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Abstract 

The Makran subduction zone in northeast and the Sumatra subduction zone (Sunda) in the  
west have been known as tsunamigenic zones of the Indian Ocean. The 990 km long Makran 
subduction zone is located offshore of Iran, Pakistan and Oman. Similar to many subduction zones 
all over the world, the Makran accretionary prism is associated with an imbricate of thrust faults 
across the zone, which may rupture due to great earthquakes. Based on some studies, it has been 
suggested that the presence of young marine terraces along parts of the western Makran, Jask, and 
Konarak, providing a strong evidence for the occurrence of great thrust earthquakes in the western 
Makran. Besides, this region might have experienced a strong earthquake in 1483 (Mw=7.2). This 
study uses 2D seismic reflection data to map the splay faults in the western Makran subduction 
zone. The result of this interpretation has been presented on map showing the major splay and 
normal faults, in the south and north, respectively. Furthermore, Coulomb stress changes is 
calculated along the splay faults, following a hypothetical earthquake (Mw=7.2) on the 
megathrust. The amount of slip that transfers from the plate boundary onto the splay faults during 
large subduction earthquake and the pattern of slip partitioning between them are calculated. The 
results show that the slip on Megathrust increases stress in some parts of surrounding areas. Some 
splay faults are located in these areas that can be loaded in shallow depth and are likely the sources 
of aftershocks. Since the slip on splay faults has a key significance in generating tsunami, their 
analysis is an important issue in tsunami risk assessment. It is strongly suggested that the result of 
this study is used as an input parameter for a comprehensive tsunami hazard modeling in the 
Makran region. 
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1. Introduction 
The 990 Km long Makran subduction zone is 
located offshore of Iran, Pakistan and Oman 
(Mokhtari et al., 2008).  
By using 2D seismic reflection data, we map 
and interpret the splay faults in the western 
Makran region located on the Iranian 
territory. Splay faults are common features in 
most accretionary prisms, growing as 
sediments are added from the upper plate. 
These thrust faults in accretionary prisms 
may rupture due to the great subduction zone 
earthquakes (Sykes and Menke, 2006). Splay 
faults are also known as secondary tsunami 
sources and have been responsible for a large 
part of tsunami losses during the tsunamis 
occurred in the past (Cummins and Kaneda, 
2000). 
Previous studies showed that the occurrence 

of an earthquake can affect the faults that 
located in the surrounding area and by 
loading them, brought them to the failure 
condition. Therefore, key features of thrust 
earthquake triggering, inhibition, and 
clustering can be explained by Coulomb 
stress changes. The slip on blind thrust faults 
increases the stress on some nearby zones, 
particularly above the source fault. Blind 
thrusts can thus trigger the slip on secondary 
faults at shallow depth and typically produce 
broadly distributed aftershocks (King et al., 
1994; Lin and Stein, 2004). Based on Lin and 
Stein (2004), subduction zone ruptures are 
calculated to promote normal faulting events 
in the outer rise and to promote thrust-
faulting events on the periphery of the 
seismic rupture and its downdip extension. 
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Thus, the occurrence of an earthquake on the 
megathrust could transfer stress on the splay 
faults where known as secondary tsunami 
sources.  
This study interprets the seismic profiles 
indicated on Figure 1 and map the  
splay faults along the western Makran.  
Then, Coulomb stress changes and its  
effects on splay faults based on a 
hypothetical earthquake (Mw=7.2) in this 
region is calculated in order to assess  
the transferred stress on the surrounding 
faults. 
 
2. Tectonic and seismotectonic setting of 
the Makran Accretionary Prism 
The east-west trending Makran Subduction 
zone with 990 km length is located offshore 
of Iran, Pakistan and Oman. The Makran 
subduction zone marks a zone of 
convergence where the oceanic crust of the 
Oman Sea is subducting beneath the Eurasian 
continental plate since early Cretaceous 
(Farhoudi and Karig, 1977). The Plate 
Boundaries in Makran region are: (i) The 
Zendan-Minab Fault System that represents 
the eastern boundary of the Arabian Plate 
(Figure 1), (ii) the Oranch Fault Zone that is 
part of the Eurasian–Indian plate boundary 
complex (Figure 1), and (iii) the NE–SW 
trending Murray Ridge System in the 
northern Arabian Sea extends for about 750 
km. 
Unlike most of the other accretionary 
complexes in the world, there is no obvious 
trench developed in front of the Makran 
Accretionary Complex (Mokhtari et al., 
2008). The absence of trench in this region 
can be due to the fact that the subduction 
angle at the accretionary front is very low 
that could be due to the existence of  
thick sediments with low compaction or it 
might be caused by high deposition rate. It 
seems that the first reason may be more 
plausible. 
The rate of convergence along the Makran 
boundary increases slightly from the west 

towards the east (DeMets et al., 1990). 
Average Convergence rate in the Makran 
subduction zone is about 4 cm/yr that 
increases from 3.65 cm/yr in west to 4.2  
in the east. Moreover, GPS measurements 
suggest that the lowest subduction rate  
of Oman plate beneath the Eurasian plate 
occurs in the west at about 1.95 cm/yr while 
the highest rate occurs at about 2.7 cm/yr in 
the east (Vernant et al., 2004). Based on 
Zarifi (2006), the direction of compressional 
stress axis is rotating along the Makran 
subduction zone. The western Makran stress 
field is under the influence of the collision 
between Arabia and Eurasia, while the 
eastern Makran stress field is affected by 
Indian-Eurasian collision. The Makran 
subduction zone exhibits a strong 
segmentation between east and west in its 
seismic behavior. The plate boundary in 
eastern Makran has ruptured in large and 
great thrust earthquake of 1945 and currently 
experiences small- and moderate-sized thrust 
earthquakes. On the contrary, western 
Makran exhibits no well-documented great 
earthquakes in historic times, and modern 
instrumentations are not detecting any 
shallow events along the plate boundary 
(Byrne et al., 1992). 
The present-day Makran accretionary prism 
located in offshore part of Iran has almost a 
triangular wedge geometry (Figures 2, 3 and 
4), and displays active thrust faults. The main 
phase of deformation of the imbricate fan at 
the front of the Makran accretionary prism 
occurred during the Late Miocene to Late 
Pliocene (Grando and McClay, 2007). The 
present day geometry of the seabed indicates 
that most of the fault-propagation folds are 
still active, and displayed surface topography 
on the seabed, suggesting that the 
accretionary prisms is suffering from the 
current deformations. Based on Grando and 
McClay (2007), since the Pliocene–
Pleistocene, the coastal Makran and the mid-
slope area have experienced uplift, normal 
faulting and ductile flows. 
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Among other parameters, it will be important 
to know the pre-stress state along the fault 
system and, particularly, principal directions 
near any branching junctions. These stress 
directions should include not only the 
regional tectonic stress field, but also the 
effects from previous earthquakes on the 
fault system, which may cause strong local 
deviations from the larger-scale stress field 
(Kame et al., 2003). 
Fukao (1979) indicated that rupture 
propagation onto splay faults within 
accretionary wedges is one of the main 
mechanisms for generating large tsunamis. In 
fact, different studies have shown that the 
total slip during a large megathrust 
earthquake can be partitioned between the 
subduction-zone plate boundary and splay 
faults within the accretionary wedge (e.g., 
Baba et al., 2006). The amount of slip that 
transfers from the plate boundary onto splay 
faults during large subduction earthquakes 
and the pattern of slip partitioning between 
them can be an important issue in view of 
tsunami hazard assessment, because the 
seafloor uplift due to splay faults is relatively 
larger, resulting in large tsunamis. 
 
6.2. Coulomb stress changes due to 
hypothetical earthquake along the 
Makran megathrust  
As mentioned in the previous sections, splay 
faults are known as secondary tsunami 
sources, and most of the moderate to large 
aftershocks usually occur on them. After a 

large earthquake on the megathrust, it will be 
possible that splay faults to be loaded and 
cause moderate or large aftershocks and 
consequently moderate or large tsunami. For 
investigation of transferred stress due to the 
occurred earthquakes on megathrust fault in 
surrounding area specially on splay faults, we 
attribute an earthquake with magnitude 
Mw=7.2 to the megathrust fault and then 
calculate the stress change due to this 
earthquake on splay faults. Occurrence of an 
earthquake with this magnitude are possible 
based on historical evidences and studies 
(Ambraseys and Melville, 1982; Byrne et al., 
1992; Page et al., 1979). Table (1) shows the 
characteristics of this earthquake. By using 
well-known relations in Wells and 
Coppersmith (1994) and Hanks and 
Kanamory (1979), we calculate length, 
width, moment and displacement for this 
hypothetical earthquake (Table 2). 
Based on data from Tables (1) and (2) and 
modeling parameters that are summarized in 
Table (3), we calculated Coulomb stress 
changes on splay faults as receiver faults  
(for µ’=0.4 and µ’=0.8), and results are 
shown respectively (Figures 6 and 7). As 
argued before, using 0.8 as a friction 
coefficient in the subduction zones has a 
reliable result. However, we used both 0.4 
and 0.8 as a friction coefficient to compare 
the results, and we observed that for µ’=0.8 
the off-fault lobes of stress change in cross-
sections are larger than end-fault lobes 
(Figures 6 and 7). 

 
Table 1. Source parameters for assumed earthquake. 

Rake Dip Azimuth Magnitude (Mw) Depth (km) Lon. Lat. 

90 7 270 7.2 10 58.80 24.77 
 
Table 2. Length, width, moment and slip for this hypothetical earthquake by using well-known relations in Wells and 

Coppersmith (1994) and Hanks and Kanamory (1970, 1979). 

Length (km) 57 

Width (km) 22 

Area (km2) 1254 

Moment (*1018)N.M  0.708 

Minimum Slip (m) 0.8 

Maximum Slip (m) 1.77 

Mean Slip (m) (used for calculation) 1.25 
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7. Conclusions 
Earthquakes that occur in subduction zones 
are so important because the largest 
earthquakes occur in this region and they can 
cause tsunamis. Identifying of splay faults in 
the subduction zones will be useful because 
of seismic hazard and tsunami hazard. These 
faults based on studies conducted elsewhere 
on the other subduction zones have been 
indicated as a major contributor for tsunami 
strengthening factor mainly in local sense. 
We used seismic data and distribution of 
earthquakes in the Makran to identify splay 
faults in this region. These seismic data have 
been utilized in mapping the splay faults in 
the western Makran region  about which we 
do not have enough knowledge because of 
less earthquake data. We have measured the 
branching angle of the splay faults. They 
have the range φ = 15°	to	35°, with average 
of 25° and Ψ = 7°. Splay faults with sharper 
dip (φ = 	35°) are located at the front of the 
accretionary prism, and inner splay faults 
show gentle angles. These angles can be used 
in simulations of final rupture traces in the 
vicinity of the intersection and other studies 
about tsunami hazard modeling. 
In order to investigate the effect of large 
earthquake due to megathrust fault in the 
splay faults, we calculated the Coulomb 
stress changes due to a hypothetical 
earthquake that can occur in this fault. Our 
calculation showed that the transferred stress 
due to the hypothetical earthquake can affect 
the splay faults and at some parts of these 
splay faults that are located in front of the 
accerationary prism, and have sharp angles, 
the coulomb stress changes are positive. 
Therefore, after occurring of an earthquake 
along the megathrust, some parts of these 
splay faults are loaded and are the most 
vulnerable places for aftershocks and future 
events. Because these splay faults can be 
assumed as the secondary sources of tsunami, 
it is strongly recommended that these faults, 
their angle, and patterns of distributed 
Coulomb stress changes on them to be 
included for a more comprehensive tsunami 
hazard modeling. 
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