تعداد نشریات | 161 |
تعداد شمارهها | 6,476 |
تعداد مقالات | 70,006 |
تعداد مشاهده مقاله | 122,897,338 |
تعداد دریافت فایل اصل مقاله | 96,105,639 |
بررسی برخی ویژگیهای بیوکنترلی باکتریهای آنتاگونیست جداشده از ریزوسفر خیار علیة Sclerotinia sclerotiorum و Pythium aphanidermatum | ||
دانش گیاهپزشکی ایران | ||
مقاله 14، دوره 47، شماره 2، آذر 1395، صفحه 325-340 اصل مقاله (1.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijpps.2017.215928.1006738 | ||
نویسندگان | ||
سامان باقری1؛ حمیدرضا علیزاده* 2؛ مهدی آزادوار3؛ امیررضا امیرمیجانی2 | ||
1دانشجوی کارشناسی ارشد گروه گیاهپزشکی، دانشکدة کشاورزی، دانشگاه جیرفت | ||
2استادیار گروه گیاهپزشکی، دانشکدة کشاورزی، دانشگاه جیرفت | ||
3استادیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی جنوب استان کرمان | ||
چکیده | ||
در سالهای اخیر بحث امکان کنترل بیولوژیک بیمارگرهای خاک زاد موردتوجه جدی محققان قرار گرفته است که از آن جمله میتوان به کاربرد باکتریهای آنتاگونیست بهویژه باکتریهای گروه سودومونادهای فلورسنت در کنترل بیماریهای خاکزی گیاهان اشاره کرد. بیمارگرهای Sclerotinia sclerotiorum، Pythium aphanidermatum از عاملهای بیماریزای مهم گیاهان مختلف ازجمله خیار هستند. در این پژوهش 81 جدایه از ریزوسفر خیار جداسازی، خالصسازی و بر مبنای ویژگیهای ریختشناختی (مورفولوژیکی)، فیزیولوژیکی و بیوشیمیایی شناسایی شدند. بررسی تأثیر آنتاگونیستی جدایهها به روش کشت متقابل نشان داد که جدایههای 19C، 21B، 24A، 33B، 33C، 38A، 42D و 43C اثر بازدارندگی مؤثری علیه این بیمارگرها داشتند و ترکیبهای فرار این جدایهها بهطور معنیداری از رشد پرگنة این بیمارگرها نسبت به شاهد بازدارندگی کردند. در آزمون گلخانهای نیز جدایههای 19C و 24A میزان شاخص بیماری ناشی از Pythium aphanidermatum را بیش از 70درصد و میزان شاخص بیماری ناشی از Sclerotinia sclerotiorum را بیش از 60درصد در مقایسه با شاهد کاهش دادند. تولید سورفکتین، آنزیم پروتئاز و سیانید هیدروژن بهعنوان سازوکارهای بازدارندگی در جدایههای برتر بررسی شدند. جدایههای، 19C، 24A، 33B، 33C، 38A، 42D و 43C قادر به تولید آنزیم پروتئاز، جدایة 19C قادر به تولید سورفکتین و جدایههای 33B، 33C، 38A، 42D و 43C قادر به تولید سیانید هیدروژن بودند. نتایج بهدستآمده از توالییابی ناحیة ژنی 16S-rDNA جدایههای مؤثر در کنترل بیمارگرها نشان داد که این جدایهها با درجۀ اعتبارسنجی زیاد (100 درصد) در کنار جدایههای متعلق به جنسهای Pseudomonas، Stenotrophomonas و Flavobacterium قرار گرفتند. | ||
کلیدواژهها | ||
آنزیم پروتئاز؛ ترکیبهای فرار؛ شناسایی مولکولی؛ کنترل بیولوژیک | ||
عنوان مقاله [English] | ||
Evaluation of biocontrol characteristics of antagonistic bacteria isolated from cucumber rhizosphere against Sclerotinia sclerotiorum and Pythium aphanidermatum | ||
نویسندگان [English] | ||
Saman Bagheri1؛ Hamidreza Alizadeh2؛ Mehdi Azadvar3؛ Amirreza Amirmijani2 | ||
1M. Sc. Student, Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran | ||
2Assistant Professor, Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran | ||
3Assistant Professor, Department of Plant Protection, South Kerman Agricultural and Natural Resources Research and Education Center, Iran | ||
چکیده [English] | ||
Biological control of soil-borne diseases of plants has received serious attention among plant pathologists in recent years. In this regard, Rhizobacteria, more specifically fluorescent pseudomonads are known as an effective biocontrol of plant diseases. Pseudomonas spp. are promising agents to manage the disease caused by Sclerotinia sclerotiorum and Pythium aphanidermatum. In this study, we screened 81 bacterial isolates from cucumber rhizosphere for their antagonistic effects against the pathogens using dual culture method and investigating their ability to produce inhibiting volatile metabolites. Results indicated that isolates 19C, 21B, 24A, 33B, 33C, 38A, 42D, and 43C had significant inhibitory effects on the pathogens and their volatile metabolites significantly reduced the mycelial growth of the pathogens in comparison with controls. In greenhouse trials, isolates 19C and 24A reduced disease index of Pythium aphanidermatum more than 70% and that of Sclerotinia sclerotiorum more than 60% compared with controls. The isolates 19C, 24A, 33B, and 33C were able to produce protease. Isolate 19C was able to produce surfactin and isolates 33B and 33C were able to produce hydrogen cyanide. Molecular identification of isolates was conducted based on partial sequence of 16srDNA amplified by specific primers fD1 and rD1 thereby the isolates showed significant homology with Pseudomonas spp., Stenotrophomonas spp. and Flavobacterium spp. | ||
کلیدواژهها [English] | ||
biological control, molecular methods, protease enzyme, Volatile compounds | ||
مراجع | ||
Abdelzaher, H. M. (2003). Biological control of root rot of cauliflower (caused by Pythium ultimum var. ultimum) using selected antagonistic rhizospheric strains of Bacillus subtilis. New Zealand Journal of Crop and Horticultural Science, 31(3), 209-220.
Ahmadzadeh, A., Sharifi-Tehrani, A., Hejaroud, GH., Zad, J., Okhovvat, M. & Mohammadi, M. (2003). Effects of fluorescent pseudomonas on Pythium ultimum causal agent of seed rot of common bean. Iranian Journal of Agriculture Science, 34(4), 793-807. (in Farsi)
Akbari-kiaroudi, S. L., Niknezhad-kazempour, M., Elahineia, S. A. & Khodaparast, S. A. (2005). Effect of antagonistic bacteria on Sclerotinia sclerotiorum, the causal agent of white mold in oilseed rape. Plant Pathology, 41(3) 307-328. (in Farsi)
Al‐Sa'di, A., Drenth, A., Deadman, M., De Cock, A. & Aitken E. (2007). Molecular characterization and pathogenicity of Pythium species associated with damping‐off in greenhouse cucumber (Cucumis sativus) in Oman. Plant Pathology, 56(1), 140-149.
Alström, S. (1987). Factors associated with detrimental effects of rhizobacteria on plant growth. Plant and Soil, 102(1), 3-9.
Baharlouei, A., Sharifi-Sirchi, G. & Shahidi Bonjar, G. (2011). Biological control of Sclerotinia sclerotiorum (oilseed rape isolate) by an effective antagonist Streptomyces. African Journal of Biotechnology, 10(30), 5785-5794.
Basak, A., Lee, M. W. & Lee, T. S. (2002). Inhibitive activity of cow urine and cow dung against Sclerotinia sclerotiorum of cucumber. Mycobiology, 30(3), 175-179.
Behboudi, K., Sharifi-Tehrani, A., Hejaroud, GH. Zad, J., Mohammadi, M. & Rahimian, H. A. (2005). Investigating effects Pseudomonas fluorescents on Sclerotinia sclerotiorum (Lib.) de Bary causal agent of sunflower root rot. Iranian Journal of Agriculture Science, 36(4), 791-803. (in Farsi)
Boland, G. & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16(2), 93-108.
Cao, Y., Xu, Z., Ling, N., Yuan, Y., Yang, X., Chen, L., Shen, B. & Shen, Q. (2012). Isolation and identification of lipopeptides produced by B. subtilis SQR9 for suppressing fusarium wilt of cucumber. Scientia Horticulturae, 135, 32-39.
Christov, M., Kiryakov, I., Shindrova, P., Encheva, V. & Christova, M. (2004). Evaluation of new interspecific and intergeneric sunflower hybrids for resistance to Sclerotinia sclerotiorum. In: Proceedings of 16th international sunflower conference, Fargo, North Dakota, USA, International Sunflower Assoiciation, Paris, France, Aug. 29 - Sep. 2, II (pp. 693-698)
Dashti, A., Jadaonl, M. M., Abdulsamad, A. M. & Dashti, H. M. (2009). Heat treatment of bacteria: A simple method of DNA extraction for molecular techniques. Kuwait Medical Journal, 41(2), 117-122.
Dunne, C., Crowley, J. J., Moënne-Loccoz, Y., Dowling, D. N., Bruijn, S. & Gara, F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology, 143(12), 3921-3931.
Fahy, P. C. & Hayward, A. C. (1983). Media and methods for isolation and diiagnostic tests. In: Fahy, P. C.and Persley, G. J. (eds.). Plant Bacterial Disease, A Diagnostic Guide, pp. 337-378. Academic Press, Sydeny, Australia.
Feignier, C., Besson, F. & Michel, G. (1995). Studies on lipopeptide biosynthesis by Bacillus subtilis: isolation and characterization of iturin−, surfactin+ mutants. FEMS Microbiology Letters, 127(1-2), 11-15.
Fernando, W., Nakkeeran, S., Zhang, Y. & Savchuk, S. (2007). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 26(2), 100-107.
Fiddaman, P. & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology, 74(2), 119-126.
Fravel, D. R. (1988). Role of antibiosis in the biocontrol of plant diseases. Annual Review of Phytopathology, 26(1), 75-91.
Graham, D. C. & Hodgkiss, W. (1977). Identify of gram negative, yellow pigmented, fermentative bacteriaisolated from plants and animales. Journal of Applied Bacteriology, 30, 175-189.
Gould, W., Hagedorn, C., Bardinelli, T. & Zablotowicz, R. (1985). New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Applied and Environmental Microbiology, 49(1), 28-32.
Hagedorn, C., Gould, W. and Bardinelli, T. (1989). Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied and Environmental Microbiology, 55(11), 2793-2797.
Jamali, F., Sharifi-Tehrani, A., Okhovvat, M. & Zakeri, Z. (2004). Effect of antagonistic bacteria on the control of fusarium wilt of chickpea caused by Fusarium oxysporum under greenhouse conditions. Iranian Journal of Agriculture Science, 36(3), 793-807. (in Farsi)
Keel, C., & Défago, G. (1997). Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: GangeAC, Brown VK, eds. Multitrophic interactions in terrestrial system. Oxford: Blackwell Science, 27-47.
Keel, C., Weller, D., Natsch, A., Défago, G., Cook, R. & Thomashow, L. (1996). Conservation of the 2, 4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environmental Microbiology, 62(2), 552-563.
Khabbaz, S. E., Zhang, L., Cáceres, L. A., Sumarah, M., Wang, A. & Abbasi, P. A. (2015). Characterization of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping‐off and root rot diseases. Annals of Applied Biology, 166(3), 456-471.
Kim, D. S., Weller, D. M. & Cook, R. J. (1997). Population dynamics of Bacillus sp. L324-92R12 and Pseudomonas fluorescens 2-79RN10 in the rhizosphere of wheat. Phytopathology, 87(5), 559-564.
Khodaparast, S. A. (2010). Kingdom fungi. University of Guilan, Rasht. p 811. (in Farsi)
Lelliott, R. A., Billing, E., & Hayward, A. C. (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology, 29(3), 470-489.
Leong, J. (1986). Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annual Review of Phytopathology, 24(1), 187-209.
Li, H., Li, H., Bai. Y., Wang. J., Nie. M., Li, B. & Xiao, M. (2011). The use of Pseudomonas fluorescens P13 to control sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape.The Journal of Microbiology, 49(6), 884-889.
Lozano, J. C. & Sequeira, L. (1970). Differentiation of races of Pseudomonas solanasearum by a leaf infilteration techniques. Phytopathology, 60, 833-838.
Lumsden, R. (1979). Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology, 69(8), 890-895.
Maheshwari, D. K. (Ed.). (2013). Bacteria in agrobiology: disease management. Springer Science & Business Media.
Mansouripour, S. M., Alizadeh, A. & Safaei, N. (2009). Biocontrol ability and population dynamics of bacterial antagonists against Sclerotinia sclerotiorum in canola. Plant Pathology, 44(3), 232. (in Farsi)
Maurhofer, M., Keel, C., Haas, D. & Défago, G. (1995). Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathology, 44(1), 40-50.
Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D. & Défago, G. (1992). Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology, 82(2), 190-195.
Mehta, N. & Saharan, G. (2008). Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management, Springer. 486 pages.
Nakano, M. M., Marahiel, M. & Zuber, P. (1988). Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. Journal of Bacteriology, 170(12), 5662-5668.
Naseby, D. C., Way, J. A., Bainton, N. J. & Lynch J. M. (2001). Biocontrol of Pythium in the pea rhizosphere by antifungal metabolite producing and non‐producing Pseudomonas strains.Journal of Applied Microbiology, 90(3), 421-429.
Oedjijono, M., Linet, A. & Dragar, C. (1993). Isolation of bacteria antagonistic to a range of plant pathogenic fungi. Soil Biology and Biochemistry, 25, 247-250.
Omati, F., Sharifi-Tehrani, A., Mohammadi, M., Hejaroud, G. A. & Zad, J. (2004). Antagonistic effects of Bacillus and Pseudomonas isolates on Phytophthora capsici the causal agent of pepper damping-off. Journal of Agricultural Sciences and Natural Resources, 10(4), 45-54. (in Farsi)
Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69(8), 875-880.
Safari-Asl, F., Rouhani, H., Falahati-Rastegar, M. & Jahanbakhsh, V. (2011). Investigating mechanisms of action of Bacillus spp. in control of cucumber root rot caused by Pythium ultimum and P. aphanidermatum. Journal of Plant Protection. 24(4), 445-456. (in Farsi)
Sarani, Sh. A., Sharifi-Tehrani, A., Ahmadzadeh, M. & Javan-Nikkhah, M. (2007). Efficiency of fluorescent pseudomonads in biological control of Rhizoctonia solani causal agent of oilseed damping off. Science and Technology of Agriculture and Natural Resources, 42, 261-270. (in Farsi)
Schaad, N. W. (1988). Laboratory Guide for Identification of Plant Pathogenic Bacteria. APS Press. St. Paul, Minnesota, USA.
Steadman, J. (1979). Control of plant diseases caused by Sclerotinia species. Phytopathology, 69, 904-907.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731-2739.
Washio, K., Lim, S. P., Roongsawang, N. & Morikawa, M. (2011). A truncated form of spoT, Including the ACT domain, inhibits the production of cyclic lipopeptide arthrofactin, and is associated with moderate elevation of guanosine 3′, 5′-Bispyrophosphate level in Pseudomonas sp. MIS38. Bioscience, Biotechnology, and Biochemistry, 75(10), 1880-1888.
Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. A. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology ,173(2), 697-703
Weller, D. & Cook, R. (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 73(3), 463-469.
Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26(1), 379-407.
Zdor, R. E. & Anderson, A. (1992). Influence of root colonizing bacteria on the defense responses of bean. Plant and Soil, 140(1), 99-107.
Zhou, T. & Paulitz, T. C. (1994). Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumber. Journal of Phytopathology, 142(1), 51-63.
| ||
آمار تعداد مشاهده مقاله: 1,064 تعداد دریافت فایل اصل مقاله: 1,169 |