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This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) 
under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the 
deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule 
being applicable at finite strains and accounting for the chirality and material nonlinearity is presented. 
Mechanical properties of several carbon nanotubes (CNTs) are computed and compared with the existing 
theoretical results and a good agreement is observed. Moreover, by comparison with atomistic calculations, 
it is found that the present model can reproduce the energetics of axially deformed CNTs. The model is 
then adopted to study the dependence of the elastic properties on chirality, radius and strain which yields 
an upper bound on the stability limit of axially and circumferentially stretched nanotubes. The influence 
of chirality is found to be more prominent for smaller tubes and as the diameter increases, the anisotropy 
induced by finite deformations gets nullified. It is discerned that the constitutive properties of the CNT 
can vary with deformation in a nonlinear manner. It is also found that the CNT displays a martial softening 
behavior at finite tensile strains and a hardening behavior at slightly compressive strains.

1. Introduction
Thanks to their outstanding mechanical and 

electronic properties [1-3], carbon nanotubes hold 
great promise for numerous applications in nano-
structured materials, nano-electromechanical 
systems, molecular electronics, nanocomposites 
and etc. Carbon nanotubes are known to be capable 
of sustaining large elastic deformations without 
developing lattice defects [4]. 

To make proper use of these nanomaterials, a 
good knowledge of their mechanical properties is 

desperately required. A number of experimental 
and theoretical studies have been conducted 
to explore the mechanical properties of carbon 
nanotubes and graphene sheets (GSs). Some 
primary experimental works concerning the 
measurement of the elastic properties of CNTs can 
be found in [5-10]. However, as well known, due 
to very small size of the structure at nanoscale, 
direct determination of the mechanical properties 
in experiment is very difficult.

Different atomistic modeling approaches such as 
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tight-binding models [11-13], ab initio calculations 
[14-16], simulations based on analytical potentials 
[17-30] have been developed to extract elastic 
constitutive properties. Molecular dynamics 
(MD) simulations with the Tersoff-Brenner 
interatomic potential for carbon [17, 19-21] and 
other potential functions such as Keating potential 
[18], summation of pairwise harmonic potentials 
[22] and the potential considering both the stretch 
in bond length and change in bond angle [23, 24] 
have been adopted by the researchers and a large 
variation of Young’s modulus has been reported. 
Recently, Li et al. [30] made a comparison between 
the mechanical and thermal properties of single-
walled carbon nanotubes and boron nitride 
nanotubes performing MD simulations with the 
parameterized Tersoff potentials. In these physics-
based methods, approximate polynomial fits or 
numerical approximation of derivatives in the 
extraction of the elastic moduli lead to significant 
numerical errors [4]. Moreover, the atomic 
modeling techniques are time-consuming and 
restricted to small-sized structures having a small 
number of molecules or atoms.

As the dimensions of a structure diminish to a 
very small scale (e.g., micro/nanoscale), the size 
effects become significant. Modified (non-classical) 
continuum theories such as the nonlocal elasticity 
theory [31, 32], couple stress theory [33, 34] and 
strain gradient theory [35, 36] account for the size 
effects by incorporating length scale parameters 
into the constitutive relations. In this respect, 
Wang et al. [37] developed a size-dependent 
beam model based on the nonlocal elasticity and 
Timoshenko beam theories to consider the small 
scale and transverse shear deformation effects in 
the free vibration analysis of micro\nanobeams.  
The effect of nonlocality on the static deflection, 
critical buckling load and natural frequencies 
of CNTs was described by Reddy and Pang [38] 
through incorporating Eringen’s elasticity theory 
into the Euler–Bernoulli and Timoshenko beam 
theories. Hu et al. [39] analyzed the transverse and 
torsional wave propagations in single- and double-
walled CNTs by a nonlocal elastic cylindrical shell 
model. They also used MD simulations to calibrate 
the scale coefficient for the nonlocal model. On 
the basis of the thermal elasticity mechanics and 
Eringen’s nonlocal constitutive relations, Murmu 
and Pradhan [40] studied the thermal vibration 
of single-walled carbon nanotubes embedded in 
an elastic matrix. Civalek et al. [41] employed 

the differential quadrature approach to simulate 
the nonlocal bending of carbon nanotubes with 
different boundary conditions. Based on von 
Kármán geometric nonlinearity, Timoshenko and 
nonlocal elasticity theories, Yang et al [42] modeled 
single-walled carbon nanotubes as nanobeams and 
analyzed the nonlinear free vibration of them. Lim 
and Yang [43] presented an exact nonlocal model for 
wave propagation in carbon nanotubes according 
to the variational principal and the Euler-Bernoulli 
model. Akgöz and Civalek [44] presented analytical 
solutions accounting for the scale influence for 
the buckling of clamped-free carbon nanotubes 
employing the modified strain gradient and couple 
stress theories. An analytical Euler–Bernoulli beam 
model considering the nonlocality was proposed 
by Yang et al. [45] to describe the wave propagation 
in fluid-filled SWCNTs. Demir and Civalek [46] 
derived finite element formulation for vibrations of 
Euler-Bernoulli nanobeams axially compressed and 
embedded in elastic medium using the nonlocal 
elasticity. They [47] also developed a nonlocal beam 
model taking the size effect into account for elastic 
stability of microtubules surrounded by an elastic 
matrix. The finite element method was adopted for 
doing numerical calculations. Akgöz and Civalek 
[48] analytically investigated the bending response 
of simply-supported carbon nanotubes resting 
on an elastic foundation in the framework of the 
modified strain gradient elasticity and higher-order 
shear deformation beam theories. 

The aforementioned full continuum models 
suffer from some shortcomings as follows [49]. They 
introduce Young’s modulus and thickness concept 
for the carbon nanotube in building the stiffness 
matrix whose values are scattered in the literature. 
Moreover, these models depend on extra material 
constants which need fitting of experimental 
or atomistic simulations results to properly be 
determined. Further, the continuum beam or shell 
models ignore the material nonlinearity due to the 
bond interactions [49].  

Another class of the theoretical approaches 
overcoming the limitations of full atomistic and 
full continuum models is the coupled atomistic-
continuum method based on the Cauchy-Born 
rule. In these methods, the atomistic information 
are directly incorporated into the constitutive law at 
the continuum level i.e., the constitutive properties 
are obtained from the underlying lattice. Carbon 
nanotube is modeled as a curved two-dimensional 
crystalline membrane without thickness. Hence, 
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the ambiguous issue of the definition of thickness 
and the parameter fitting process involved in the 
non-classical continuum theories are bypassed. 
The model on the basis of the Cauchy-Born rule 
is capable of describing the mechanics of crystals 
at finite strains [50]. Zhang et al. [51] developed 
a nanoscale continuum theory based on the 
standard Cauchy-Born rule to estimate linear 
elastic modulus of carbon nanotube without 
accounting for the effect of initial curvature. A 
finite deformation continuum theory using the 
exponential Cauchy-Born rule was developed by 
Arroyo and Belytschko [50, 52, 53] to study the 
elastic properties and large deformation of carbon 
nanotubes. Effect of radius on Young’s modulus of 
armchair and zigzag CNTs was studied by Jiang et 
al. [54] using a continuum analysis incorporating 
the interatomic potential. Jiang et al. [55] 
developed a finite-temperature continuum theory 
based on the interatomic potentials to describe 
the temperature dependence of the material 
properties of graphene and diamond. Guo et al. 
[56] and Wang et al. [57] incorporated the second-
order deformation gradient into the kinematic 
description and proposed a higher-order Cauchy-
Born rule. The energy, mechanical properties 
such as Young’s modulus, Poisson’s ratio [56, 57] 
and bending stiffness [57] of carbon nanotubes 
were investigated. With the use of an atomistically 
enriched continuum analysis, Chandraseker 
and Mukherjee [4] calculated shear and Young’s 
moduli of CNTs under coupled extension and twist 
deformations. Considering SWCNTs as crystal 
membranes without thickness, a closed-form 
formula for the bending stiffness of SWCNTs was 
derived by Guo and Zhang [58] using the molecular 
mechanics model and the deformation mapping 
technique. Guo et al. [59] established a nanoscale 
quasi-continuum constitutive model based on 
the temperature-related higher-order Cauchy–
Born rule to investigate the thermo-mechanical 
properties of single-walled carbon nanotubes. 
Ansari et al. [60-64] calculated the constitutive 
properties for the nonlocal continuum modeling of 
GSs [60-62] and carbon nanotubes [63, 64] from 
the underlying lattice. They used the standard 
Cauchy-Born rule to establish a linkage between 
the strain energy induced in the continuum and the 
interatomic potential. Some researchers employed 
nanoscale continuum models wherein the carbon-
carbon bond is replaced by a continuum element 
(such as truss, spring and beam) and evaluated the 

mechanical properties of CNTs [65-68].
Owing to the nonlinear interatomic interactions, 

the CNTs and GSs display a nonlinear material 
behavior [69]. This necessitates the knowledge of 
the elastic properties of these nanostructures at 
finite strains. However, few works have been carried 
out on the elastic behavior of the carbon nanotubes 
and graphene sheets under finite deformation. 
Zhou and Huang [70] used a MD approach to 
study the internal relaxation and elastic moduli 
of single layer graphene sheet subject to in-plane 
deformation. Extensional stiffness coefficients of 
graphene were investigated by Lu and Huang [71] 
using molecular dynamics simulation with second 
generation reactive empirical bond order (REBO) 
potential. Strong anisotropy was found for the 
in-plane moduli of a graphene sheet under finite 
stretches. Lu et al. [72] proposed analytical formulae 
for the elastic bending modulus of GS based on an 
empirical potential. They investigated the influence 
of curvature on bending modulus of GS subject to 
cylindrical bending at finite curvatures. Employing 
an atomistic–continuum multiscale approach, in 
which the deformed bond length was considered 
as a function of in-plane strains and curvatures, 
Singh and Patel [69] evaluated the effect of different 
combinations of induced strain/curvature on 
stiffness coefficients of graphene sheets. 

To the best of the authors’ knowledge, the 
elastic properties of a carbon nanotube under 
finite deformation have not been evaluated using 
multiscale analysis based on the higher-order 
Cauchy-Born rule. In this paper, the elastic material 
properties of CNTs under tension, compression 
and hydrostatic pressure are studied by the use 
of a membrane theory. The overall deformation 
of SWCNTs is described via smooth mapping 
functions defined on the planar GS. The strain 
energy of the membrane is written in closed-form 
exclusively in terms of the interatomic potentials 
in the framework of the HCB rule. This enables 
one to derive analytical expressions for the elastic 
moduli in terms of the atomistic potential. The 
resulting constitutive model does not involve any 
additional phenomenological input and is a finite 
deformation model in nature. Selected results 
are first compared with those of other multiscale 
approaches and atomistic calculations available in 
the literature to verify the validity of the present 
analysis. Afterward, the model is employed to 
describe the energetics and elastic properties of 
carbon nanotubes at the equilibrium state and at 
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finite axial and circumferential strains.

2. Hyperelastic constitutive model
In this paper, the higher-order Cauchy–Born 

rule is adopted to link the deformation of the 
atomistic crystalline lattice to that of the continuum 
field. Using this rule, a hyperelastic strain energy 
density induced in the continuum is formulated 
from the bond energies over a representative cell 
of the atomic lattice. The undeformed or reference 
system ∀0  is considered to be the planar graphene 
sheet replaced herein by a rectangular continuum 
surface without thickness (or actually, a surface of 
one atom thickness). The atoms are assumed to lie 
on the surface and the bonds are chords of it.

2.1. Continuum strain energy density 
The higher-order Cauchy–Born rule accounts 

for the bending and original curvature of the 
crystal effects by incorporating the second-
order deformation gradient into the kinematic 
description of deformation of the CNT. This 
causes the strain energy density to be dependent 
on both the first- and second-order deformation 
gradients and so, the resulting constitutive model 
to be much closer to the reality. Let AIJ denote the 
lattice vector between atoms I and J in the reference 
configuration and aIJ be the deformed vector in the 
current configuration. According to the HCB rule, 
the deformation of the lattice vector in the crystal 
is connected to the continuum deformation field as

𝐚𝐚𝐼𝐼𝐼𝐼 = 𝐅𝐅 ⋅ (𝐀𝐀𝐼𝐼𝐼𝐼 + 𝛈𝛈) + 1
2𝐆𝐆: ((𝐀𝐀𝐼𝐼𝐼𝐼 + 𝛈𝛈)⨂(𝐀𝐀𝐼𝐼𝐼𝐼 + 𝛈𝛈)) 

   
(Eq. 1)

Where F and G stand for the first-order and 
second-order deformation gradients, respectively. 
The vector η=(η1,η2) is an inner relaxation 
parameter considered between two simple Bravais 
lattices in the reference configuration [50-53], as 
shown in Fig. 1, to ensure the internal equilibrium 
of the deformed graphene sheet and CNT. 

To reflect the interatomic interactions, the 
Tersoff-Brenner multi-body potential [73, 74] is 
employed according to which the bond energy 
between atoms  and  is evaluated as

𝑉𝑉(𝑎𝑎𝐼𝐼𝐼𝐼) = 𝑉𝑉𝑅𝑅(𝑎𝑎𝐼𝐼𝐼𝐼) − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴(𝑎𝑎𝐼𝐼𝐼𝐼)                                 (Eq. 2)
where aIJ denotes the bond length. BIJ indicates 

a multi-body coupling between the interatomic 
bond I-J and the local environment of atom I, VR 
and VA are the pair-additive repulsive and attractive 
interaction terms, respectively given by

𝑉𝑉𝑅𝑅(𝑎𝑎𝐼𝐼𝐼𝐼) =
𝐷𝐷(𝑒𝑒)

𝑆𝑆 − 1 𝑒𝑒
−√2𝑆𝑆𝛽𝛽(𝑎𝑎𝐼𝐼𝐼𝐼−𝑅𝑅(𝑒𝑒))𝑓𝑓𝑐𝑐(𝑎𝑎𝐼𝐼𝐼𝐼) 

                    
(Eq. 3)

𝑉𝑉𝐴𝐴(𝑎𝑎𝐼𝐼𝐼𝐼) =
𝐷𝐷(𝑒𝑒)𝑆𝑆
𝑆𝑆 − 1 𝑒𝑒

−√2/𝑆𝑆𝛽𝛽(𝑎𝑎𝐼𝐼𝐼𝐼−𝑅𝑅(𝑒𝑒))𝑓𝑓𝑐𝑐(𝑎𝑎𝐼𝐼𝐼𝐼)                   
(Eq. 4)

𝐵𝐵𝐼𝐼𝐼𝐼 = (1 +∑ 𝐺𝐺(𝜃𝜃𝐼𝐼𝐼𝐼𝐼𝐼)𝑓𝑓𝑐𝑐(𝑎𝑎𝐼𝐼𝐼𝐼)
𝐼𝐼(≠𝐼𝐼,𝐼𝐼)

)
−𝛿𝛿

 
                   

(Eq. 5)

in which denotes atoms except I and J. aIK is 
the bond length between atoms I and K and θIJK 
represents the angle between bonds I-J and I-K. 
The cut-off function fc and the angle function 
G(θIJK) are of the following form

𝑓𝑓𝑐𝑐(𝑎𝑎) =

{ 
 
  
1,                                                        𝑎𝑎 < 𝑅𝑅(1)                                         
1
2 {1 + cos [

𝜋𝜋(𝑎𝑎 − 𝑅𝑅(1))
𝑅𝑅(2) − 𝑅𝑅(1) ]}   𝑅𝑅

(1) < 𝑎𝑎 < 𝑅𝑅(2)                                 

0,                                                      𝑎𝑎 > 𝑅𝑅(2)                                           

 

 

(Eq. 6)

𝐺𝐺(𝜃𝜃𝐼𝐼𝐼𝐼𝐼𝐼) = 𝑎𝑎0 (1 +
𝑐𝑐02
𝑑𝑑02

− 𝑐𝑐02

𝑑𝑑02 + (1 + cos 𝜃𝜃𝐼𝐼𝐼𝐼𝐼𝐼)
2) 

     
(Eq. 7)

Two sets of the parameters for the Brenner 
potential are reported and the second set is 
employed in the present work [74]. Deformation 
energy of a representative cell is obtained by 
the total of the bond energies within the cell. 
The average volume strain energy density can 
be determined by equating the strain energy of 
the cell to energy of an equivalent volume of the 
continuum. Considering the representative cell 
depicted in Fig.1 and assuming that the energy 
of the atom I, VI, can be homogenized over the 
cell, the strain energy density of the continuum 
membrane is obtained by [56]
𝑊𝑊(𝐅𝐅, 𝐆𝐆, 𝛈𝛈) = 𝑊𝑊(𝑎𝑎𝐼𝐼1, 𝑎𝑎𝐼𝐼2, 𝑎𝑎𝐼𝐼3) =

𝑉𝑉𝐼𝐼
∀𝑐𝑐

= 

1
2∀𝑐𝑐

∑𝑉𝑉𝐼𝐼𝐼𝐼(𝑎𝑎𝐼𝐼1, 𝑎𝑎𝐼𝐼2, 𝑎𝑎𝐼𝐼3)
3

𝐼𝐼=1
=∑𝑉𝑉𝐼𝐼𝐼𝐼(𝐅𝐅, 𝐆𝐆, 𝛈𝛈)

3

𝐼𝐼=1
 
                

(Eq. 8)

Where ∀𝑐𝑐  represents the average area 

 

𝑋𝑋1 

𝑋𝑋2 

𝛈𝛈 

Figure 1: Two simple Bravais lattices represented in different 
colors are relatively displaced by the shift vector η. The 
representative cell of area ∀𝑐𝑐  is also indicated.
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per atom in the reference configuration as 
∀c= 3√3/4(𝑎𝑎0)2  in which a0=0.145 nm is the 
equilibrium bond length in graphene. The inner 
relaxation parameter is a function of F and G 
determined by minimizing the energy of atom. 
So, for a given finite deformation characterized by 
F and G, the inner displacements are additional 
kinematic variables that can be eliminated at the 
constitutive level by minimization of the strain 
energy density with respect to η as
�̂�𝛈 = 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑚𝑚

𝛈𝛈
𝑊𝑊(𝐅𝐅, 𝐆𝐆, 𝛈𝛈)) → 

𝜕𝜕𝑊𝑊
𝜕𝜕𝛈𝛈 |

 
 

𝛈𝛈 = �̂�𝛈
= 𝜕𝜕𝑉𝑉𝐼𝐼

𝜕𝜕𝛈𝛈 |
 
 

𝛈𝛈 = �̂�𝛈
= 𝟎𝟎 

                                  
(Eq. 9)

In general, η cannot be calculated analytically 
and the minimization problem in Eq. (9) is 
numerically solved. After the equilibrium value 
of η is obtained, the effective strain energy density 
(i.e., the energy at the relaxed inner displacement) 
can be expressed in terms of F and G only

�̂�𝑊(𝐅𝐅, 𝐆𝐆) = 𝑊𝑊(𝐅𝐅, 𝐆𝐆, �̂�𝛈(𝐅𝐅, 𝐆𝐆))                         (Eq. 10)

2.2. Constitutive relation
The first Piola-Kirchhoff stress tensor �̂�𝐏  and 

the higher-order stress tensor �̂�𝐐  are obtained by 
differentiating the strain energy density function 
with respect to the first- and second-order 
deformation gradient tensors, respectively as

�̂�𝐏 = 𝜕𝜕�̂�𝑊
𝜕𝜕𝐅𝐅 = 𝜕𝜕𝑊𝑊

𝜕𝜕𝐅𝐅 |
 
 

𝛈𝛈 = �̂�𝛈
= 

1
2∀𝑐𝑐

∑ ((𝑉𝑉𝑅𝑅
′ − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴

′) 𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅 − 𝜕𝜕𝐵𝐵𝐼𝐼𝐼𝐼

𝜕𝜕𝐅𝐅 𝑉𝑉𝐴𝐴)
3

𝐼𝐼=1
|

 
 

𝛈𝛈 = �̂�𝛈
 
    

(Eq. 11-a)

�̂�𝐐 = 𝜕𝜕�̂�𝑊
𝜕𝜕𝐆𝐆 = 𝜕𝜕𝑊𝑊

𝜕𝜕𝐆𝐆 |
 
 

𝛈𝛈 = �̂�𝛈
= 

1
2∀𝑐𝑐

∑ ((𝑉𝑉𝑅𝑅
′ − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴

′) 𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝐆𝐆 − 𝜕𝜕𝐵𝐵𝐼𝐼𝐼𝐼

𝜕𝜕𝐆𝐆 𝑉𝑉𝐴𝐴)
3

𝐼𝐼=1
|

 
 

𝛈𝛈 = �̂�𝛈
 
    

(Eq. 11-b)

where ́ symbols the first-order derivative with 
respect to aIJ. For given deformation gradients F 
and G, the above equations result in the stresses 
P and Q at the relaxed inner displacements. In 
other words, Eqs. (11a-b) give the constitutive law 
of carbon nanotubes in terms of the deformation 
gradients and the first Piola-Kirchhoff and higher-
order stresses under mechanical deformation. 
Subsequently, with regard to Eq. (9), the effective 
tangent modulus tensors can be obtained by taking 
second-order derivatives of the strain energy 
density with respect to the deformation gradients 

as

�̂�𝐌𝐹𝐹𝐹𝐹 = 𝜕𝜕2�̂�𝑊
𝜕𝜕𝐅𝐅𝜕𝜕𝐅𝐅 = 𝜕𝜕2𝑊𝑊

𝜕𝜕𝐅𝐅𝜕𝜕𝐅𝐅 |
 
 

𝛈𝛈 = �̂�𝛈
− 

( 𝜕𝜕2𝑊𝑊
𝜕𝜕𝐅𝐅𝜕𝜕𝛈𝛈 ⋅ ( 𝜕𝜕2𝑊𝑊

𝜕𝜕𝛈𝛈𝜕𝜕𝛈𝛈)
−1

⋅ 𝜕𝜕2𝑊𝑊
𝜕𝜕𝛈𝛈𝜕𝜕𝐅𝐅) |

 
 

𝛈𝛈 = �̂�𝛈
, 
                   

(Eq. 12-a)

�̂�𝐌𝐹𝐹𝐹𝐹 = 𝜕𝜕2�̂�𝑊
𝜕𝜕𝐅𝐅𝜕𝜕𝐆𝐆 = 𝜕𝜕2𝑊𝑊

𝜕𝜕𝐅𝐅𝜕𝜕𝐆𝐆 |
 
 

𝛈𝛈 = �̂�𝛈
− 

( 𝜕𝜕2𝑊𝑊
𝜕𝜕𝐅𝐅𝜕𝜕𝛈𝛈 ⋅ ( 𝜕𝜕2𝑊𝑊

𝜕𝜕𝛈𝛈𝜕𝜕𝛈𝛈)
−1

⋅ 𝜕𝜕2𝑊𝑊
𝜕𝜕𝛈𝛈𝜕𝜕𝐆𝐆) |

 
 

𝛈𝛈 = �̂�𝛈
, 
                  

(Eq. 12-b)

�̂�𝐌𝐺𝐺𝐺𝐺 = 𝜕𝜕2�̂�𝑊
𝜕𝜕𝐆𝐆𝜕𝜕𝐅𝐅 = 𝜕𝜕2𝑊𝑊

𝜕𝜕𝐆𝐆𝜕𝜕𝐅𝐅 |
 
 

𝛈𝛈 = �̂�𝛈
− 

( 𝜕𝜕2𝑊𝑊
𝜕𝜕𝐆𝐆𝜕𝜕𝛈𝛈 ⋅ ( 𝜕𝜕2𝑊𝑊

𝜕𝜕𝛈𝛈𝜕𝜕𝛈𝛈)
−1

⋅ 𝜕𝜕2𝑊𝑊
𝜕𝜕𝛈𝛈𝜕𝜕𝐅𝐅) |

 
 

𝛈𝛈 = �̂�𝛈
, 
                   

(Eq. 12-c)

�̂�𝐌𝐺𝐺𝐺𝐺 = 𝜕𝜕2�̂�𝑊
𝜕𝜕𝐆𝐆𝜕𝜕𝐆𝐆 = 𝜕𝜕2𝑊𝑊

𝜕𝜕𝐆𝐆𝜕𝜕𝐆𝐆 |
 
 

𝛈𝛈 = �̂�𝛈
− 

( 𝜕𝜕2𝑊𝑊
𝜕𝜕𝐆𝐆𝜕𝜕𝛈𝛈 ⋅ ( 𝜕𝜕2𝑊𝑊

𝜕𝜕𝛈𝛈𝜕𝜕𝛈𝛈)
−1

⋅ 𝜕𝜕2𝑊𝑊
𝜕𝜕𝛈𝛈𝜕𝜕𝐆𝐆) |

 
 

𝛈𝛈 = �̂�𝛈
. 
                  

(Eq. 12-d)

The derivatives of the strain energy density in 
the previous equations can be expressed in terms 
of the first- and second-order derivatives of the 
elastic interatomic potential and the deformed 
bond length. For example, the derivative terms in 
Eq. (12a) are expanded in the following form

𝜕𝜕2𝑊𝑊
𝜕𝜕𝐅𝐅𝜕𝜕𝐅𝐅 =

1
2∀𝑐𝑐

∑((𝑉𝑉𝑅𝑅′′ − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴′′)
𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅 ⨂𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼

𝜕𝜕𝐅𝐅 +
3

𝐼𝐼=1
, 

(𝑉𝑉𝑅𝑅′ − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴′)
𝜕𝜕2𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅𝜕𝜕𝐅𝐅 − 

𝑉𝑉𝐴𝐴′ (
𝜕𝜕𝐵𝐵𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅 ⨂𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼

𝜕𝜕𝐅𝐅 + 𝜕𝜕𝑟𝑟𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅 ⨂𝜕𝜕𝐵𝐵𝐼𝐼𝐼𝐼

𝜕𝜕𝐅𝐅 ) − 𝑉𝑉𝐴𝐴
𝜕𝜕2𝐵𝐵𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅𝜕𝜕𝐅𝐅) (Eq. 13-a)

𝜕𝜕2𝑊𝑊
𝜕𝜕𝐅𝐅𝜕𝜕𝛈𝛈 = 1

2∀𝑐𝑐
∑((𝑉𝑉𝑅𝑅′′ − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴′′)

𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅 ⨂𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼

𝜕𝜕𝛈𝛈 +
3

𝐼𝐼=1
 

(𝑉𝑉𝑅𝑅′ − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴′)
𝜕𝜕2𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅𝜕𝜕𝛈𝛈 − 

𝑉𝑉𝐴𝐴′ (
𝜕𝜕𝐵𝐵𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅 ⨂𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼

𝜕𝜕𝛈𝛈 + 𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅 ⨂𝜕𝜕𝐵𝐵𝐼𝐼𝐼𝐼

𝜕𝜕𝛈𝛈 ) − 𝑉𝑉𝐴𝐴
𝜕𝜕2𝐵𝐵𝐼𝐼𝐼𝐼
𝜕𝜕𝐅𝐅𝜕𝜕𝛈𝛈) (Eq. 13-b)

𝜕𝜕2𝑊𝑊
𝜕𝜕𝛈𝛈𝜕𝜕𝐅𝐅 =

1
2∀𝑐𝑐

∑((𝑉𝑉𝑅𝑅′′ − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴′′)
𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝛈𝛈 ⨂𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼

𝜕𝜕𝐅𝐅 +
3

𝐼𝐼=1
 

(𝑉𝑉𝑅𝑅′ − 𝐵𝐵𝐼𝐼𝐼𝐼𝑉𝑉𝐴𝐴′)
𝜕𝜕2𝑎𝑎𝐼𝐼𝐼𝐼
𝜕𝜕𝛈𝛈𝜕𝜕𝐅𝐅 − 

𝑉𝑉𝐴𝐴′ (
𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼
𝝏𝝏𝛈𝛈 ⨂𝜕𝜕𝐵𝐵𝐼𝐼𝐼𝐼

𝜕𝜕𝐅𝐅 + 𝜕𝜕𝐵𝐵𝐼𝐼𝐼𝐼
𝜕𝜕𝛈𝛈 ⨂𝜕𝜕𝑎𝑎𝐼𝐼𝐼𝐼

𝜕𝜕𝐅𝐅 ) − 𝑉𝑉𝐴𝐴
𝜕𝜕2𝐵𝐵𝐼𝐼𝐼𝐼
𝜕𝜕𝛈𝛈𝜕𝜕𝐅𝐅) (Eq. 13-c)
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in which the symbol ʹʹ  indicates the second-
order derivative with respect to aIJ. Using Eqs. 
(12a-d), one can write the incremental form of the 
constitutive relation for CNTs as

�̇̂�𝐏 = �̂�𝐌𝐹𝐹𝐹𝐹: �̇�𝐅 + �̂�𝐌𝐹𝐹𝐹𝐹 ⋮ �̇�𝐆                                       (Eq. 14-a)

�̇̂�𝐐 = �̂�𝐌𝐺𝐺𝐺𝐺: �̇�𝐅 + �̂�𝐌𝐺𝐺𝐺𝐺 ⋮ �̇�𝐆                                   (Eq. 14-b)

It should be noted that in contrast with the 
planar graphene, the tangent modulus tensors for 
CNTs appeared in the previous relationships are 
no longer isotropic. So, Eqs. (14a-b) are nonlinear 
and take the anisotropy of carbon nanotubes into 
account. For the infinitesimal deformations, the 
strain energy density can be stated in a quadratic 
form in terms of the deformation gradients as

�̂�𝑊 = �̂�𝑊0 +
1
2 (𝐅𝐅: �̂�𝐌0

𝐹𝐹𝐹𝐹: 𝐅𝐅 + 𝐆𝐆 ⋮ �̂�𝐌0
𝐺𝐺𝐺𝐺 ⋮ 𝐆𝐆 + 

𝐅𝐅: �̂�𝐌0
𝐹𝐹𝐺𝐺 ⋮ 𝐆𝐆 + 𝐆𝐆 ⋮ �̂�𝐌0

𝐺𝐺𝐹𝐹: 𝐅𝐅)                 (Eq. 15)

where �̂�𝑊0  is the initial strain energy density of 
the carbon nanotube prior to deformation. Also, 
�̂�𝐌0
𝐹𝐹𝐹𝐹 �̂�𝐌0

𝐺𝐺𝐺𝐺 �̂�𝐌0
𝐹𝐹𝐺𝐺 �̂�𝐌0

𝐺𝐺𝐹𝐹  are the linear or infinitesimal 
effective elastic moduli that can be obtained by 
taking a vanishing deformation (i.e., for the CNT at 
the equilibrium state). Using Eq. (15) and regarding 
the symmetry �̂�𝑀0𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐹𝐹𝐹𝐹 = �̂�𝑀0𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐹𝐹𝐹𝐹   and �̂�𝑀0𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐹𝐹𝐹𝐹 = �̂�𝑀0𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐹𝐹𝐹𝐹  

, one can achieve the following linear constitutive 
relation 

�̂�𝐏 = �̂�𝐌0
𝐹𝐹𝐹𝐹: 𝐅𝐅 + �̂�𝐌0

𝐹𝐹𝐹𝐹 ⋮ 𝐆𝐆                                        (Eq. 16-a)

�̂�𝐐 = �̂�𝐌0
𝐺𝐺𝐺𝐺: 𝐅𝐅 + �̂�𝐌0

𝐺𝐺𝐺𝐺 ⋮ 𝐆𝐆                                      (Eq. 16-b)

which, as seen, is the linear counterpart of Eqs. 
(14a-b).

For the special case of a graphene sheet under 
infinitesimal deformation, the corresponding 
constitutive relation can be obtained by computing 
the linear elasticity tensors for F=I2 and G=0 where 
I2 denotes a 2-by-2 identity matrix.

3. Deformation mapping of single-walled carbon 

nanotubes
In the current work, a smooth mapping 

defined on the reference manifold is employed 
to describe the overall deformation of the carbon 
nanotube. This technique has been successfully 
employed by a few researchers to the study of 
the mechanical properties of carbon nanotubes 
[53, 56-58]. Let {X1, X2}, {I1, I2} be the Euclidian 
coordinates and the corresponding orthogonal 
basis at the reference body (i.e., the unrolled 
graphene sheet), respectively and {x1, x2, x3}, {i1, i2, 
i3} separately denote the Euclidian coordinates and 
the associated orthogonal basis at the current body 
(i.e., the deformed nanotube). Fig. 2 represents 
the deformation map ϕ transforming the initial 
configuration at the space R2 into the current 
configuration at the space R3 as x= ϕ(x).

Consider a (n,m) carbon nanotube of 
unit ideal length (L0=1 nm), the ideal radius 
𝑅𝑅0 = 𝑎𝑎0/2𝜋𝜋√3(𝑛𝑛2 + 𝑛𝑛𝑛𝑛 +𝑛𝑛2)  and chirality 
𝜙𝜙0 = arccos ( 2𝑛𝑛 +𝑚𝑚

2√𝑛𝑛2 +𝑚𝑚2 + 𝑛𝑛𝑚𝑚
) . For this CNT, 

the undeformed body can be defined as 
∀0= (0,1) × (0,2𝜋𝜋𝑅𝑅0) . It is assumed that the 
deformations in the axial and circumferential 
directions are homogenous. The general 
deformation mapping from the undeformed body 
to a cylinder with uniform longitudinal stretch 
or compression λ1 and circumferential stretch or 
compression λ2 is given by [75]
𝝓𝝓(𝑋𝑋) = 𝜆𝜆1𝑋𝑋1 𝐢𝐢1 + 𝜆𝜆2𝑅𝑅0 sin (𝑋𝑋2

𝑅𝑅0
+ 𝜃𝜃𝜆𝜆1𝑋𝑋1) 𝐢𝐢2 

+𝜆𝜆2𝑅𝑅0 (1 − cos (𝑋𝑋2
𝑅𝑅0

+ 𝜃𝜃𝜆𝜆1𝑋𝑋1)) 𝐢𝐢3 
           

(Eq. 17)

in which θ is the twisting angle per unit length 
which physically represents the shear strain. So, for 
the above described deformation, the deformation 
gradients are obtained as a function of λ1,  λ2 and 
θ. This makes the effective strain energy density

 

2𝜋𝜋𝑅𝑅0 

𝐿𝐿0 

𝜙𝜙

∀0 

Fig. 2- General transformation mapping from the reference configuration to the current one.
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�̂�𝑊(𝐅𝐅, 𝐆𝐆)   given by Eq. (10) become
�̂�𝑊(𝜆𝜆1, 𝜆𝜆2, 𝜃𝜃) = 𝑊𝑊(𝜆𝜆1, 𝜆𝜆2, 𝜃𝜃, �̂�𝛈(𝜆𝜆1, 𝜆𝜆2, 𝜃𝜃))                  (Eq. 18)

From the previous equation, the deformation is 
seen to be parameterized by the set (λ1, λ2 ,θ).

4. Evaluating elastic properties of single-walled 
carbon nanotubes
4.1. Nanotube at the equilibrium state

Before any deformation is applied, it is essential 
to determine the stress free equilibrium state of 
the carbon nanotube. The atomistic simulations 
show that the cylinder simply formed by rolling 
up a planar graphene sheet without stretch or 
compression (λ1=λ2=1) is not in equilibrium. In 
other words, relaxations in the longitudinal and 
circumferential directions take place that cause the 
energy of the nanotube with unit length and ideal 
radius  not to be the minimum energy that a carbon 
nanotube can reach [53]. Moreover, theoretical 
results show that a nonzero twisting angle due to 
rotation deformation (i.e., a rotational relaxation) 
may occur for CNTs [75]. So, the equilibrium 
configuration and energetics of a fully relaxed 
nanotube can be obtained by minimizing the 
effective strain energy density with respect to the 
parameters λ1, λ2 and θ as

𝜕𝜕�̂�𝑊
𝜕𝜕𝜆𝜆1

= 𝜕𝜕�̂�𝑊
𝜕𝜕𝜆𝜆2

= 𝜕𝜕�̂�𝑊
𝜕𝜕𝜃𝜃 = 0 

                                           
(Eq. 19)

By solving Eq. (19) through a numerical 
approach, the equilibrium values λ1eq, λ2eq and θeq 
are determined. Note that the inner relaxation is 
automatically included in the potential �̂�𝑊 . It means 
that the minimization for W is performed with 
respect to five parameters λ1, λ2, θ, η1 and η2. For 
a CNT at the equilibrium state, the deformation 
gradients are then calculated using Eq. (17) for 
λ1=λ1eq, λ2=λ2eq and θ=θeq. So, the equilibrium 
radius and length of the nanotube are equal to  
R=λ2eqR0 and L=λ1eqL0 . Also, at this configuration, 
the computed elastic properties are applicable in 
the linear regime or for infinitesimal deformations.

To characterize the axial stiffness of the CNT 
from the elastic moduli, it must be remarked that 
which one of the elasticity tensors is the most 
appropriate to choose. Among the elastic moduli, 
the appropriate choice is the first elasticity tensor 
�̂�𝐌𝐹𝐹𝐹𝐹   since its spatial form appears in the linear 
theory relating the Cauchy stress to the small 
strain [76]. Accordingly, at the limit of strains 
approaching zero, the tensile stiffness (or surface 
Young’s modulus) in the axial direction together 

with the corresponding Poisson’s ratio can be 
obtained by [51, 56, 57, 69]

𝑆𝑆𝑎𝑎 = �̂�𝑀01111
𝐹𝐹𝐹𝐹 −

(�̂�𝑀01122
𝐹𝐹𝐹𝐹 )2

�̂�𝑀02222
𝐹𝐹𝐹𝐹  

                                   
(Eq. 20-a)

𝜈𝜈𝑎𝑎 =
�̂�𝑀01122
𝐹𝐹𝐹𝐹

�̂�𝑀02222
𝐹𝐹𝐹𝐹  

                                                     
(Eq. 20-b)

The elasticity tensor �̂�𝐌𝐹𝐹𝐹𝐹   has units of force 
divided by length. So, phrasing  as stiffness is correct 
and consistent with two-dimensional nature of 
the CNT. Moreover, the linear tensile stiffness in 
the circumferential direction can be evaluated as 
follows

𝑆𝑆𝑐𝑐 = �̂�𝑀02222
𝐹𝐹𝐹𝐹 −

(�̂�𝑀01122
𝐹𝐹𝐹𝐹 )2

�̂�𝑀01111
𝐹𝐹𝐹𝐹  

                                    
(Eq. 21)

Penj et al. [77] modeled the SWCNT as an 
orthotropic thin shell and presented similar 
expressions in terms of the coefficients of the 
second elasticity tensor for approximation of the 
elastic properties of CNTs. 

The linear elastic properties of the planar 
graphene can also be evaluated using the above 
relationships by considering the elasticity tensor 
�̂�𝐌0
𝐹𝐹𝐹𝐹  at the reference configuration for which the 

deformation gradients become F=I2 and G=0. Also, 
it is clear that for graphene at the equilibrium state, 
the inner displacement vector �̂�𝛈  vanishes. One 
noticeable point is that since the elastic modulus 
for graphene is isotropic, Eqs. (20a) and (21) give 
the same tensile stiffness. 

4.2. Nanotube under axial deformation 
A nanotube axially deformed and otherwise 

unconstrained is considered. The goal is to evaluate 
the mechanical properties in the axial direction at 
finite strains. It is assumed that the atoms of the 
nanotube do not leave the cylindrical surface and 
as the nanotube is axially deformed, the cylindrical 
symmetry is not lost. 

When the CNT is axially deformed, the Poisson 
effect leads to the change in the equilibrium radius 
of the nanotube. In other words, the constant λ2 
in Eq. (17) can be viewed as a radial relaxation 
parameter. Further, a rotational relaxation θ takes 
place resulting from the interaction between 
the axial deformation and the possible twisting 
deformation. For a given axial deformation 
characterized by λ1, the relaxed circumferential and 
twisting deformations are obtained by minimizing 
the effective strain energy density with respect to  
λ2 and θ as
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{�̃�𝜆2(𝜆𝜆1), �̃�𝜃(𝜆𝜆1)} = 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆2,𝜃𝜃

�̂�𝑊(𝜆𝜆1, 𝜆𝜆2, 𝜃𝜃))   → 

 𝜕𝜕�̂�𝑊
𝜕𝜕𝜆𝜆2

|
 
 

𝜆𝜆2 = �̃�𝜆2, 𝜃𝜃 = �̃�𝜃
= 𝜕𝜕�̂�𝑊

𝜕𝜕𝜃𝜃 |
 
 

𝜆𝜆2 = �̃�𝜆2, 𝜃𝜃 = �̃�𝜃
= 0 

 
(Eq. 22)

Thus, the elastic strain energy density of the 
continuum can be expressed in terms of the single 
parameter λ1 as the imposed deformation i.e.,

�̃�𝑊(𝜆𝜆1) = �̂�𝑊 (𝜆𝜆1, �̃�𝜆2(𝜆𝜆1), �̃�𝜃(𝜆𝜆1)) 
                          

(Eq. 23)

This function is a hyperelastic potential for 
carbon nanotubes under finite stretches. It also 
accounts for the finite deformation required to 
roll up a graphene sheet and different relaxation 
processes namely radial, rotational and inner 
relaxations taking place during the axial 
deformation of a nanotube. According to the above, 
evaluation of an axially stretched or compressed 
and otherwise unconstrained nanotube requires 
the solution of the bivariate minimization problem 
in Eq. (22) which is numerically performed. For 
fixed λ1, rather than the effective potential �̂�𝑊 , the 
strain energy density W can be considered in a four 
variables minimization problem as follows

𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂1

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂2

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆2

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃 = 0 

                             
(Eq. 24)

It is worth mentioning that since the 
deformation is uniform, the inner rearrangements 
are homogenous as well, i.e., the obtained vector �̂�𝛈  
is constant in ∀0 . 

As indicated above, the strain energy density of 
the CNT can be expressed exclusively in terms of the 
axial deformation λ1. In other words, the kinematics 
assumptions and considering any possible 
relaxation reduce the configuration space of the 
carbon nanotube to the single scalar parameter λ1. 
This means that the CNT can be viewed as a one-
dimensional rod with the hyperelastic potential 
�̃�𝑊(𝜆𝜆1) . In this simple case, one can then achieve 
the axial stiffness of the nanotube from the second-
order derivative of the strain energy density �̃�𝑊(𝜆𝜆1)  
with respect to λ1 as

𝑆𝑆𝑎𝑎 =   𝜕𝜕2�̃�𝑊
𝜕𝜕𝜆𝜆1

2  
                                                         

(Eq. 25)

The corresponding Poisson’s ratio is obtained by 
the ratio of the circumferential strain e2 to the axial 
strain e1 as follows

𝜈𝜈𝑎𝑎 =
𝑒𝑒2
𝑒𝑒1

 
                                                               

(Eq. 26)

in which the strains e1 and e2 are calculated 

relative to the initial configuration of the nanotube 
as

𝑒𝑒1 =
(𝜆𝜆1 − 𝜆𝜆1𝑒𝑒𝑒𝑒)

𝜆𝜆1𝑒𝑒𝑒𝑒
    
                                             

(Eq. 27-a)

𝑒𝑒2 =
(�̃�𝜆2 − 𝜆𝜆2𝑒𝑒𝑒𝑒)

𝜆𝜆2𝑒𝑒𝑒𝑒
 
                                            

(Eq. 27-b)

In summary, once the equilibrium state is known, 
for a given axial deformation λ1, the internal, 
radial and twisting relaxations are first computed 
by solving Eq. (24). The tangent moduli are then 
calculated from Eqs. (12a-d) for 𝜆𝜆2 = �̃�𝜆2, 𝜃𝜃 = �̃�𝜃  and 
the elastic properties are obtained by employing 
relationships (25) to (27b).

4.3. Nanotube under hydrostatic pressure 
Under hydrostatic pressure, deformation of 

the CNT along the axial direction is uniform. To 
simulate the CNT subject to hydrostatic pressure, 
the deformation mapping presented in Eq. (17) 
is again adopted. Similar analysis to that of the 
previous section is done, though the loading case is 
hear induced by altering the parameter λ2. 

Given a circumferential deformation 
characterized by λ2, the Poisson effect and twisting 
deformation are accounted for by minimizing the 
strain energy density with respect to λ1 and θ. 
Thus, considering the relaxed axial and twisting 
deformations, one has

{�̃�𝜆1(𝜆𝜆2), �̃�𝜃(𝜆𝜆2)} = 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆1,𝜃𝜃

�̂�𝑊(𝜆𝜆1, 𝜆𝜆2, 𝜃𝜃))   → 

𝜕𝜕�̂�𝑊
𝜕𝜕𝜆𝜆1

|
 
 

𝜆𝜆1 = �̃�𝜆1, 𝜃𝜃 = �̃�𝜃
= 𝜕𝜕�̂�𝑊

𝜕𝜕𝜃𝜃 |
 
 

𝜆𝜆1 = �̃�𝜆1, 𝜃𝜃 = �̃�𝜃
= 0 

  (Eq. 28)

Alternatively, the four variables minimization 
problem for the function W can be considered as 
follows

𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂1

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂2

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆1

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃 = 0 

                             
(Eq. 29)

Eq. (28) points out that the strain energy density 
of the CNT can be expressed in terms of the 
circumferential deformation λ2, only as

�̃�𝑊(𝜆𝜆2) = �̂�𝑊 ( �̃�𝜆1(𝜆𝜆2), 𝜆𝜆2, �̃�𝜃(𝜆𝜆2))                          (Eq. 30)

This function is a one-dimensional hyperelastic 
potential for the CNT whose second-order 
derivative with respect to λ2 gives the circumferential 
stiffness as

𝑆𝑆𝑐𝑐 =   𝜕𝜕2�̃�𝑊
𝜕𝜕𝜆𝜆2

2  
                                                        

(Eq. 31)
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Eqs. (25) and (31) can be expanded analogous 
to Eqs. (12a-d) and (13a-d) to obtain closed-
form expressions for the stiffness parameters in 
terms of the atomistic potential. The contribution 
of the inner relaxation should be involved when 
calculating the above constants. Accordingly, 
the derived expressions depend on the inner 
displacements, the radial or axial with rotational 
relaxations determined by solving the minimization 
problems mentioned above. 

Thus, in contrast to the approaches wherein 
the finite difference approximation of derivatives 
are made [15, 16], in the present work, all the 
derivatives of the interatomic potential function are 
analytically computed and the only numerical step 
is the calculation of the equilibrium state and the 
relaxation parameters, leading to reduction of the 
computational costs and errors.

 
5. Results and discussion 

In this section, elastic properties and energy of 
the fully relaxed nanotube, the nanotube under 
compressive and finite tensile and circumferential 
strains predicted by the current atomistic-
continuum model are presented. The effects of 
chirality and radius on elastic energy, Poisson’s 
ratio, axial and circumferential stiffness of carbon 
nanotubes at the equilibrium state are discussed. 
Also, the variations of the mechanical properties 
and some coefficients of the tangent moduli with 

deformation are discussed. 

5.1. Validation
To validate the present formulations, several 

comparison examples are given. The strain 
energy of fully relaxed nanotubes of varying 
equilibrium radius relative to the planar graphene 
𝑉𝑉𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = −7.3756 𝑒𝑒𝑉𝑉/𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   are computed and 

compared with atomistic calculations results 
reported in Ref. [50] in Fig. 3. The excellent 
agreement between the atomistic results and 
the present ones is noticeable specifically for the 
nanotubes with radius larger than 0.4 nm (i.e., 
curvatures smaller than 2.5). However, for small 
nanotubes (high curvatures), a small difference 
is observed. Moreover, this figure shows that 
the strain energy of large enough nanotubes is 
insensitive to the chirality.      

Presented in Table 1 are surface Young’s modulus 
and Poisson’s ratio of the planar graphene sheet and 
a few CNTs at the equilibrium state obtained by 
the atomistic-continuum model with and without 
inner relaxations. The results are compared to those 
of other atomistic-continuum approaches existing 
in the literature. As seen from this table, there is a 
good agreement among the results. 

As mentioned in Section 4.1, the present 
formulations for characterizing the constitutive 
properties from the tangent moduli in the linear 
regime are analogous to those employed in Refs. 
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Fig. 3- Comparison of strain energy relative to planar graphene for relaxed armachir and zigzag carbon nanotubes of varying radius.
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[56, 69, 77]. So, one can make a comparison 
between the coefficients of the linear tangent 
modulus tensor �̂�𝐌0

𝐹𝐹𝐹𝐹   of the planar graphene and 
those of the extensional stiffness tensor obtained 
by the second-order derivatives of the strain energy 
density with respect to Lagrangian strain (i.e., the 
second elasticity tensor) in Ref. [69]. Table 2 depicts 
the results corresponding to the coefficients of these 
two forth-order elasticity tensors for infinitesimal 
deformation in the presence and absence of the 
inner rearrangements. The in-plane elastic moduli 
of Ref. [70], in which the inner displacements 
were calculated by the MD simulations, are also 
presented. As observed, the agreement among 
the current results and those of Refs. [69, 70] is 
excellent. This comparison then demonstrates the 
reliability of the closed-form expressions derived 
for the tangent moduli. Furthermore, one can see 
from Tables 1 and 2 a big difference between the 
results of the models with and without the inner 
relaxations.

Fig. 4 shows the strain energy relative to the 
planar graphene for an axially deformed and 
otherwise unconstrained (10,10) nanotube. For 
this nanotube, the equilibrium values of the axial, 
circumferential and rotational deformations are 
obtained as λ1eq=1.0011923, λ2eq=0.9969522 and 
θeq=0. The results are provided with and without 
consideration of the inner relaxations and compared 
with those of the atomistic model reported in Ref. 
[53]. It is observed that the present results agree 
well with the atomistic calculations demonstrating 
that the current atomistic-based continuum model 
can reproduce the exact energetics of axially 
deformed nanotubes. This figure also depicts an 
overestimate of the energy by the model without 
the inner relaxation. 

From the results presented above it is found that 
the inner displacements have significant effect on 
the elastic properties and energy of the CNT and 
GS so that without consideration of them, the 
resulting continuum model is stiffer and therefore 

Nanostructure Inner 
relaxation 

Surface Young’s modulus in the axial 
direction (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

Poisson’s ratio 

Present Refs. 

 [50, 53] 

Ref. 

[69] 

Ref. [4] Present Refs. 

 [50, 53] 

Ref. 

[69] 

Planar 
graphene 

With 235.88 235.8 236.39 - 0.4135 0.4123 0.4133 

Without 338.54 337.8 339 - 0.1584 0.1580 0.1583 

(10,10) CNT With 233.56 233 - - 0.4159 0.414 - 

Without 336.43 336 - - 0.1603 - - 

(5,5) CNT With 228.08 228 - 224.40 0.4261 0.418 - 

(10,0) CNT With 228.51 225 - 229.26 0.4223 0.419 - 

(9,6) CNT With 232.50 - - 232.31 0.4188 - - 

 

Table 1- Comparison of elastic properties of planar graphene and carbon nanotubes

 

Approach �̂�𝑀02222
𝐹𝐹𝐹𝐹  (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) �̂�𝑀01122

𝐹𝐹𝐹𝐹  (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) �̂�𝑀01212
𝐹𝐹𝐹𝐹  (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

(�̂�𝑀01111
𝐹𝐹𝐹𝐹 −

(�̂�𝑀01122
𝐹𝐹𝐹𝐹 )2

�̂�𝑀02222
𝐹𝐹𝐹𝐹 )(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

With 

inner 

relaxation 

Without 

inner 

relaxation 

With 

inner 

relaxation 

Without 

inner 

relaxation 

With 

inner 

relaxation 

Without 

inner 

relaxation 

With 

inner 

relaxation 

Without inner 

relaxation 

Present 284.56 347.25 117.69 54.99 83.34 146.04 235.88 338.54 

Ref. [69] 285.10 347.87 117.83 55.06 83.63 146.40 236.39 339 

Ref. [70] 284.56 347.25 117.69 54.99 83.43 146.13 - - 

Table 2- Comparison of tangent stiffness coefficients of planar graphene



70

Shahabodini A, J Ultrafine Grained Nanostruct Mater, 50(1), 2017, 60-80

overestimates the stiffness and energy of the 
nanostructure. 

5.2. Elastic properties of fully relaxed CNT
To calculate the equilibrium configuration of 

a carbon nanotube, the axial and circumferential 
strains separately denoted by e1eq and e2eq during 
rolling of the graphene to the CNT versus the ideal 

radius are plotted in Fig. 5 for armchair, zigzag and 
chiral nanotubes. In the case of the chiral CNT, 
the chirality ϕ0=18° is taken. Also, the strains in 
percent are computed as follows

e1eq=(λ1eq-1)×100,  e2eq=(λ2eq-1)×100 

It is noted from this figure that the axial strain 
is small, while the strain in the circumferential 
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direction can reach -2.5% for very small CNT. As 
the nanotube radius increases, the curves converge 
and the strains vanish for very large CNT. 

Our numerical results also reveal that for the 
armchair and zigzag nanotubes, the equilibrium 
twisting angle θeq vanishes, while it is obtained nonzero 
for the chiral ones. For example, for (9,6) CNT, the 
calculated value is equal to θeq=0.1635682°/nm. The 
corresponding equilibrium axial and circumferential 
deformations are also obtained as λ1eq=1.0009996 and 
λ2eq=0.9941076.

Depicted in Figs. 6 and 7 are separately surface 

Young’s modulus along the axial derection and 
corresponding Poisson’s ratio of several carbon 
nanotubes with constant ideal radius as a function 
of chirality. Actually, thanks to the hyperelastic 
continuum model allowing us to independently 
choose radius and chirality, the effect of these two 
parameters on the elastic properties of the CNT 
is here distinctly described. This is in contrast 
with the atomistic simulations being limited to 
the crystallographically admissible nanotubes. 
From these two figures, a slight but systematic 
dependence on chirality is observed. It is also seen 
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that surface Young’s modulus slightly increases 
with an increase in the radius so that the rate 
of variations for zigzag nanotube is higher as 
compared to armchair nanotube and an inverse 
trend is found for Poisson’s ratio. It is because that 
the imposed curvature weakens the atomic bonds 
and therefore the smaller nanotubes are softer than 
the larger ones. Moreover, one can see from Fig. 
6 that the largest axial stiffness is obtained for the 
armchair nanotubes and the smallest stiffness is 
obtained for the zigzag ones. Similar observation 
can be made from Fig. 7 about Poisson’s ratio of the 
armchair and zigzag nanotubes. Our observations 
agree with those reported in Refs. [11, 17, 29, 52, 
54]. 

Depicted in Fig. 8 is variations of circumferential 
surface Young’s modulus with chirality for several 
fixed ideal radiuses. As observed, similar to the 
axial modulus, circumferential Young’s modulus is 
systemically dependent on the radius and chirality, 
though the effect of chirality on this modulus is 
more significant and the inverse of the effect on 
axial Young’s modulus. Circumferential Young’s 
modulus of armchair CNT is then smaller than 
that of zigzag one. Moreover, contrary to the axial 
stiffness, the circumferential stiffness of armchair 
CNT is more sensitive to the radius than that of 
zigzag CNT.

One common noticeable point in these three 
figures is that for smaller nanotubes, the influence 

of chirality on the elastic properties is found to be 
stronger. As the radius increases, it becomes less 
pronounced and a plateau with no dependence 
on the chirality is reached which corresponds to 
the planar graphene. This clarifies the issue of the 
anisotropy of the carbon nanotubes or graphene 
sheets at finite deformations. In other words, the 
chirality-dependent results for small nanotubes 
(i.e., the ones with finite curvature) reveal the 
anisotropy induced by the finite deformation 
required to roll up the graphene sheet. As the 
curvature is reduced (tending to large nanotubes), 
a small isotropy is acquired and the well-known 
fact that graphene is isotropic in the infinitesimal 
regime is manifested. 

5.3. Elastic properties of axially deformed and 
otherwise unconstrained CNT

In this section, the elastic properties of straight 
nanotube under tension and compression are 
analyzed. Since the cut-off function in Eq. (6) has 
a discontinuity at the cut-off distance 0.17nm, its 
second-order derivatives are then discontinuous 
and it introduces an abrupt increase in the 
interatomic potential at this distance. To leave out 
this unphysical influence of the cut-off function, 
similar to works [78, 79], the cut-off function is 
not used here. Since the bifurcation still takes place 
without the cut-off function, it must be intrinsic to 
CNTs under tension [79]. 
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Fig. 8- Tensile stiffness of relaxed carbon nanotubes in the circumferential direction as a function of chirality.



73

Shahabodini A, J Ultrafine Grained Nanostruct Mater, 50(1), 2017, 60-80

Fig. 9 indicates variations of axial stiffness with 
tensile strain for several armchair, zigzag and chiral 
CNTs. As shown, the axial stiffness monotonically 
decreases as the stretch increases. Moreover, it 
can be observed from this figure that the rigidity 
of the zigzag and armchair nanotubes vanishes 
at the strains around 31% and 36%, respectively. 
Following the condition for linear stability of solids 
reading Y>0 [80] or for the onset of bifurcation 
when the tangent rigidity reaches zero [81], one 
can do a simple fracture analysis for the CNTs in 
tension using Fig. 9. Actually, this figure gives an 
upper bound on the tensile strain under which the 
nanotube is stable and has a uniform deformation. 
It is also observed that the rigidity of the chiral 
CNTs reaches zero at a strain falling between the 
critical strains corresponding to the armchair 
and zigzag CNTs. This is expectable because, as 
concluded from Fig. 6, tensile strength of the chiral 
nanotubes is greater than that of zigzag nanotubes 
and smaller than that of armchair ones. So, 
according to this figure, the estimated bifurcation 
strains are between 31-36% which fall in the range 
reported by MD simulations (30-50% strain) [82] 
and other atomistic-continuum theories (30-42%) 
[79] based on the same interatomic potential.    

Results presented in Fig. 10 are Poisson’s ratio 
of several armchair, zigzag and chiral CNTs as a 
function of tensile strain. It is seen that Poisson’s 
ratio of the zigzag nanotubes reaches a minimum 
value and then increases as the nanotube is 

further deformed. This behavior is not observed 
for armchair and chiral CNTs and Poisson’s ratio 
continuously decreases by increasing the tensile 
strain. At finite strains (e1>10%), one can see that 
the influence of chirality on Poisson’s ratio of the 
nanotubes with identical radius such as (4,4), (7,0) 
and (5,3) CNTs becomes more prominent as the 
stretch increases. 

Axial stiffness of several armchair, zigzag 
and chiral nanotubes versus compressive strain 
is plotted in Fig. 11. It is mentioned that in the 
compression analysis, the results are applicable 
as long as buckling does not occur. The stiffness 
is observed to nonlinearly vary with compression 
which can be attributed to the nonlinearities 
resulting from the interatomic interactions and 
considered kinematics. For slightly compressive 
strains, the rigidity of the armchair and chiral 
nanotubes reaches a maximum value and then 
diminishes as the nanotube is further compressed, 
while such a behavior cannot be observed for the 
zigzag nanotube. However, for small deformations, 
it is discerned that each of the three nanotubes 
represents a hardening behavior. It is found from 
this figure that the axial stiffness of the zigzag 
nanotube is more sensitive to the compressive 
strain than the two other types of the tubes. The 
greater effect of chirality on nanotubes of the same 
radius at larger strains is also apparent. 

The effect of axial strain on tangent moduli 
coefficients of three carbon nanotubes with identical 
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Fig. 9- Axial stiffness of carbon nanotubes under tension as a function of strain.
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radius is shown in Fig. 12. One can see from Fig. 
12(a) that the coefficients of the first elasticity tensor 
decrease with an increase in the tensile strain. This 
behavior implies a material softening which occurs 
for a nanotube when subjected to the axial tension 
as reflected in the behavior of the axial stiffness 
(see Fig. 9). For compressive deformation, one can 
observe that as the strain increases, the stiffness 
coefficients (𝑀𝑀1111

𝐹𝐹𝐹𝐹 ,𝑀𝑀2222
𝐹𝐹𝐹𝐹 ,𝑀𝑀1122

𝐹𝐹𝐹𝐹 )  slightly increase, 
too. In contrast, the coefficient 𝑀𝑀1212

𝐹𝐹𝐹𝐹   of the zigzag 
nanotube slightly decreases by increasing the strain 
and that of the armchair and chiral nanotubes 
remains nearly unchanged. Moreover, Fig. 12(a) 
indicates that at larger axial strains, the effect 

of chirality on the stiffness coefficients is more 
prominent. From Figs. 12(b) to (c), it is noted that 
the coefficients of tangent moduli vary with axial 
deformation in a nonlinear manner. As a general 
finding, the CNT possesses a material nonlinearity 
behavior due to the atomic interactions as reflected 
in the behavior of the tangent moduli. This 
nonlinearity is incorporated into the incremental 
constitutive relation given by Eqs. (14a-b) through 
calculating the tangent rigidities directly from the 
interatomic potential. Moreover, as expected, Figs. 
(12b) and (12c) show that the stiffness coefficients 
(𝑀𝑀11311

𝐹𝐹𝐹𝐹 ,𝑀𝑀31111
𝐹𝐹𝐹𝐹 ) and (𝑀𝑀22322

𝐹𝐹𝐹𝐹 ,𝑀𝑀32222
𝐹𝐹𝐹𝐹 )  are mutually 

equal.  
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Fig. 10- Poisson’s ratio of carbon nanotubes under tension as a function of strain.
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Fig. 11- Axial stiffness of carbon nanotubes under compression as a function of strain.
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5.4. Elastic properties of CNT under hydrostatic 
pressure

The effect of circumferential strain on the 
elastic energy, the tensile stiffness and tangent 
moduli coefficients of the carbon nanotubes under 
hydrostatic pressure is investigated. 

Fig. 13 depicts the strain energy relative 
to planar graphene for several nanotubes as a 
function of circumferential deformation. One can 
see that the strain energy is nearly independent of 
chirality at small deformations. As the deformation 
increases, a slight dependence on the chirality is 
observed so that at large stretches (λ2>1.3 i.e., by 
approaching the bifurcation strain) the gap among 
the curves widens. It is seen that the concavity of 
the curves corresponding to the zigzag nanotubes 
is higher than the one corresponding to the 
armchair nanotubes specially at λ2>1.3. Based 
on Eq. (31), it can be qualitatively concluded 
that the tensile stiffness and then the bifurcation 

strain for the zigzag CNTs in the circumferential 
direction is higher than that of the armchair CNTs. 
To illustrate this, the circumferential stiffness of 
several nanotubes subject to internal pressure 
against the circumferential strain is plotted in Fig. 
14. It is noted that with an increase in the strain, the 
stiffness decreases implying a material softening in 
the circumferential direction for the CNT when 
subjected to internal pressure. Using this figure, 
a simple analysis of tensile instability along the 
circumferential direction similar to the one in the 
axial tension can be carried out. Accordingly, the 
strain at which the tensile rigidity reaches zero can 
be considered as the critical strain for bifurcation. 
Indeed, at this critical point, the bond length is close 
to or may go beyond the radius of atomic potential 
and the CNT cannot undergo deformation anymore 
and therefore, the stiffness vanishes. The numerical 
results show that the tensile stiffness vanishes at 
strains of around 31.5% for armchair CNTs, around 
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32.5% for chiral and around 35.5% for zigzag ones. 
As observed, in contrast with the axial tension 
instability, the circumferential critical strain for 
zigzag nanotubes is obtained larger than the one 
for armchair nanotubes. The reason is related to the 
tensile strength of the CNT in the circumferential 
direction that is higher for zigzag nanotube as 
discerned from Fig. 8. These findings confirm the 
observation made from the previous figure about 
the concavity of the curves corresponding to the 
various chiralities. 

Variations of tangent moduli coefficients of 
three carbon nanotubes with identical radius under 
internal pressure with circumferential strain are 
indicated in Fig. 15. It is observed from Fig. 15(a) 
that the coefficients of the elasticity tensor 𝐌𝐌𝐹𝐹𝐹𝐹   
diminish by increasing the strain from which the 
material softening that occurs in the circumferential 
direction can be inferred. Furthermore, the gap 
between the curves corresponding to different 
chiralities is found to increase at finite strains. In 
other words, the chirality has more important 
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influence on the coefficients of the modulus 𝐌𝐌𝐹𝐹𝐹𝐹   
at large stretches. Figs. 15(b) to 15(c) represent 
the nonlinear behavior of the coefficients of the 
tangent moduli versus the circumferential strain 
implying the material nonlinearity behavior of the 
carbon nanotubes which are exactly reflected in 
the constitutive relation. Further, similar to axial 
tension, the variations of the stiffness coefficients
(𝑀𝑀11311

𝐹𝐹𝐹𝐹 ,𝑀𝑀31111
𝐹𝐹𝐹𝐹 )  and (𝑀𝑀22322

𝐹𝐹𝐹𝐹 ,𝑀𝑀32222
𝐹𝐹𝐹𝐹 )  are mutually 

the same. 

6. Conclusion
A finite deformation membrane model based on 

the higher-order Cauchy-Born rule along with the 
deformation mapping technique was employed to 
study the elastic properties of carbon nanotubes. 
The material nonlinearity is exactly reflected in 
the constitutive relation by calculating the elastic 
moduli of the CNT from the interatomic potential. 
The model accounts for the important effects of 
the chirality and different relaxations taking place 
in a CNT when axially deformed or subjected to 
hydrostatic pressure. The isolated effects of chirality, 

radius, axial and circumferential deformations on 
the elastic properties were described. Comparison 
with full atomistic and other coupled methods 
showed that the present model can reproduce the 
energetics and elastic properties of CNTs with a 
good accuracy. Main conclusions of the current 
study are summarized below:

In contrast with the planar graphene, a CNT 
displays an anisotropic behavior. Degree of 
anisotropy increases at finite deformations and 
small radiuses and decreases with an increase in 
the radius.  

The effect of radius on Poisson’s ratio and 
circumferential Young’s modulus for armchair 
CNT is more pronounced than that for zigzag CNT 
and it is vice versa about axial Young’s modulus.

The influence of chirality on the surface Young’s 
modulus in the circumferential direction is more 
prominent than that in the axial direction.  

Due to the nonlinearities coming from 
the interatomic interactions and kinematics, 
constitutive properties of the CNT can vary with 
deformation in a nonlinear manner. 
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From the analysis of axial and circumferential 
stiffness against stretch, an upper bound on the 
tensile strain of the CNTs is obtained.  

When subjected to internal pressure, bifurcation 
takes place in the circumferential direction for 
armchair CNT sooner than zigzag CNT and it is 
vice versa when subjected to axial tension.

The armchair and chiral tubes represent a 
maximum stiffness for slightly compressive 
deformation. A softening type of tension response 
at finite strains is observed for all types of the 
carbon nanotubes.
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