تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,457 |
تعداد دریافت فایل اصل مقاله | 97,233,037 |
Providing a New Approach for Segmenting Customers Based on Their Purchasing Behavior Change over Time in Electronic Business | ||
Journal of Information Technology Management | ||
مقاله 6، دوره 9، شماره 2، 2017، صفحه 277-300 اصل مقاله (460.69 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jitm.2017.61417 | ||
نویسندگان | ||
Samira KHodabandehlou* 1؛ Mahmoud Zivari Rahman2 | ||
1MSc. of Information Technology Engineering, Graduate University of Advanced Technology, Kerman, Iran | ||
2MSc. of Assessment and Measurement, Allameh Tabataba'i University, Tehran, Iran | ||
چکیده | ||
Usual methods of segmentation have been designed, relying solely on the components of Recency (R), Frequency (F) and Monetary (M) in which customers’ behavior changes over time are not considered. Accordingly, in order to achieve a desired segmentation method, this study aims to apply a set of statistical calculations, such as line slope and the derivative with respect to time and data mining methods such as K-means and Self-Organizing Maps (SOM) to define new parameters for studying the changes trending of customer purchasing behavior. The results show that considering the slope of the line of customer behavior changes (R, F, and M) and the higher value for recent behaviors of customers compared to that of their past behavior in customer segmentation would thereby increase the accuracy of predicting the future behavior and cause the customers of each section to become more homogeneous. Based on the suggested method, customers are categorized into four segments: best, spender, repeater and missed ones each of them are divided into two subcategories of ascending and descending segments, which leads to better and more accurate understanding of customers in different segments according to how of their purchasing behavior change. Finally, the characteristics of each segments and sub-segments are described and appropriate strategies are provided for managing its customers. | ||
کلیدواژهها | ||
customer segmentation؛ Data Mining؛ purchasing behavior change؛ RFM Model | ||
عنوان مقاله [English] | ||
ارائۀ رویکرد جدیدی برای بخشبندی مشتریان بر اساس تغییر رفتار خرید آنها در طول زمان در حوزۀ کسبوکار الکترونیک | ||
نویسندگان [English] | ||
سمیرا خدابنده لو1؛ محمود زیوری رحمان2 | ||
1کارشناس ارشد مهندسی فناوری اطلاعات، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفتۀ کرمان، کرمان، ایران | ||
2کارشناس ارشد سنجش و اندازهگیری، دانشگاه علامه طباطبایی، تهران، ایران | ||
چکیده [English] | ||
روشهای معمول بخشبندی صرفاً باتکیه بر سه مؤلفۀ تأخر (R)، تعداد (F) و ارزش پولی (M) طراحی شدهاند و تغییرات رفتاری مشتریان را در طول زمان در نظر نمیگیرند. بر این اساس برای دستیابی به بخشبندی مطلوب، هدف پژوهش حاضر بهکارگیری مجموعهای از محاسبات آماری از قبیل شیب خط و مشتق نسبت به زمان و روشهای دادهکاوی مانند K-means و نقشههای خودسازمانده (SOM) برای تعریف متغیرهایی جدید بهمنظور بررسی روند تغییرات رفتار خرید مشتریان است. نتایج پژوهش نشان میدهد در نظرگرفتن شیب خط تغییرات رفتار مشتریان (R، F و M) و ارزش بیشتر برای رفتارهای اخیر نسبت به رفتارهای گذشته در بخشبندی مشتریان، موجب افزایش دقت پیشبینی رفتار آتی و همگنتر شدن مشتریان هر بخش شده است. بر اساس روش پیشنهادی، مشتریان به چهار بخش بهترین، خرجکننده، تکرارکننده و از دسترفته دستهبندی شدند که بهمنظور شناخت بهتر و دقیقتر مشتریان بر اساس نحوۀ تغییر رفتار آنها، هر بخش نیز به دو زیربخش صعودی و نزولی طبقهبندی شد. درنهایت ضمن تشریح ویژگی هریک از بخشها و زیربخشها، راهبردهای مناسبی برای مدیریت مشتریان آنها ارائه شده است. | ||
کلیدواژهها [English] | ||
بخشبندی مشتریان, تغییر رفتار خرید, دادهکاوی, مدل RFM | ||
مراجع | ||
آخوندزاده نوقابی، ا.؛ البدوی، ا. و اقدسی، م. (1393). کاوش پویایی مشتری در طراحی بخشبندی با استفاده از روشهای دادهکاوی. نشریۀ مدیریت فناوری اطلاعات، 6 (1)، 30-1. برادران، و. و بیگلری، م. (1393). بخشبندی مشتریان صنایع تولید و پخش کالاهای پرگردش بر اساس مدل بهبودیافته RFM (مطالعۀ موردی: شرکت گلستان). نشریۀ مدیریت بازرگانی، 7 (1)، 42-23. حسینی، س. ی.؛ بحرینیزاده، م. و ضیائیبیده، ع. ر. (1391). تحلیل اهمیت ـ عملکرد ویژگیهای خدمت بر پایۀ بخشبندی مشتریان با رویکرد دادهکاوی (پژوهشی در بازار خدمات تلفن همراه در استان یزد). نشریۀ مدیریت فناوری اطلاعات، 4 (13)، 70-45.حمیدیزاده، م. ر.، حاج کریمی، ع. ع. و نائیجی، م. ج. (1390). طراحی و تبیین مدل وفاداری پایدار مشتریان تجارت الکترونیکی: مطالعهای در وبسایتهای خردهفروشی. تحقیقات بازاریابی نوین، 1 (2)، 91- 79. خدابندهلو، س. و نیکنفس، ع. ا. (1395). ارائۀ روشی جدید برای بخشبندی مشتریان بر اساس میزان وفاداری آنها و تعریف راهبردهایی مناسب برای هر بخش. نشریۀ مدیریت فناوری اطلاعات، 8 (1)، 122-101.رزمی، ج. و قنبری، آ. (1388). ارائۀ مدلی نوین جهت محاسبه ارزش دورۀ عمر مشتری. نشریۀ مدیریت فناوری اطلاعات، 2 (2)، 50-35.عزیزی، ش.؛ حسینآبادی، و. و بلاغی اینانلو، م. (1393). بخشبندی کاربران بانکداری اینترنتی برمبنای انتظارات: رویکرد دادهکاوی. نشریۀ مدیریت فناوری اطلاعات، 6 (3)، 434- 419. کرامتی، ع. و خالقی، ر. (1393). توسعۀ یک سیستم پیشنهاددهندۀ محصول طراحی مدل ترکیبی با بهرهگیری از روشهای فیلترینگ مشارکتمحور، کشف قوانین انجمنی و بخشبندی مشتریان. نشریۀ تخصصی مهندسی صنایع، 48 (2)، 280- 257.کوشا، ح. ر. و زحمتکش، م. (1392). بخشبندی بازار با مدل جدید RFMP و اولویتبندی بخشها با روش AHP. دومین کنفرانس ملی مهندسی صنایع و سیستمها، دانشگاه آزاد اسلامی واحد نجف آباد. محمدی، ش. و علیزاده، س. (1393). تحلیل مشکلات شعب بانک آینده در سراسر کشور با استفاده از روش دادهکاوی. نشریۀ مدیریت فناوری اطلاعات، 6 (2)، 350- 333.Akhondzadeh-Noughabi, E., Albadvi, A. & Aghdasi, M. (2014). Mining Customer Dynamics in Designing Customer Segmentation using Data Mining Techniques. Journal of Information Technology Management, 6 (1), 1-30. (in Persian) Azizi, Sh., Hossein Abadi, V. & Balaghi Inanlou, M. (2014). Segmentation of Internet Banking Users Based on Expectations: A Data Mining Approach. Journal of Information Technology Management, 6 (3), 419-434. (in Persian)
Baradaran, V. & Biglari, M. (2015). Customer Segmentation in Fast Moving Consumer Goods (FMCG) Industries by using developed RFM model. Journal of Business Management, 7 (1), 23-42. (in Persian)
Bhattacharya, C. B. (1998). When customers are members: Customer Retention in Paid Membership Contexts. Journal of the Academy of Marketing Science, 26 (1), 31-45.
Chang, H. H. & Chen, S. W. (2009). Consumer Perception of Interface Quality, Security, and Loyalty in Electronic Commerce. Information & Management, 46(7), 411-417.
Chang, H. H. & Tsay, S. F. (2004). Integrating of SOM and K-mean in Data Mining Clustering: An Empirical Study of CRM and Profitability Evaluation. Journal of Information Management, 11 (4), 161-203.
Cheng, C.H. & Chen, Y.S. (2009). Classifying the Segmentation of Customer Value via RFM Model and RS Theory. Expert Systems with Applications, 36 (3), 4176-4184. Coussement, K. & De Bock, K. W. (2013). Customer Churn Prediction in the Online Gambling Industry: the Beneficial Effect of Ensemble Learning. Journal of Business Research, 66 (9), 1629-1636. Coussement, K. & Poel, D. V. (2009). Improving Customer Attrition Prediction by Integrating Emotions from Client / Company Interaction Emails and Evaluating Multiple Classifiers. Expert Systems with Applications, 31 (1), 6127-6134. Cyr, D., Head, M. & Ivanov, A. (2006). Design Aesthetics Leading to M-Loyalty in Mobile Commerce. Information & Management, 43 (8), 950-963.
Ghazizadeh, M., Bashiri, M., Karimi, S. & Goharpad, M. (2015). Market Segmentation from the Consumer's Perspective using ANN and Identification of their Key Characteristics based on the Taguchi Technique (A Case Study in a Shampoo Industry). New Marketing Research Journal, 4 (4), 125-142.
Hamidizadeh, M. R., Hajkarimi, A. A. & Naeiji, M. M. (2011). Designing and Explaining the Model of Persistent Customer Loyalty in e-Commerce: A Study in the e-Retailer’s Web Sites. New Marketing Research Journal, 1 (2), 79-91. (in Persian) Haywood, K. M. (1998). Repeat Patronage: Cultivate Ingalliances with Customers. International Journal of Hospitality Management, 7 (3), 225-237. Hosseini, S. Y., Bahrainizadeh, M. & Ziaei Bideh, A. R. (2013). Importance-Performance Analysis of Service Attributes based on Customers Segmentation with a Data Mining Approach: a Study in the Mobile Telecommunication Market in Yazd Province. Journal of Information Technology Management, 4 (13), 45-70. (in Persian)
Hua, N., Morosan, C. & DeFranco, A. (2015). The Other Side of Technology Adoption: Examining the Relationships between E-Commerce Expenses and Hotel Performance. International Journal of Hospitality Management, 45 (1), 109-120.Hughes, A. M. (1996). Boosting Response with RFM. Marketing Tools, 3 (3), 4-10.
Keramati, A. & Khaleghi, R. (2014). Developing a Product Recommender System: Designing a Hybrid Model using Data Mining Techniques. Journal of Industrial Engineering, 48 (2), 257-280. (in Persian)
Keramati, A., Jafari-Marandi, R., Aliannejadi, M., Ahmadian, I., Mozzafari, M. & Abbasi, U. (2014). Improved Churn Prediction in Telecommunication Industry using Data Mining Technique. Applied Soft Computing, 24 (1), 994-1012.
Khodabandehlou, S. & Niknafs, A. A. (2016). Proposing a New Method for Customer Segmentation Based on Their Level of Loyalty and Defining Appropriate Strategies for Each Segment. Journal of Information Technology Management, 8 (1), 101-122. (in Persian) King, S. F. (2007). Citizens as Customers: Exploring the Future of CRM in UK Local Government. Government Information Quarterly, 24 (1), 47-63.
Koosha, H. R. & Zahmatkesh, M. (2014). Market Segmentation with RFMP New Model and Segments Ranking with AHP Method. The second National Conference on Industrial Engineering and Systems, Islamic Azad University, Najafabad Branch.(in Persian)
Li, D.C., Dai, W.L. & Tseng, W-T. (2011). A Two-Stage Clustering Method to Analyze Customer Characteristics to Build Discriminative Customer Management: A case of Textile Manufacturing Business. Expert Systems with Applications, 38 (6), 7186-7191.
Liu, H.H. & Ong, Ch. Sh. (2008). Variable Selection in Clustering For Marketing Segmentation using Genetic Algorithms. Expert Systems with Applications, 34 (1), 502-50.
Marcus, C. (1998). A Practical Yet Meaningful Approach to Customer Segmentation. Journal of Consumer Marketing, 15 (5), 494-504. Mohammadi, Sh. & Alizadeh, S. (2014). Analyzing the Problems of Ayandeh Bank Branches across the Country Using Data Mining Technique. Journal of Information Technology Management, 6 (2): 333-350. (in Persian) Razmi, J. & Ghanbari, A. (2010). Introducing a Novel Model to Determine CLV. Journal of Information Technology Management, 2 (2), 35-50. (in Persian) Sajjadi, K., Khatami-Firuzabadi, M. A., Amiri, M. & Salehi Sadaghiani, J. (2015). A Developing Model for Clustering and Ranking Bank Customers. International Journal of Electronic Customer Relationship Management, 9 (1), 73-86.
Smith, W. (1956). Product Differentiation and Market Segmentation as an Alternative Marketing Strategy. Journal of Marketing, 21(1), 3-8.
Soeini, R. A. & Fathalizade, E. (2012). Customer Segmentation Based on Modified RFM Model in the Insurance Industry. Proceedings of 2012 4th International Conference on Machine Learning and Computing, Singapore, 101-104.
Sohrabi, B. & Khanlari, A. (2007). Customer Lifetime Value (CLV) Measurement Based on RFM Model. Iranian Accounting & Auditing Review, 14 (47), 7-20.
Torkestani, M. S., Mansouri, T. & Taghizdeh, Y. (2016). The Comparative Study of Data Mining Clustering Algorithms to Measure Customer Value in Customer Relationship Management in the Insurance Industry. New Marketing Research Journal, 6 (1), 1-22.
Wei, J.T., Lin, S.Y., Weng, C. C. & Wu, H.H. (2012). A Case Study of Applying LRFM Model in Market Segmentation of A Children's Dental Clinic. Expert Systems with Applications, 39 (5), 5529-5533.
Wu, H.H.,Chang., E.C. & Lo, C.F. (2009). Applying RFM Model and K-Mean Method in Customer Value Analysis of An Outfitter. International Conference on Concurrent Engineering, Springer London. | ||
آمار تعداد مشاهده مقاله: 1,930 تعداد دریافت فایل اصل مقاله: 1,464 |