-244. Mishra, U., Lal, R., Slater, B., Calhoun, F., Liu, D. and Van Meirvenne, M. (2009). Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Science Society of America Journal, 73, 614-621. Nabiollahi, K., Haidari, A. and Taghizadeh Mehrjerdi, R. (2014). Digital mapping of soil texture using regression tree and artificial neural network in Bijar, Kurdistan. Journal of Water and Soil, 28, 1025-1036. (In Farsi) Nyssen, J., Tmesgen, H., Lemenih, M., Zenebe A., Haregeweyn, N. and Haile M. (2008). Spatial and temporal variation of soil organic carbon stocks in a lake retreat area of the Ethiopian Rift Valley. Geoderma, 146, 261-268. Odgers, N. P., Libohova, Z. and Thompson, J. A. (2012). Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma, 189-190, 153-163. Ponce-Hernandez, R., Marriott, F. H. C. and Beckett, P. H. T. (1986). An improved method for reconstructing a soil profile from analysis of a small number of samples. Journal of Soil Science, 37, 455-467. Samarasinghe, S. (2007). Neural networks for applied sciences and engineering. New York: Taylor and Francis. Schetzl, R. and Anderson, S. (2005) Soils: Genesis and geomorphology. New York: Cambridge University Press. Sreekanth, P. D., Sreedevi, P. D., Ahmed, S. and Geethanjali, N. (2011). Comparison of FFNN and ANFIS models for estimating groundwater level. Environmental Earth Sciences, 62, 1301-1310. Soil Survey Staff. (2014). Keys to soil taxonomy (11th ed). Washington: USDA-NRCS. Stoorvogel, J. J., Kempen, B., Heuvelink, G. B. M. and Bruin, S. (2009). Implementation and evaluation of existing knowledge for digital soil mapping in Senegal. Geoderma, 149, 161-170. Taghizadeh Mehrjardi R., Minasny B., Sarmadian F. and Malone P. B. (2014a). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15-28 Taghizadeh Mehrjerdi, R., Amirin Chakan, A. and Sarmadian, F. (2014b). 3D digital mapping of soil cation exchange capacity in Dorud, Lorestan province. Journal of Water and Soil, 28, 998-1010. (In Farsi) Thompson, J. A., Roecker, S., Grunwald, S and Owens, P. R. (2012). Digital soil mapping: Interactions with and applications for hydropedology. In: H. Lin (ed). Hydropedology. (pp. 665-709). Amsterdam: Academic Press. Vaysse, K. and Lagacherie, P. (2015). Evaluating digital soil mapping approaches for mapping GlobalSpilMap soil properties from legacy data in Languedoc Roussillon (France). Geoderma, 4, 20-30. | ||
آمار تعداد مشاهده مقاله: 1,197 تعداد دریافت فایل اصل مقاله: 2,161 |