تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,363 |
تعداد دریافت فایل اصل مقاله | 97,206,029 |
پیشبینی تراوایی سنگ مخزن کربناته با استفاده از شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان در یکی از مخازن نفتی ایران | ||
فیزیک زمین و فضا | ||
مقاله 4، دوره 43، شماره 2، مرداد 1396، صفحه 281-295 اصل مقاله (575.95 K) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2017.61701 | ||
نویسندگان | ||
یاسر عزیزی1؛ نوید شاد منامن* 2 | ||
1دانشجوی کارشناسی ارشد، مهندسی اکتشاف نفت، دانشگاه صنعتی سهند، تبریز، ایران | ||
2استادیار، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز، ایران | ||
چکیده | ||
تراوایی از مؤلفههای اساسی در ارزیابی مخازن هیدروکربنی است که عمدتاً از طریق اندازهگیریهای آزمایشگاهی از مغزه یا دادههای چاهآزمایی به دست میآید. با این حال، به دلیل هزینۀ زیاد و فراوانی کم این نوع از دادهها، پیشبینی تراوایی با استفاده از دادههای چاهنگاری از جایگاه ویژهای برخوردار است. در این مطالعه، برای تخمین تراوایی، ابتدا دادههای چاهنگارها با توجه به مطالعات زمینشناسی صورت گرفته بر روی میدان مورد مطالعه به چهار گروه رخسارههای الکتریکی دستهبندی میشوند: پکستون-وکستون–مادستون، پکستون–وکستون، گرینستون–پکستون و گرینستون–پکستون–وکستون. در این مطالعه، از شبکههای عصبی مصنوعی و ماشین بردار پشتیبان برای تخمین تراوایی در یکی از مخازن ناهمگون کربناته با استفاده از دادههای چهار چاه در میدان مذکور استفاده شده است. جهت تخمین تراوایی، ابتدا دادههای نگارههای چاه با استفاده از روشهای «تجزیهوتحلیل مؤلفههای اصلی» و «تجزیهوتحلیل خوشۀ مبتنی بر مدل» به رخسارههای الکتریکی تقسیمبندی شدهاند. سپس هر رخسارۀ الکتریکی بهعنوان ورودی شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان جهت تخمین تراوایی در نظر گرفته شدهاند. شبکۀ عصبی مصنوعی با استفاده از «توابع پسانتشار لونبرگ»، «گرادیان نزولی با تکانه وزنی» و «تابع یادگیری بیاس» با ده لایۀ مخفی آموزش داده شده است. از ماشین بردار پشتیبان با رگرسیونهای اپسیلون و نو با توابع کرنلی مختلف استفاده شده است. در این مطالعه، تابع کرنل شعاعی ماشین بردار پشتیبان دارای خطای کمتری در مقایسه با شبکۀ عصبی است. خطای حاصل از ماشین بردار پشتیبان برای رخسارههای الکتریکی گروه اول تا چهارم به ترتیب برابر است با: 0.0065، 0.0242، 3.6587 و 0.0195. | ||
کلیدواژهها | ||
تراوایی؛ رخسارۀ الکتریکی؛ رگرسیون؛ شبکۀ عصبی مصنوعی؛ ماشین بردار پشتیبان؛ نمودارهای پتروفیزیکی | ||
عنوان مقاله [English] | ||
Permeability Prediction in one of the Iranian Carbonate Oil Reservoir using Artificial Neural Network and Support Vector Machine | ||
نویسندگان [English] | ||
Yaser Azizi1؛ Navid Shad Manamanan2 | ||
1M.Sc. Student, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran | ||
2Assistant Professor of Seismology, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran | ||
چکیده [English] | ||
Permeability is one of the main parameters in the oil reservoir evaluation that is usually estimated by using well test data and laboratory measurements from the reservoir core samples. However, these methods are very expensive and time consuming, and usually a few number of wells have such information to obtain permeability and other reservoir parameters. Therefore, the prediction and assessment of the reservoir rock permeability using other non-expensive and indirect methods can effectively reduce the exploration and production costs and give us useful information about the permeability of the hydrocarbon reservoirs. Nevertheless, we have to consider that this kind of information may suffer in resolution and the results may have some unacceptable errors in estimation of the permeability. Thus, using proper prediction methods and comparing the obtained results with the permeability from the well test data and laboratory measurements leads to better and reasonable predictions of the permeability in oil and gas reservoirs. Moreover, the type of the reservoir rocks can also severely affect the estimated permeability. Usually the permeability estimation in the sand stone reservoirs is much easier than in carbonate reservoirs, especially in the heterogeneous carbonate reservoirs. This is mostly because of the porosity type and the conditions of depositional environments. In this regard, using well log data also has important role in the permeability prediction. This is mostly because the well logging tools run in many wells and well log data are more available. Including more data in the prediction process will result in better constrained permeability estimation. Common methods of permeability prediction use empirical equations based on not always sufficient core data. These equations are usually used for a special type of reservoir and may not applicable to various types of reservoirs. In this study, Artificial Neural Networks (ANN) and Support Vector Machine (SVM) methods are used to estimate permeability parameter in one the Iranian heterogeneous carbonate oil reservoir using well log data from the 4 wells, located in the given oilfield. These wells have 7 common logs that are incorporated in the permeability prediction process. The well log data firstly are classified into 4 electrofacies based on geological studies carried out on the field. The classified electrofacies are as follow: packstone-wackestone, mudstone-packstone, wackstone-grainstone-packstone, grainstone-packstone-wackstone. The classification is done by using Principle Component Analysis (PCA) and Model Based Cluster Analysis (MCA) methods. Then, each group of elecrtofacies is used as input data for Artificial Neural Networks and Support Vector Machine methods to predict permeability. Artificial Neural Network (ANN) is trained by using Levenberg-Marquardt back propagation algorithm and Gradient Descent method with Momentum Weight and Bias Learning Function with 10 hidden layers. The Support Vector Machine (SVM) method is implemented using Nu and Epsilon algorithms and different types of kernel functions, such as linear, radial based functions, polynomial and sigmoid functions. Usually, the radial based kernel function gives the best regression with minimum error values. Our results show that, for all of the electrofacies, Support Vector Machine (SVM) method has less error than Artificial Neural Network (ANN) in the regression process. The Support Vector Machine (SVM) errors for the above mentioned Electrofacies are as following: 0.0065, 0.0242, 3.6587 and 0.0195 respectively. | ||
کلیدواژهها [English] | ||
Permeability, Electrofacies, Support vector Machine, Artificial Neural Network, Regression, Well logs | ||
مراجع | ||
مهیاری، ش.، صنیعی، م.، 1393، آنالیز غربالگری روشهای مختلف ازدیاد برداشت نفت با استفاده از شبکههای عصبی مصنوعی برای تعدادی از مخازن جنوب غرب ایران، ماهنامه علمی- ترویجی اکتشاف و تولید نفت و گاز، 115، 62-65. فتاحی، ه.، بیات زاده، ز.، 1395، پیشبینی گشتاور چرخشی مورد نیاز برای انجام عملیات حفاری انحرافی در لایههای سنگی با استفاده از ترکیب شبکۀ عصبی مصنوعی و الگوریتم بهینهسازی مبتنی بر جغرافیای زیستی، نشریه روشهای تحلیلی و عددی در مهندسی معدن، 11. Banfield, J. D. and Raftery, A. E., 1993, Model-based Gaussian and Non-Gaussian Clustering, Biometrics 49, No. 3, 803. Bucheb, J. A. and Evans, H. B., 1994, Some Applications of Method Used in Electrofacies Identification, The Log Analyst 35, 14. Cristianini, N. and Shaw-Taylor, J., 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (New York: Cambridge University Press) p 189. Davis, JC., 2002, statistics and data analysis in geology third edition, john wiley & son, New York City. Fraley, C. and Raftery, A. E., 1998, Mclust: Software for Model-Based Cluster and Discriminant Analysis, Technical Report No. 342, Dept. of Statistics, U. of Washington, Seattle, Washington. Lee, S. H. and Dutta-Gupta, A., 1999, Electrofacies Characterization and Permeability Predictions in Carbonate Reservoirs: Role of Multivariate Analysis and Nonparametric Regression, SPE56658, October. Lim, Jong-Se, Kang, J. M. and Kim, J., 1997, Multivariate Statistical Analysis for Automatic Electrofacies Determination from Well Log Measurements, paper SPE 38028 presented at the SPE Asia Pacific Oil and Gas Conference, Kuala Lumpur, 14–16 April. Mathisen, Sang Heon Lee and Akhil Datta-Gupta, 2001, Texas A&M U. Improved Permeability Estimates in Carbonate Reservoirs Using Electrofacies Characterization: A Case Study of the North Robertson Unit, West Texas. Mohaghegh, S., Arefi, R. and Ameri, S., 1996, Virtual measurement of heterogeneous formation permeability using geophysical well log responses, The Log Analyst (Society of Professional Well Log Analysts) pp 32–9. Nashawi, I. S. and Malallah, A., 2009, Improved electrofacies characterization and permeability predictions in sandstone reservoirs using a data mining and expert system approach. Petrophysics, 50(03). Noori, R., Karbassi, A. R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M. H., Farokhnia, A. and Ghafari Gousheh, M., 2011, Assessment of input variables determination on the SVM model performance using PCA, Gamma test and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401, 177-189. Ripley, B. D., 1994, Modern Applied Statistics with S-Plus, Springer-Verlag, New York City 301. Sang Heon Lee, SPE, Arun Kharghoria,SPE, and Akhil Datta-Gupta, 2002, Electrofacies Characterization and Permeability Predictions in Complex Reservoirs, June. Vapnik, V., 1995, The Nature of Statistical Learning Theory, Springer, New York. Wolff, M. and Pelissier-Combescure, J. 1982, “FACIOLOG—Automatic Electrofacies Determination,” paper presented at the SPWLA Annual Logging Symposium, Corpus Christi, Texas, 6–9 July. | ||
آمار تعداد مشاهده مقاله: 1,902 تعداد دریافت فایل اصل مقاله: 1,039 |