تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,057 |
تعداد دریافت فایل اصل مقاله | 97,231,186 |
مدلسازی سری های زمانی شاخص سطح برگ MODIS با استفاده از رویکرد استوکستیکی | ||
اکوهیدرولوژی | ||
مقاله 5، دوره 4، شماره 2، تیر 1396، صفحه 345-355 اصل مقاله (663.92 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2017.61468 | ||
نویسنده | ||
لاله پرویز* | ||
استادیار، دانشکدۀ کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران | ||
چکیده | ||
شاخص سطح برگ یکی از پارامترهای مؤثر برای توصیف شار انرژی، تبادلات سطح زمینـ اتمسفر، ساختمان پوشش گیاهی و... است. در این تحقیق با استفاده از مدلسازی بر پایۀ روش باکسـ جنکینز سریهای زمانی شاخص سطح برگ یونجه، گندم، سیب و سیبزمینی بررسی شد و با نتایج روابط ریاضی بین شاخص سطح برگ و شاخص NDVI مقایسه شدند. روند سریهای زمانی بهدستآمده از سنجندۀ MODIS طی دورۀ زمانی 2012ـ 2015 با دورۀ تناوب 46 توسط آزمون منـ کندال فصلی منفی بود. نتایج شبیهسازی توسط مدل ARIMA(p,0,q)×(P,1,Q)46 با مرتبههای تأییدشده در سریهای زمانی مختلف بیانکنندۀ کاهش خطا و افزایش ضریب همبستگی و NASH بود. بهطور نمونه ضریب همبستگی سریهای زمانی گندم، یونجه، سیب و سیبزمینی بهترتیب 9/0، 94/0، 93/0 و 89/0 بود. مقایسۀ کلی بین آمارههای بررسیشده بیانکنندۀ عملکرد بهتر ARIMA فصلی بهخصوص دربارۀ سریهای زمانی یونجه و سیب با مقادیر زیاد شاخص سطح برگ است. رویکرد استوکستیکی در برابر سایر روابط ریاضی خطای کمتری داشت. با توجه به کارایی زیاد مدل ARIMA فصلی، تهیۀ سریهای زمانی شاخص سطح برگ با دقت زیاد اهمیت چشمگیری دارد. | ||
کلیدواژهها | ||
شاخص سطح برگ؛ مدلسازی؛ منـ کندال فصلی؛ ARIMA فصلی | ||
عنوان مقاله [English] | ||
Modeling MODIS LAI time series using stochastic approach | ||
نویسندگان [English] | ||
Laleh Parviz | ||
Assistant Professor, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran | ||
چکیده [English] | ||
Leaf area index is one of the most important variables characterizing energy flux, atmosphere- land surface exchange and vegetation structure. In this research, Leaf area index time series of wheat, alfalfa, apple and potato have been investigated using the modeling based on Box-Jenkins method, and the result of mathematical relationships between leaf area index and NDVI were compared. The trend of MODIS time series in the period of 2012 to 2015 with seasonal length of 46 using seasonal Man –Kendall test was negative. The simulation of time series using ARIMA (p,0,q)×(P,1,Q)46indicated the decease in error and correlation and NASH coefficient; for example, the correlation coefficients of wheat, alfalfa, apple and potato were 0.9, 0.94,0.93 and 0.89, respectively. The criteria comparison demonstrated the better performance of SARIMA model especially for alfalfa and apple time series with high values of leaf area index. Stochastic modeling has minimum error relative to the mathematical relationships. According to the high performance of SARIMA model, preparation of leaf area index time series with high precision is more important. | ||
کلیدواژهها [English] | ||
modeling, leaf area index, seasonal Man –Kendall, SARIMA | ||
مراجع | ||
منابع [1]. Zarate-Valdez JL, Whiting ML, Lampinen BD, Metcalf S, Ustin SL, Brown PH. Prediction of leaf area index in almonds by vegetation indexes. Comput Electron Agric. 2012; 85:24–32.
[2]. Shen L, Li Z, Guo X. Remote Sensing of Leaf Area Index (LAI) and a Spatiotemporally Parameterized Model for Mixed Grasslands. Int J App Sci Technol. 2014; 4(1):46-61.
[3]. Fang s, Le Y, Liang Q, Liu X. Leaf Area Index Estimation Using Time-Series MODIS Data in Different Types of Vegetation. J Indian Soc Remote Sens. 2014; 42(4):733–743.
[4]. Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agr Forest Meteorol. 2004; 121:19–35.
[5]. Jiang B, Liang S, Wang J, Xiao Z. Modeling MODIS LAI time series using three statistical methods. Remote Sens Environ. 2010; 114(7):1432-1444.
[6]. Xiao Z, Liang S, WangJ, Jiang B, LiX. Real-time retrieval of Leaf Area Index from MODIS time series data. Remote Sens Environ. 2011; 115(1):97-106.
[7]. Fernandez-manso A, Fernández-Manso O. Forecast of NDVI in coniferous areas using temporal ARIMA analysis and climatic data at a regional scale.Int J Remote Sens . 2011; 32(6):1595-1617.
[8]. Movahedian M, Hosseini SE, Ghorbanzadeh M. Estimation of Leaf Area Index using neural network. 3rd International Conference on Information and Knowledge Technology, Ferdowsi University of Mashhad. 2007.
[9]. Parviz L. Investigation and modification land surface hydrological model for stream flow forecasting (in short term scale). MSc. Thesis in Water Resource Management, Tehran University. 2011.
[10]. Trombettaa A, Iacobellis V, Tarantinob E, Gentile F. Calibration of the AquaCrop model for winter wheat using MODIS LAI images. Agric Water Manage. 2016; 164(2):304-316.
[11]. Karamouz M, Araghinejad S, Advanced hydrology. 2nd ed. Amirkabir University of Technology. 2006. P. 464.
[12]. Malmir M. Low streamflow time series forecasting. MSc. Thesis in Water Resource Management, Tehran University. 2006.
[13]. Bahmani R, Radmanesh F, Eslamian SS, Parham G. Reservoir evaporation trend analysis and its prediction using time series. J Irrigation SciEngin. 2014; 36(2):67-80.
[14]. Bakhshandeh E, Soltani A, Ghadiryan R. Leaf area measurement by AccuPAR instrument in wheat. J Plant Prod. 2010; 18(4):97-101.
[15]. Su F, Hong Y, Lettenmaier DP. Evaluation of TRMMMultisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin. J Hydrometeorol. 2007; 9:622- 640.
[16]. Yang G, Bowling LC, CherkauerK.A, Pijanowski BC, Niyogi D. Hydroclimatic response of watersheds to urban intensity: An observational and modeling-based analysis for the White River Basin, Indiana. J Hydrometeorol. 2009; 11:122-138.
[17]. Xu X, Du H, Zhou G, Li P. Method for improvement of MODIS leaf area index products based on pixel-to-pixel correlations. European J Remote Sens. 2016; 49:57-72. | ||
آمار تعداد مشاهده مقاله: 986 تعداد دریافت فایل اصل مقاله: 660 |